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Emergence of gaussianity in the thermodynamic limit of interacting fermions
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Systems of interacting fermions can give rise to ground states whose correlations become effectively free-
fermion-like in the thermodynamic limit, as shown by Baxter for a class of integrable models that include the
one-dimensional XYZ spin- 1

2 chain. Here, we quantitatively analyze this behavior by establishing the relation
between system size and correlation length required for the fermionic gaussianity to emerge. Importantly, we
demonstrate that this behavior can be observed through the applicability of Wick’s theorem, and thus, it is
experimentally accessible. To establish the relevance of our results to possible experimental realizations of XYZ-
related models, we demonstrate that the emergent gaussianity is insensitive to weak variations in the range of
interactions, coupling inhomogeneities, and local random potentials.
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Introduction. Free-particle systems enjoy a privileged
place in physics: all of their correlations can be broken down
into products of two-point functions, illustrating the com-
putational power of Wick’s theorem [1] and greatly aiding
their theoretical understanding. This “Gaussian” description
can be radically altered in real systems in which interactions
are invariably present, leading to exotic interaction-driven
phenomena such as fractionalized excitations and topological
order [2,3]. At the same time, there are many known exam-
ples, e.g., Luttinger liquids [4], for which interactions give
rise to new collective degrees of freedom; however, the latter
can still be described as being nearly free. It is thus important
to have a more systematic understanding of the criteria when
interactions can engender nontrivial physical behavior.

In recent years significant attention has been focused on
many-body systems that are expected to be strongly inter-
acting yet behave in an approximately Gaussian manner.
Recent experiments [5] have shown that Gaussian behavior
can emerge dynamically as the system is taken out of its equi-
librium state. On the other hand, gaussianity can also emerge
in equilibrium, as the size of the system grows infinite. The
latter occurs in a one-dimensional (1D) spin- 1

2 XYZ model,
which hosts a variety of paradigmatic models, such as the
Heisenberg model, the XY model, and the Ising model, as
special cases. In 1970, Sutherland observed that the transfer
matrix of the eight-vertex model has the same eigenvectors
as the XYZ model [6]. With the help of this mapping Baxter
famously solved the 2D classical XYZ model exactly. In par-
ticular, he demonstrated that in the thermodynamic limit its
partition function can be described by noninteracting fermions
throughout its entire phase diagram [7–10]. With the mapping
between 2D classical systems and quantum chains [11–13] it
was possible to determine the entanglement spectra of the 1D
spin- 1

2 XYZ model directly from Baxter’s results [1,14]. Sub-
sequently, the Gaussian structure of the entanglement spectra
of the XYZ chain was verified numerically [15].

In this Letter, we propose using the violation of Wick’s
theorem to measure the fermionic gaussianity emerging in the

XYZ model and its generalizations to long-range spin-spin
interactions. When applied to a free-fermion system, Wick’s
theorem decomposes high-point correlators in terms of two-
point correlators [16]. When the system is interacting, this
decomposition is not possible, leaving a difference W that can
be used to quantify the effect of interactions. This approach
makes it possible to demonstrate the emergent freedom of a
many-body quantum system using simple, physical observ-
ables. However, W is dependent on the choice of the operator
used for Wick’s decomposition and therefore needs an upper
bound to be physically useful. We demonstrate the efficacy
of Wick’s theorem by bounding it with the more general
diagnostic of gaussianity—the so-called interaction distance
DF [17–19]. Comparing the behavior of both DF and W ,
we demonstrate that quantum correlations of the XYZ model
exponentially approach those of a free-fermion model as a
function of system size, provided the size of the system is
larger than the correlation length. For smaller system sizes,
the XYZ model appears to be strongly interacting in terms of
both Wick’s theorem and DF near its critical regions, in stark
contrast to its thermodynamic limit behavior. To demonstrate
the experimental relevance of our results, we analyze the
applicability of Wick’s theorem in the presence of realistic
conditions such as variations in the range of interactions,
coupling inhomogeneities, and local random potentials.

The XYZ model and its emergent freedom. The 1D spin- 1
2

XYZ model on an open chain with L sites is given by

H =
∑

i

JxXiXi+1 + JyYiYi+1 + JzZiZi+1, (1)

where Xi, Yi, and Zi are the usual Pauli matrices on site i. By
employing the Jordan-Wigner transformation, the spin model
maps to interacting spinless fermions,

H =
∑

i

J+cic
†
i+1 + J−cici+1 + H.c. + Jz

4
nini+1 − Jz

2
ni, (2)
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FIG. 1. (a) Quantum correlations across the bipartition (dashed
line) of a spin chain. (b) Interaction distance DF in Eq. (3), obtained
using DMRG across the phase diagram of the XYZ model for L =
200 spins. Red lines denote critical lines, and the conformal (C) and
nonconformal (E ) tricritical points are indicated [21]. Vectors −→u 1

and −→u 2 are orthogonal to the critical lines and are used in Fig. 2.
The interaction distance is strongly suppressed in gapped phases of
the XYZ model, signaling the emergence of gaussianity.

where J± = (Jx ± Jy) and ni = c†
i ci. In the fermionic rep-

resentation Jz becomes the interaction coupling between
fermion populations at neighboring sites [20]. Without
loss of generality we take Jx = 1, and due to the sym-
metries (Jy, Jz ) ↔ (−Jz,−Jy) and (Jy, Jz ) ↔ (Jz, Jy) of the
Hamiltonian, we restrict ourselves to Jy � 0.

To analyze quantum correlations in the ground state of
the model |ψGS〉, we take the reduced-density matrix of the
half chain, ρA = trB |ψGS〉〈ψGS|, illustrated in Fig. 1(a). The
eigenvalues ρi of ρA and the corresponding entanglement en-
ergies, E ent

i = − ln ρi, contain all information about quantum
correlations between the two halves of the chain [22]. The
total number of correlations can be quantified by the von
Neumann entropy S(ρA) = − ∑

i ρi ln ρi. On the other hand,
the interaction distance DF (ρA) diagnoses how close the
quantum correlations between the two halves are to those of
a Gaussian fermionic state [17]. The interaction distance is
defined as

DF (ρA) = min
{ε}

1

2

∑

i

|ρi − σi(ε)|, (3)

where σi(ε) are the eigenvalues of the density matrix σ (ε)
of a free model given by σi(ε) = e−E free

i (ε) with entanglement
spectrum E free

i (ε) = E0 + ∑
j ε jn

(i)
j , where E0 ensures the

normalization condition tr(σ ) = 1, ε j are the single-particle
energies, and n(i)

j is the occupancy number on the jth site of
the ith element of the Fock basis, labeled by the index i. The
minimization over the single-particle energies ε guarantees
that σ is the free density matrix which is closest to the inter-
acting ρ [23]. When DF → 0, the ground state of the model
exhibits Gaussian correlations across the bipartition and can
be faithfully described by a free-fermion density matrix σ .
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FIG. 2. (a) Exponential decay of DF with system size at different
points along the −→u1 and −→u2 cuts through the phase diagram in Fig. 1.
We observe a short initial increase, followed by a plateau and the
final decrease beyond some crossover length scale Lmin, indicated by
the dotted lines. Dashed lines are fits to the asymptotic exponential
decay, DF ∝ exp(−kL), for data points L > Lmin. (b) The slope k of
the exponential decay, extracted at various points along −→u1 and −→u2 ,
exhibits a power-law dependence on correlation length ξ . The latter
is computed using the analytic formulas applicable in the thermo-
dynamic limit [26]. (c) The correlation length ξ displays power-law
dependence on Lmin.

The interaction distance for the XYZ model in Eq. (1),
shown in Fig. 1(b), is computed across the phase diagram
using the density matrix renormalization group (DMRG) [24],
implemented in ITENSOR [25]. Along the line Jy = Jz, which
is equivalent to the XXZ model with antiferromagnetic cou-
plings studied in Ref. [19], DF is high around the gapless
critical phase |Jy| > 1. On the line Jy = −Jz, DF is high
across a much narrower region around its |Jy| > 1 gapless
phase. Away from the critical regions, DF tends to zero, show-
ing that the system exhibits Gaussian correlations. Hence,
we will focus our investigation around these gapless regions
where DF exhibits nontrivial behavior.

Baxter proved that the XYZ model becomes free when
L → ∞, provided the correlation length is finite. However,
physically, we expect the model to become free as soon as L
exceeds the correlation length ξ . When applied to the XYZ
model, the interaction distance can diagnose the emergence of
freedom and thus quantify Baxter’s result for various system
sizes L compared to ξ . Without loss of generality, we consider
the behavior of DF along −→u1 cut across the Jy = Jz critical
region and −→u2 , which crosses the Jy = −Jz critical region, as
shown in Fig. 2(b). We find that, for values of the couplings
away from the critical lines, DF tends to zero exponentially
fast as system size increases, as shown in Fig. 2(a), signal-
ing that the emerging freedom can be observed efficiently.
We emphasize that this happens even for large values of the
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coupling Jz that correspond to strong density-density interac-
tions between fermions.

To analyze the conditions under which the system becomes
free, we determine the system size Lmin beyond which the
interaction distance starts decreasing as well as the rate k at
which DF exponentially approaches zero, DF ∝ exp(−kL).
Figure 2(b) shows that the rate k decreases as correlation
length ξ increases; that is, the rate of exponential decay of DF
decreases the closer we are to the critical regions. Hence, DF
quantifies Baxter’s assumption, showing the quantum correla-
tions of the XYZ model become free-fermion-like by having
DF → 0 exponentially fast with L, provided that the size is
larger than a minimum value Lmin. The latter is a polynomial
function of the correlation length ξ [26], as can be seen in
Fig. 2(c). We observe that the larger the correlation length is,
i.e., the closer to criticality, the larger the system needs to be
in order for the interaction distance to exhibit the exponential
decay. The observed polynomial relation between Lmin and ξ

quantifies Baxter’s assumption for identifying the freedom of
the XYZ model [9]. We emphasize that this strong dependence
of DF on L allows us to efficiently identify the emergent
gaussianity in a quantum simulation of the XYZ model with
an exponential accuracy just with a linear cost in the size of
the simulated system.

Violation of Wick’s theorem and experimental implica-
tions. Investigating the behavior of the XYZ model in terms
of the interaction distance reveals its formal emergence of
gaussianity in a quantitative way. Ideally, we would like to
have an experimentally accessible quantity that would allow
us to measure the emergent freedom in the laboratory. In
general, the full entanglement spectrum of the system can
be difficult to extract in an experimental context [27–29].
We therefore turn to the violation of Wick’s theorem due to
interactions.

Definition (3) allows us to determine the optimal free state
σ closest to ρ. Moreover, they are both diagonal in the same
basis [17] that can be expressed in terms of the eigenoper-
ators a j and a†

j . When ρ corresponds to a Gaussian state,

Wick’s theorem dictates that 〈a†
i aia

†
j a j〉ρ = 〈a†

i ai〉ρ〈a†
j a j〉ρ ,

where 〈a†
i ai〉ρ = tr(ρa†

i ai ). However, if ρ is non-Gaussian we
do not expect this equality to hold any more. We thus define
the Wick’s theorem violation as

W (ρ) = |〈a†
i aia

†
j a j〉ρ − 〈a†

i ai〉ρ〈a†
j a j〉ρ |, (4)

which is a measure of how interacting a model is. In partic-
ular, W (ρ) can be calculated with the use of the dominant
entanglement spectrum levels [26]. It is possible to show that

W (ρ) � κDF (ρ), (5)

where κ = 6 for the case of the a j and a†
j operators [26].

Hence, the interaction distance bounds from above the vio-
lation W of Wick’s theorem. When applied to the case of
the XYZ model we find that W and DF almost coincides
throughout the phase diagram, as shown in Fig. 3(a).

The operators ai and a†
i are, in general, related to c j and c†

j
of the underlying fermion lattice model (2) through a nonlin-
ear and nonlocal transformation. Hence, in order to determine
(4) experimentally, one needs full state tomography. As this
is, in general, unrealistic to obtain in typical experiments, we
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FIG. 3. (a) and (b) Scatterplots comparing |W| in Eq. (4) and
|Wl | in Eq. (6) with DF for sizes L = 600 and L = 400, respectively.
We see that |W| essentially coincides with DF , while |Wl | strongly
correlates with DF below the threshold D∗

F ≈ 10−9. The shaded
area, DF > D∗

F , corresponds to data points near critical regions with
high correlation lengths, where the relationship between DF and
Wl breaks down. (c) |Wl | across the phase diagram of the XYZ
model in Eq. (1) for size L = 400. When computing |Wl |, we use a
different Jordan-Wigner axis of quantization for each region, labeled
as follows: in region 1 we pick the z quantization axis, in region 2 we
pick the x axis, and in region 3 we pick the y axis.

apply the violation of Wick’s theorem to the local operators
c j and c†

j . For convenience, we can employ the spin repre-
sentation with the quantization axis taken to be the one for
which the coefficient in the model is largest in absolute value,
as shown in Fig. 3(c). For instance, where |Jz| � |Jy|, |Jz| we
define the violation of the local Wick’s theorem as

Wl (ρ) = |〈ZiZi+1〉ρ − 〈Zi〉ρ〈Zi+1〉ρ
−〈YiXi+1〉ρ〈XiYi+1〉ρ + 〈XiXi+1〉ρ〈YiYi+1〉ρ |, (6)

which is given in terms of two-spin correlators that are exper-
imentally accessible. While Wl does not necessarily satisfy
the inequality (5), we determined numerically that it is tightly
related to DF with a monotonic one-to-one correspondence in
the gapped region of the XYZ model, as shown in Fig. 3(b),
where discrepancies from this behavior emerge only near
the critical regions due to the finite-size effects. Thus, Wl

can successfully identify the emerging freedom of the XYZ
model. In Fig. 3(c), we evaluated Wl throughout the phase
diagram of the XYZ model, finding behavior very similar to
DF in Fig. 1(b). Wl becomes identical to W when the model
is in the gapped antiferromagnetic phase of the XXZ model or
when J2

y + J2
z → ∞ or J2

y + J2
z → 0. Hence, the violation of

the local Wick’s theorem Wl provides the same information as
DF , while it can, in principle, be measured in the laboratory.

Robustness under realistic conditions. Finally, we consider
the robustness of previous results when we move away from
the exact XYZ model and introduce variations that model
realistic experimental conditions. For example, in a cold-
atom implementation, the interactions between the constituent
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FIG. 4. (a) Wl as a function of system size for the long-range
XYZ model in Eq. (7) with fixed Jx = −1.0, Jy = −1.0, and Jz = 5.0
and various α. (b) Wl across the −→u2 cut with different amounts of per
site randomness δJmax applied to the couplings Jx , Jy, and Jz at system
size L = 100. (c) Wl across the −→u2 cut with a random local field of
strength hmax applied to every site of a L = 100 system.

particles are characterized by a long-range algebraic decay
[30,31]. Moreover, there might be inhomogeneities in the
engineered couplings due to imperfections in the laser control
procedures or spurious random local potentials.

We first consider the effect a polynomial profile of inter-
actions has on the behavior of Wl . We introduce a long-range
XYZ model,

HLR =
∑

i,n

1

|i − n|α (JxXiXi+n + JyYiYi+n + JzZiZi+n), (7)

where α controls the power-law decay of the couplings. The
ground-state properties of this model can be captured using
finite DMRG by expressing the algebraically decaying in-
teraction as a sum of exponentials in order to represent the
Hamiltonian as a matrix-product operator [32,33]. In Fig. 4(a)
we show the behavior of Wl as a function of system size in
the long-range model. We picked a representative point which
is in the gapped, antiferromagnetic phase for the entire range
of α values considered [34]. As in the short-range model, Wl

decreases rapidly after the system exceeds a certain size Lmin.
Note that, in contrast to the short-range case, Wl now levels off
at a very small but nonzero value as L → ∞, indicating that

the model does not become completely free in the thermody-
namic limit. The saturation value depends on the couplings
and α.

A second type of robustness check we performed is the
effect of experimental noise on Wl . To model this we first
introduce randomized couplings on each site. In Fig. 4(b)
the couplings along the −→u2 cut are sampled uniformly from
[Ji − δJmax, Ji + δJmax] on each site with Wl remaining stable
and increasing only a small amount up to large variations
in the couplings. We additionally consider the impact of a
spurious local magnetic field in the z direction. In Fig. 4(c)
a random local field sampled uniformly from [−hmax, hmax]
was added on each site of the chain along the −→u2 cut. Wl also
shows stability under this class of perturbation. Hence, the
emerging freedom of the XYZ model persists in the presence
of experimental imperfections that break the integrability of
the XYZ model in (2), while the behavior of its ground state
correlations, as witnessed by DF and Wick’s theorem viola-
tion, remains largely the same.

Conclusions. There is a stark contrast between the behavior
of genuinely interacting systems and free ones in terms of
their complexity in their description as well as their physical
properties such as their thermalization and out-of-equilibrium
dynamics. Baxter demonstrated that the XYZ model, which
encompasses a large family of physically relevant models,
behaves in the thermodynamic limit as free, although it incor-
porates fermionic interactions. Here, we identified the system
size conditions for the freedom to emerge near and far away
from the critical regions of the model as a function of the
correlation length of the system. As our method does not rely
on the integrability techniques, which are mainly restricted
to one spatial dimension, it could be applied to other non-
integrable 1D systems or even 2D models. Moreover, we
quantified the emergent Gaussian behavior in the XYZ model
for the experimentally relevant cases of finite system sizes,
long-range interaction potentials, and inhomogeneous cou-
plings and random local potentials. We proposed a way to
observe the emergence of gaussianity in the correlations of
the XYZ model in terms of observables that can be directly
measured in the laboratory. As gaussianity emerges exponen-
tially fast with system size, we anticipate that our findings can
be experimentally verified in several experimental realizations
of XYZ-type models, both in solid-state materials and in syn-
thetic ultracold-atom systems [35–41].

In compliance with EPSRC policy framework on research
data, this publication is theoretical work that does not require
supporting research data.
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