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Off-diagonal long-range order implies vanishing charge gap
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For a large class of quantum many-body systems with U(1) symmetry, we prove a general inequality that
relates the (off-diagonal) long-range order with the charge gap. For a system of bosons or fermions on a lattice
or in the continuum, the inequality implies that a ground state with off-diagonal long-range order inevitably has
a vanishing charge gap, and hence is characterized by nonzero charge susceptibility. For a quantum spin system,
the inequality implies that a ground state within a magnetization plateau cannot have transverse long-range order.
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Equal-time correlation functions and energy gaps of a
quantum many-body system are intimately connected. The
connection, which is trivial in relativistic field theories, is
widely observed in nonrelativistic theories as well, and has
partly been established rigorously by means of the variational
principle [1–4] or the Lieb-Robinson bound [5,6]. See also
Refs. [7–11] for rigorous results of nonrelativistic systems
related to the Goldstone theorem.

In this Letter [12], we prove, in a large class of macroscopic
quantum many-body systems with U(1) symmetry, a general
inequality that relates the order parameter for (off-diagonal)
long-range order in the ground state with the charge gap.
When applied to a system of bosons or fermions on a lattice
or in the continuum, our inequality implies that a ground
state with nonzero off-diagonal long-range order (ODLRO) is
inevitably accompanied by a vanishing charge gap, or, almost
equivalently, characterized by nonzero charge susceptibility
χ (ρ) = {dμ(ρ)/dρ}−1, where μ(ρ) is the chemical potential
and ρ the particle density. This means that the ground state
with ODLRO is “compressible” when the chemical poten-
tial is varied. This conclusion may be most meaningful (and
even surprising) when applied to a commensurate supersolid
[13,14]. (See Discussion.) Conversely, the inequality implies
that a ground state accompanied by a nonzero charge gap
cannot exhibit ODLRO. When applied to a quantum spin
system, our inequality implies that a ground state within a
magnetization plateau cannot have long-range order in the
direction perpendicular to the magnetic field. We note that
these conclusions do not follow from the Goldstone theorem,
which does not deal with the charge gap.

The theorem is proved by a simple variational argument
that applies to a wide class of quantum many-body systems.
The proof was inspired to us by a series of closely related
works on low-lying excited states in quantum spin systems
whose exact ground states have long-range order but do not
exhibit spontaneous symmetry breaking [1–4]. See Part I of
Ref. [15] for a detailed account of the subject.
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For lattice boson models with a hard-core interaction, the
main inequality (10) was proved by Tian [16]. (See also
Ref. [17] for the hard-core boson models at half filling, which
indeed reduces to spin systems [1–4,15]). An inequality for
the charge susceptibility that resembles our (12) was proved
in Refs. [7,8] for a general class of models. This inequality,
however, is meaningful only in a ground state that breaks the
U(1) symmetry, as we explain below.

Lattice boson systems. Let us state and prove our main
result in the specific setting of lattice boson systems. General-
izations are discussed below.

Let � be an arbitrary finite lattice, i.e., a set of sites
x, y, . . ., and |�| be the number of sites. Consider a system
of bosons on �. We denote by âx, â†

x , and n̂x = â†
x âx the anni-

hilation, creation, and number operators at site x. The total
number operator is given by N̂ = ∑

x∈� n̂x. We sometimes
refer to N̂ as the conserved charge. Although we fix � in the
following discussion, we always have in mind the statistical
mechanical setting where we take |�| large and examine how
various quantities scale with |�|.

We consider the general Hamiltonian

Ĥ =
∑

x,y∈�

tx,y â†
x ây +

∑
x∈�

Ux

2
n̂x(n̂x − 1) +

∑
x,y∈�

Vx,y

2
n̂xn̂y,

(1)
where tx,y = t∗

y,x ∈ C is the hopping amplitude, Ux ∈ R is the
on-site repulsive energy, and Vx,y = Vy,x ∈ R with Vx,x = 0
is the interaction energy. Note that tx,x expresses the single-
particle potential.

Since the Hamiltonian Ĥ commutes with the total particle
number operator N̂ , each energy eigenstate can be labeled by
the eigenvalue N of N̂ . Let |�GS

N 〉 be a normalized ground
state and EGS

N be the the ground state energy with N particles.
We shall abbreviate the expectation value 〈�GS

N | · · · |�GS
N 〉 as

〈· · · 〉GS
N . We define the chemical potential μN and the charge

gap ΔN at N by

μN = EGS
N+1 − EGS

N , (2)

ΔN = EGS
N+1 + EGS

N−1 − 2EGS
N . (3)
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We can show in general that μN is a quantity at most of order
1 [18]. It is believed that the charge gap provides a simple
criterion for conductivity: The ground state is insulating if
ΔN is positive and of order 1 [19]. We define the charge
susceptibility at N by

χN = 1

|�|
1

μN − μN−1
= 1

|�| ΔN
. (4)

Let ε(ρ) be the thermodynamic limit of the ground state
energy density EGS

N /|�| as a function of the particle density
ρ [20]. It generally holds that ε′′(ρ) > 0 except at phase
coexistence points. If EGS

N /|�| convergence to ε(ρ) in a suffi-
ciently uniform manner, χN for sufficiently large but finite �

should be close to its thermodynamic limit χ (ρ) = 1/ε′′(ρ),
and hence should be positive. We expect this to be the case for
most N in a generic interacting system. (On the other hand,
χN exhibits a pathological behavior, e.g., in a free fermion
system.) We note, however, that Theorem 1 below is valid
no matter whether or not this expectation holds. In Sec. A of
the Supplemental Material (SM) [21] we directly treat χ (ρ)
defined in the thermodynamic limit.

To test for possible ODLRO, we introduce the order
operator

Ô =
∑
x∈�

ζx âx, (5)

where ζx ∈ C is an arbitrary constant such that |ζx| � 1. For
any choice of ζx, the order operator changes the particle num-
ber by 1:

[N̂, Ô] = −Ô, [N̂, Ô†] = Ô†. (6)

We say that the ground state |�GS
N 〉 exhibits ODLRO if, for an

appropriate choice of ζx, we have
〈
Ô†Ô

〉GS

N � η|�|2, (7)

with a constant η > 0.
Below we shall show an elementary but important

inequality
〈
[Ô, [Ĥ , Ô†]]

〉GS

N � A|�| + BN, (8)

which we call the extensivity bound, where A =
|�|−1 ∑

x,y∈� |tx,y| and B = 2{maxx Ux + maxx
∑

y |Vx,y|}.
We shall assume that A and B are quantities of order 1. Note
that this is the case for any nonpathological Hamiltonian. We
finally note that the commutation relation [Ô, Ô†] = ∑

x |ζx|2
implies ∣∣〈[Ô, Ô†]

〉GS

N

∣∣ � C|�|, (9)

with C = 1.
Our main result is the following..
Theorem 1. For any choice of ζx, we have

ΔN
〈
Ô†Ô

〉GS

N � {A + C|μN |}|�| + BN. (10)

To see the implication of the theorem let us assume that the
ground state |�GS

N 〉 exhibits ODLRO as in (7). Then we see
from (10) that

ΔN � A + Bρ + C|μN |
η|�| , (11)

where ρ = N/|�| is the particle density. Assuming that ρ =
O(1), we find that the charge gap is O(|�|−1) and vanishes in
the limit of large |�|. (To be precise, ΔN may be negative in
exceptional cases.)

Conversely if the charge gap satisfies ΔN � c|�|−1+ν with
some constants c and ν > 0, then (11) implies η = O(|�|−ν )
and hence the ground state |�GS

N 〉 does not exhibit ODLRO.
Assuming that χN > 0, the inequality (11) and (4) implies

χN � η

A + Bρ + C|μN | . (12)

This means that a ground state with ODLRO always has
nonzero charge susceptibility, with possible exceptions in
states with χN � 0 (where χN does not have a physical mean-
ing as susceptibility). That the charge susceptibility χN is
nonzero implies that the particle density of the ground state
varies in response to the change in the chemical potential. We
thus conclude that the ground state with nonzero ODLRO is
inevitably “compressible.”

Proof of Theorem 1. From the variational principle we have〈
Ô

(
Ĥ − EGS

N

)
Ô†

〉GS

N �
(
EGS

N+1 − EGS
N

)〈
ÔÔ†

〉GS

N , (13)

〈
Ô†

(
Ĥ − EGS

N

)
Ô

〉GS

N �
(
EGS

N−1 − EGS
N

)〈
Ô†Ô

〉GS

N , (14)

where we noted that Ô and Ô† change the particle number by
1. By adding the two inequalities, we find

〈
[Ô, [Ĥ , Ô†]]

〉GS

N � ΔN
〈
Ô†Ô

〉GS

N + μN
〈
[Ô, Ô†]

〉GS

N . (15)

The expression on the left-hand side may not be obvious, but
can be checked by a straightforward calculation. We then get
(10) by recalling (8) and (9).

Derivation of (8). We see from an explicit computation that

[ây, [Ĥ , â†
x]] = ty,x + Vx,y â†

x ây, (16)

for any x, y ∈ � such that x �= y, and

[âx, [Ĥ , â†
x]] = tx,x + 2Uxn̂x +

∑
y

Vx,yn̂y, (17)

for any x ∈ �. Since |ζx| � 1, we have
〈
[Ô, [Ĥ , Ô†]]

〉GS

N �
∑
x,y

∣∣∣〈[ây, [Ĥ , â†
x]]

〉GS

N

∣∣∣
�

∑
x,y

|tx,y| + 2
∑

x

Ux〈n̂x〉GS
N

+ 2
∑
x,y

|Vx,y|〈n̂x〉GS
N , (18)

where we noted that the Schwartz and the arithmetic-
geometric mean inequalities imply |〈â†

x ây〉GS
N | �√

〈n̂x〉GS
N 〈n̂y〉GS

N � (〈n̂x〉GS
N + 〈n̂y〉GS

N )/2. We get (8) by noting

that
∑

x〈n̂x〉GS
N = N .

Generalization. It is obvious from the proof that our the-
orem can be generalized to a much larger class of quantum
particle systems and quantum spin systems. We can treat any
system with a Hamiltonian Ĥ , a conserved charge N̂ , i.e.,
a self-adjoint operator such that [Ĥ, N̂] = 0, and an order
operator Ô such that [N̂, Ô†] = qÔ† with a fixed positive
integer q. We usually set q = 1 or 2. We need to confirm
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the extensivity bound (8), which is indeed the only nontrivial
assumption, and the bound (9) for the commutator. Then the
theorem is proved in exactly the same manner if we redefine,
with a slight abuse of notation, the chemical potential and the
charge gap as μN = EGS

N+q − EGS
N and ΔN = μN − μN−q. The

implication of the theorem for particle systems is essentially
the same as the lattice boson systems. We shall discuss the
implication for quantum spin systems below.

In what follows we discuss extensions to specific classes of
systems separately.

Other lattice boson systems. It is not difficult to extend
our proof to almost any model of single-species bosons on
a lattice. Let us remark that the treatment of three-body
interactions causes an extra problem in the justification of
the extensivity bound (8) since one has to control, e.g., the
summation

∑
x〈n̂2

x〉GS
N , which can be large. In such a case one

needs to impose an extra condition about the (near) translation
invariance to justify (8).

The extension of the theorem to models of multispecies
bosons and/or spinful bosons is automatic.

Lattice fermion systems. The treatment of lattice fermion
systems is easier than bosonic systems since all operators are
bounded. It is most natural (but not mandatory) to set N̂ to
be the total number operator. We can treat any Hamiltonian
Ĥ = ∑

x∈� ĥx and order operator Ô = ∑
x∈� ôx. We assume,

for any x ∈ �, that ‖ĥx‖ � h0 and ‖ôx‖ � o0 with constants
h0 and o0, that the commutator [ĥx, ôy] is nonzero for at most
n distinct y’s, and that [ôx, ôy] is nonzero for at most n′ distinct
y’s. Then the extensivity condition (8) is readily justified for
any state by only examining the operator norms, where we can
take A = 8nn′h0(o0)2 and B = 0. The bound (9) also holds
with C = 2n′(o0)2.

As a typical example, we can treat the Hubbard model with
short-range hopping, and examine the condensation of local
Cooper pairs by setting ôx = ĉx,↑ĉx,↓, in which case we have
q = 2.

Continuum particle systems. Since our proof only makes
use of the variational principle, it readily extends to continuum
particle systems without losing mathematical rigor. The only
nontrivial issue is the justification of the extensivity bound (8).

Let us discuss a typical bosonic system. Consider a system
of bosons in a cubic region � ⊂ R3 with volume |�|. We
denote by ψ̂ (r) and ψ̂†(r) the standard annihilation and cre-
ation operators at r, which satisfies [ψ̂ (r), ψ̂†(s)] = δ(r − s).
(Note that we are using physicists’ notation only for book-
keeping purposes. The following estimate can be done in
a mathematically rigorous manner.) We consider a general
Hamiltonian

Ĥ =
∫

d3r ψ̂†(r)

{
− 

2m
+ V (r)

}
ψ̂ (r)

+ 1

2

∫
d3r d3s ψ̂†(r)ψ̂†(s)Vint (r, s)ψ̂ (s)ψ̂ (r), (19)

with a single-body potential V (r) and interaction potential
Vint (r, s) = Vint (s, r).

Take a complex valued function ζ (r) such that |ζ (r)| �
1 and |ζ (r)| � p̄2 for any r, where p̄ > 0 is a con-
stant. We define the corresponding order operator by Ô =∫

d3r ζ ∗(r)ψ̂ (r), which satisfies (9) with C = 1. A straight-

forward calculation shows

[Ô, [Ĥ , Ô†]] =
∫

d3r ζ ∗(r)

{
− 

2m
+ V (r)

}
ζ (r)

+
∫

d3r d3s|ζ (r)|2Vint (r, s)ψ̂†(s)ψ̂ (s)

+
∫

d3r d3s ζ ∗(r)ζ (s)Vint (r, s)ψ̂†(s)ψ̂ (r).

(20)

As in the lattice model, we bound the expectation value as

〈
[Ô, [Ĥ , Ô†]]

〉GS

N �
∫

d3r
{

p̄2

2m
+ |V (r)|

}

+ 2
∫

d3r d3s|Vint (r, s)|ρ(s), (21)

where ρ(s) = 〈ψ̂†(s)ψ̂ (s)〉GS
N is the particle density in the

ground state |�GS
N 〉. This implies the desired (8) with

A = p̄2

2m
+ 1

|�|
∫

d3r|V (r)|, (22)

B = 2 sup
r

∫
d3s|Vint (r, s)|. (23)

Quantum spin systems. The treatment of quantum spin
systems is also easy since all operators are bounded. Let
us consider any Hamiltonian Ĥ (satisfying the same condi-
tions as in the fermion systems) that commutes with N̂ =∑

x Ŝ(3)
x . We here denoted the spin operator as (Ŝ(1)

x , Ŝ(2)
x , Ŝ(3)

x )
and set Ŝ−

x = Ŝ(1)
x − iŜ(2)

x . We set the order operator as
Ô = ∑

x ζxŜ−
x with ζx ∈ R such that |ζx| � 1, where we

have q = 1. The conditions (8) and (9) are clearly satisfied.
Since

Ô†Ô + ÔÔ† = 2
∑

x,y∈�

ζxζy
(
Ŝ(1)

x Ŝ(1)
y + Ŝ(2)

x Ŝ(2)
y

)
, (24)

we see that 〈Ô†Ô〉GS
N is a measure of long-range order in the

1- and 2-directions in the ground state |�GS
N 〉 with fixed N , i.e.,

the total spin in the 3-direction.
In a quantum spin system, it is standard (and physically

realistic) to consider the whole Hilbert space without restrict-
ing the eigenvalue of N̂ , and investigate the ground state
of the Hamiltonian Ĥh = Ĥ − hN̂ , where h is the uniform
magnetic field. Suppose that |�GS

N 〉 is a ground state of Ĥh for
some h. We define h+ = minn>0(EGS

N+n − EGS
N )/n and h− =

maxn>0(EGS
N − EGS

N−n)/n. One then finds that |�GS
N 〉 is the

unique ground state of Ĥh for h ∈ (h−, h+). We thus see that
Δ̃N = h+ − h− is the width of the magnetization plateau in
the magnetization process where h is varied. Note that 0 �
Δ̃N � ΔN by definition.

Suppose that Δ̃N > 0 is of order 1, in other words, that
the ground state |�GS

N 〉 belongs to a magnetization plateau.
Then (11) implies that η = O(|�|−1), i.e., |�GS

N 〉 has no long-
range order in the directions perpendicular to the uniform
magnetic field. We can similarly rule out long-range order
corresponding to general q > 1. Notable examples are the
nematic and triatic order, which correspond to q = 2 and
q = 3 [22–25].
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See Sec. A of SM [21] for the implication of our theory for
ground states with long-range order.

Existing results for symmetry-breaking state. Here, focus-
ing on bosonic systems, we review a bound on susceptibility
derived in Refs. [7,8] that applies to a ground state that breaks
the U(1) symmetry, and clarify the relation to our bound (12).

So far we examined properties of the ground state |�GS
N 〉

that exhibits ODLRO as in (7). Note that |�GS
N 〉, which is

also an eigenstate of the charge N̂ , never breaks the U(1)
symmetry, as manifested in the fact that 〈Ô〉GS

N = 0. To have
a U(1) symmetry breaking ground state, we need to consider
the whole Hilbert space without restricting the eigenvalue of
N̂ , and take a superposition of states with different particle
numbers. Such a superposition is a purely theoretical object
and is never realized (or, to be more precise, never observed)
in a system of massive particles.

To this end, we consider the Hamiltonian

Ĥμ,λ = Ĥ − μN̂ − λ(Ô + Ô†), (25)

where Ĥ is the U(1) symmetric Hamiltonian such as (1), μ is
the chemical potential as an external control parameter, and
λ is the symmetry breaking field. Note that the symmetry
breaking term is strictly artificial in a particle system since it
violates the particle number conservation law. [In a quantum
spin system, this term may be realized by external (staggered)
magnetic filed in the 1-direction.] We denote by |�̃GS

μ,λ〉 the
ground state of the Hamiltonian (25).

Since the ground state |�̃GS
μ,λ〉 is not an eigenstate of N̂ ,

we focus on the expectation value ÑGS
μ,λ = 〈�̃GS

μ,λ|N̂ |�̃GS
μ,λ〉, and

define the charge susceptibility by

χ̃ (μ, λ) = 1

|�|
∂

∂μ
ÑGS

μ,λ. (26)

As shown in Refs. [7,8], the Bogoliubov inequality for Ô and
N̂ implies

χ̃ (μ, λ) �
∣∣〈�̃GS

μ,λ

∣∣Ô∣∣�̃GS
μ,λ

〉∣∣2

|�|〈�̃GS
μ,λ|[Ô, [Ĥμ,λ, Ô†]]|�̃GS

μ,λ

〉 . (27)

See Sec. B of SM [21] for a proof.
Let us evaluate the right-hand side of (27). For a fixed μ,

suppose that |�GS
N 〉 is a ground state (within the whole Hilbert

space) of Ĥμ,0, and that |�GS
N 〉 satisfies the conditions (7)–(9).

Then, it has been proved that∣∣〈�̃GS
μ,λ

∣∣Ô∣∣�̃GS
μ,λ

〉| � √
η|�|, (28)

provided that λ|�|2 is large enough [1,4,15,26]. See Sec. B of
SM [21] for details. For the denominator in (27), one easily
verifies an extensivity bound〈

�̃GS
μ,λ

∣∣[Ô, [Ĥμ,λ, Ô†]]
∣∣�̃GS

μ,λ

〉
� (A + Cμ)|�| + BÑGS

μ,λ. (29)

By substituting (28) and (29) into (27), we find

χ̃ (μ, λ) � η

A + Bρ̃ + Cμ
, (30)

where ρ̃ = ÑGS
μ,λ/|�| is the particle density of the symmetry

breaking state |�̃GS
μ,λ〉, which should coincide with ρ = N/|�|

in the limit of large |�|. The bound (30) is, at least apparently,
the same as our bound (12).

Although one might be tempted to conclude that our in-
equality (12) is a rederivation of the above result, this is not the

case. Note that we have χ̃ (μ, 0) = 0 in any finite system be-
cause of the U(1) symmetry. To get a meaningful consequence
(30) from (27), we must consider a system with sufficiently
large symmetry breaking external field λ > 0, which is in-
deed strictly prohibited in nature. Our bound (12), on the
contrary, is formulated and proved in a physically meaningful
setting with a particle number conserving Hamiltonian and the
Hilbert space with fixed N . Our definition (4) of the charge
susceptibility represents a quantity that can be measured in
principle in experiments, and are indeed calculated in numer-
ical simulations.

With sufficient knowledge about symmetry breaking, one
can extract from the inequality (30) essentially the same phys-
ical implication as our inequality (12). This is because the
U(1) symmetry breaking ground state |�̃GS

μ,λ〉 with suitably
small λ is believed to be (close to) a superposition of the
ground states |�GS

N 〉, and, moreover, the values of N are es-
sentially concentrated in a small interval [15]. This suggests
that, as far as one is concerned with thermodynamic properties
described by the energy density ε(ρ), the symmetry breaking
ground state |�̃GS

μ,λ〉 and the symmetry preserving ground state
|�GS

N 〉 exhibit the same properties.
Discussion. For a general class of quantum many-body

systems, we proved a simple inequality which states that a
ground state with ODLRO inevitably has a vanishing charge
gap, or, almost equivalently, nonzero charge susceptibility χ ,
and hence is “compressible.” As we noted in the Introduction,
it is interesting to apply this conclusion to a commensurate
supersolid in lattice boson systems, where ODLRO is ob-
served at a commensurate filling that is consistent with a
certain crystalline ordering of particles [13,14]. The ground
state is incompressible, i.e., χ = 0, when it is in the Mott in-
sulating phase, but should become compressible, i.e., χ > 0,
once it enters the supersolid phase where ODLRO coexists
with a spontaneous breakdown of the translation symmetry.
This rather surprising consequence of our theorem is indeed
consistent with numerical observations in [13,14]. Essentially
the same behavior is expected in a recently proposed exactly
solvable model of interacting bosons, where the ground state
resembles that of a Mott insulator [27].

Let us finally make a brief comment on the relation
between our finding and the Goldstone theorem [7–11]. Al-
though both our theory and the Goldstone theorem are about
symmetry breaking (or ODLRO) and energy gaps, we should
say that the two are essentially different. First, when the
system has translation invariance, our theory compares the
energies of two states with zero momentum, while the Gold-
stone theorem compares the energies of the zero momentum
ground state and an excited state with nonzero momentum.
(In fact, our theory applies to systems which do not have
any translation invariance.) Second, and more importantly, our
theory deals with the energy gap between two U(1) invariant
ground states (with different fixed particle numbers), while
the Goldstone theorem deals with the energy gap between a
ground state with broken U(1) symmetry and an excited state
above it.
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