
PHYSICAL REVIEW B 104, L180406 (2021)
Letter

Quantitative determination of the confinement and deconfinement of spinons in the anomalous
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We introduce an entanglement entropy analysis to quantitatively identify the confinement and deconfine-
ment of the spinons in the spin excitations of quantum magnets. Our proposal is implemented by the parton
construction of a honeycomb-lattice antiferromagnet exhibiting high-energy anomalous spectra. To obtain the
quasiparticles of spin excitations for entanglement entropy calculations, we develop an effective Hamiltonian
using the random phase approximation. We elaborate quantitatively the deconfinement-to-confinement transition
of spinons in the anomalous spectra with the increase of the Hubbard interaction, indicating the avoided
fractionalization of magnons in the strong interaction regime. Meanwhile, the Higgs mode at the �′ point is
fractionalized into four degenerate spinons, although it appears as a sharp well-defined peak in the spectra. Our
work extends our understanding of the deconfinement of the spinon and its coexistence with the magnon in
quantum magnets.
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The nature of the ground states and their respective el-
ementary spin excitations resides at the center of the field
of quantum magnetism. For quantum magnets with strong
frustrations, quantum fluctuations can suppress the formation
of local magnetic orders, thus, exotic spin liquid phases can
be stabilized, with deconfined spinons as the elementary ex-
citations [1]. On the other hand, for quantum magnets in the
weak-frustration or frustration-free regime, the system hosts
long-range magnetic orders, and the low-energy physics can
be captured quite well by the semiclassical approach, i.e., the
spin wave theory (SWT), where the elementary excitations are
well-defined magnons. However, this does not imply that the
quantum fluctuations are negligible for ordered quantum mag-
nets. In fact, the semiclassical ordered states are not their exact
ground states in the presence of fluctuations which usually
reduce the magnitude of the local magnetic order significantly
[2,3]. The ground state of an ordered quantum magnet may
be close to a spin liquid state, such as the resonating-valence-
bond (RVB) state [4].

Recent studies on the spin excitation spectra further re-
veal the quantum nature of the magnetically ordered quantum
magnets. Compared to the SWT predictions, inelastic neutron
scattering experiments on the square-lattice antiferromagnetic
(AF) compounds [5–7] uncovered a remarkable anomaly at
(π, 0) of the Brillouin zone (BZ) in the high-energy spectra,
where the energies of the transverse spin excitations are renor-
malized downward to form a rotonlike minimum. Meanwhile,
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the sharp well-defined magnonic modes disappear around this
point with a dim broad continuum left. Similar anomalous
behaviors were also observed in other AF compounds on dif-
ferent two-dimensional lattices experimentally [8–17]. Such
anomalies indicate that additional spin fluctuations, such as
those in the adjacent spin liquid phase, would survive in the
AF ordered ground state. To appropriately capture the physics
of the spin excitations at all energies, it appears more suitable
to describe the ordered quantum magnets in terms of spinons
[18–20]. In this scenario, the magnon is a bound state of two
spinons lying in the gap of the two-spinon continuum. In fact,
based on the variational RVB ansatz with magnetic orders, the
anomaly in the high energy spin excitation spectra is attributed
to the deconfinement of spin-1/2 spinons [6,21–25]. This
scenario is supported by various numerical studies [6,19,21–
32], including the unbiased large-scale quantum Monte Carlo
simulations [31].

In this spinon-based interpretation, the main evidence in fa-
vor of the deconfinement of spinons in the anomalous spectra
of ordered magnets is that the continuum can be continuously
evolved into that appearing in a neighboring disordered state
by varying some model parameters, which indeed consists
of deconfined particle-hole spinon pairs [21,23,31]. However,
with a fixed given set of parameters, the deconfinement can
only be phenomenologically determined by the evolution of
the spectral line shape from a sharp Lorentzian peak to a broad
continuum [21–23,31]. In nature, it still remains elusive to
distinguish spinons from magnons when they are coupled in
the anomalous spin spectra. In this Letter we propose the en-
tanglement entropy (EE) of a spin excitation as the hallmark to
identify the deconfinement of spinons in the excitation spectra
of quantum magnets unambiguously and quantitatively.
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FIG. 1. (a) Illustration of Eq. (1) in the honeycomb lattice. A and
B denote the two sublattices of the honeycomb lattice. t is RVB
hopping parameter and m denotes the order parameter of the AF
order. (b) High symmetry points in the Brillouin zone.

The physics underlaying our proposal is as following.
For a system with N spins, a state is always written as
|ψ〉 = ∑

{n} a({n})|{n}〉↑ ⊗ |{N} − {n}〉↓, where |{n}〉σ indi-
cate the configuration of a state with n spin σ . Since it is the
Schmidt decomposition with respect to the separation in the
spin space, the EE of the state is

∑
{n} −a({n})2ln[a({n})2]

and its difference from the ground state can be defined to
analysis the nature of spin excitations [43]. In the spinon
scenario, spin excitations can be represented by quasipar-
ticles �̂ = ∑

{α}{β} ψ ({α}, {β})
∏

i∈{α} d†
i ⊗ ∏

j∈{β} d j , where
i( j) includes all the indexes of the spinon represented by
the operator di( j). A more convenient EE of quasiparticles
can be obtained from a singular value decomposition with
respect to the separation of particle and hole spinons. As one
of the intrinsic attributes, the scalings of EEs could charac-
terize the spin excitations. The EEs of magnons, for which
the particle-hole pairs are confined to form bound states, are
logarithmically divergent in the thermodynamic limit, while
the EEs of the modes in the spinon continuum, which can
be decomposed into relatively free particle and hole spinons,
converge to constants. Thus, one only needs the wave func-
tions or quasiparticles of states to perform such EE analysis.
To illustrate the application of our proposal, here we carry
out the random phase approximation (RPA) calculations of
the honeycomb-lattice antiferromagnet in the weak-frustration
regime exhibiting high-energy anomalous spectra, which is
relevant to the recent experiments on YbCl3 and YbBr3

[14,15,17]. We elaborate quantitatively the deconfinement-to-
confinement transition of spinons in the anomalous spectra
with the increase of the Hubbard interaction, indicating the
avoided fractionalization of magnons in the strong interaction
regime. We find strikingly that the Higgs mode at the �′ point
is always fractionalized. Our work reveals the insufficiency of
the spectral perspective and provides an quantitatively accu-
rate judgment on the deconfinement of spinons.

We start with the J1-J2 Heisenberg model of the honey-
comb lattice. Several structures could be close to the AF phase
[33–35] with the introduction of frustrations, and it has been
shown by the mean-field theory that the most energetically
favorite one is the SU(2) RVB ansatz [36]. Therefore, we
adopt this ansatz with the AF order [see Fig. 1(a)], and the
mean-field Hamiltonian for the J1-J2 model is then given by

HMF = t
∑
〈i j〉σ

f †
iσ f jσ +

∑
iσσ ′

mi f †
iσ σ z

σσ ′ fiσ ′ . (1)

where fiσ is the fermionic spinon operator satisfying Si =
1/2

∑
σσ ′ f †

iσσσσ ′ fiσ ′ at site i, in which σ is the spin index
and σ is the Pauli matrix. Here t = −0.158J1 is the SU(2)
RVB hopping parameter and mA = −mB = m = 0.191J1 is
the self-consistent mean-field solution of the AF order param-
eter with J2 = 0.3J1 [36]. The SU(2) RVB ansatz implies the
fluctuations of the plaquette valence bonds [37–41]. We will
focus on the spin-liquid-like fluctuations surviving in the AF
phase, the spiral spin orders [40,42] are not included. Then,
Eq. (1) can be diagonalized with fkασ = ∑

γ σ ′ uσσ ′
αγ (k)dkγ σ ′ .

uσσ ′
αγ (k) are the matrix elements of U (k) [36], where α denotes

the sublattice index and γ denotes the band index. And the
spinon dispersion is obtained ε(k) =

√
|tλ(k)|2 + m2, where

λ(k) = (1 + eik·r1 + eik·r2 ) [36].
Going beyond the mean-field level, RPA can be applied

[22,28]. To represent the fluctuations in the spin density
channel, we introduce the Heisenberg interaction Jeff Si · Sj
between the spinons on the nearest-neighbor sites. We also
take into account the Hubbard interaction Ueff ni↑ni↓ to simu-
late partially the effect of the no-double-occupancy constraint
on spinons. They satisfy Jeff + 2Ueff/3 = 0.4J1 in the self-
consistent calculation. In the following, we take the proportion
of the Hubbard interaction denoted by a as the variable
to show the results, i.e., we take Ueff = a0.6J1, Jeff = (1 −
a)0.4J1. It is noted that both Ueff and Jeff should be understood
as phenomenological parameters here, which are introduced
to mimic the gauge fluctuation and induce a static magnetic
order in the system simultaneously [22].

With these interactions, the spin susceptibility χ is obtained
in the RPA approach,

χ(q, ω) = χ0(q, ω)

I + V(q)χ0(q, ω)
, (2)

where the bare susceptibility χ0 is the standard Lindhard
function for the noninteracting fermionic system described by
Eq. (1) (see Eq. (S3) in [36]). V(q) = −Ueff I + J(q), J(q) is
given by

J(q) =
(

0 Jeff I3×3λ(q)
Jeff I3×3λ

∗(q) 0

)
.

The spectral functions of the transverse/longitudinal
spin excitations are related to χ via I−+/zz(q, ω) =
Im[χ−+/zz(q, ω + i0+)]/π .

In the zero-temperature RPA, the spinon particle-hole
operators can be approximately regarded as quasibosonic
operators b†

kqσσ ′ 
 d†
k−q1σ dk2σ ′ . Thus, we can develop an ef-

fective Hamiltonian about the spin excitations from RPA [36],

Heff (q) =
∑
kσσ ′

{[ε(k − q) + ε(k)]b†
kqσσ ′bkqσσ ′

+ [ε(k + q) + ε(k)]bkq̄σσ ′b†
kq̄σσ ′ }

+�†
q

¯̄U †
q Vq

¯̄Uq�q,

where �†
q = (· · · b†

kqσσ ′ · · · bkq̄σσ ′ · · · ), ¯̄Uq = INk×Nk ⊗
U ∗(k) ⊗ U (k − q), and Vq is the coefficient matrix of
the Fourier transform of the Hubbard and Heisenberg terms
[Vq]kαβ;k′α′β ′ f †

k−qα fkβ f †
k′α′ fk′−qβ ′ . Then the ith quasiparticle

�̂i(q) of the spin excitations is solved from Heff as a linear

L180406-2



QUANTITATIVE DETERMINATION OF THE CONFINEMENT … PHYSICAL REVIEW B 104, L180406 (2021)

FIG. 2. Spectral functions of the (a)–(c) transverse and (d)–(f)
longitudinal spin excitations along the �-M-�′-K-K ′-�′ path denoted
in Fig. 1(b).

combination of the products of such particle-hole spinon
pairs:

�̂i(q) =
∑

kγ σσ ′
ψikγ σσ ′ (q)d†

k−qγ σ ⊗ dkγ σ ′ . (3)

Since the independence of the transverse and longitudinal spin
dynamics, the spin indexes σ and σ ′ are binding for each
excitations. Thus, Eq. (3) would be reduced to the Schmidt
decomposition of particle and hole spinons. Though the co-
efficient ψikσσ ′ (q) is not normalized, it can be viewed as a
vector, whose α norm is well defined, thus, the Rényi entropy
reads

Si(q) = 1

1 − α
ln(

∑
kγ σσ ′

|ψikγ σσ ′ (q)|2α ). (4)

Now let us turn to the numerical results of spectra. In
Figs. 2(a)–2(c) the transverse spectra of the AF phase with
SU(2) RVB fluctuations along the �-M-�′-K-M-K ′-�′ path
in the BZ [see Fig. 1(b)] are presented with three typical
a values. The spectra are composed of a dim broad spinon
particle-hole continuum and a bright branch of magnons. The
energies of the spinon pairs are ωk(q) = ε(k − q) + ε(k),
thus the continuum is gapped with the bottom lying at �/K .
The magnons appear below the spinon continuum with a
linear dispersion relation away from the gapless Goldstone
mode at �/�′ as well as a divergent intensity at �′, which is in
agreement with the SWT. However, the high-energy magnonic
spectra exhibit distinct behaviors along the BZ boundary from
K to M, compared to the SWT predictions. When the Hubbard
interaction is absent [Fig. 2(a)], the bright magnons are scat-
tered into the continuum as the dispersion ascends to K , and

(a) (b)

(c) (d)

K

M

FIG. 3. On the left: transverse spectral functions at (a) K and
(c) M. On the right: scalings with system size N of the EEs of the
lowest transverse modes at (b) K and (d) M. The legends in the
figures indicate the increasing of a by different colors. The dashed
lines denote the EEs of degenerate modes.

are completely absent along the K-M line. As the Hubbard
interaction sets in, the magnon dispersion is suppressed and
the spectral weight is transferred to the lower boundary of the
continuum. With a weak Hubbard interaction as in Fig. 2(b), a
bright mode comes out around M, but the spectrum at K still
remains as a dim continuum. With the further increase of the
Hubbard interaction as in Fig. 2(c), the transferred spectral
weight at K eventually concentrates on a roton-like mode
with a local minimum in the dispersion. In Figs. 2(d)–2(f),
the longitudinal spectra are also presented. From a spectral
perspective, one would ascribe the bright mode, emerging
adjoint to the bottom of the spinon continuum around �′
with gradually weakened spectral peaks approaching the BZ
boundary, as the well-defined collective longitudinal modes
known as the Higgs modes. Different from the transverse
spectra, the longitudinal ones are nearly independent of the
Hubbard interaction strength, except that a bright mode would
appear around M when a is extremely large [Fig. 2(f)].

To better understand the nature of the modes close to the
continuum, we highlight the evolutions of the spectral func-
tions with respect to a for the transverse spin excitations at
M/K in Figs. 3(a) and 3(c), and for the longitudinal spin
excitations at �′/M in Figs. 4(a) and 4(c). Basically, the
determination of the magnons and spinons from the spectral
perspective is based on the line shape of the spectral function.
That is, the sharp Lorentzian quasiparticle peaks are identified
as magnons, while the continua with a non-Lorentzian shape
adhered to the Lorentzian peak are spinons. Thus, it is empir-
ical. Here we perform the α = 2 Rényi entropy calculations
with different system sizes and show the results for the quasi-
particles with the lowest energies in Figs. 3(b) and 3(d) for
the transverse modes at K/M, and in Figs. 4(b) and 4(d) for
the longitudinal modes at �′/M. There, N is the number of
the unit cells along either of the two translation vectors of the
honeycomb lattice. Our EE analysis reveals the insufficiency
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(a) (b)

(d)(c)

M

Γ′

FIG. 4. On the left: longitudinal spectral functions at (a) �′ and
(c) M. On the right: scalings of the EEs of the lowest longitudinal
modes at (b) �′ and (d) M.

of the spectral perspective and provides an quantitatively ac-
curate judgment on the confinement and deconfinement of
spinons, as will be elaborated below.

For the transverse modes at K [Fig. 3(a)], as has been
discussed above, the spectral weight transfers to the lower
energy as the Hubbard interaction grows. Besides, the position
of the spectral peak changes from the high-energy side to the
low-energy side as a grows across 
 0.3, which corresponds
to the emergence of a bright mode in the spectra and is a sign
of the avoided fractionalization of the magnons into spinons in
the strong interacting regime. This observation is verified by
the EE results in Fig. 3(b). As is clearly seen, their EEs con-
verge to constants when a � 0.3 and diverge logarithmically
when a � 0.3. Thus, there is a deconfinement-to-confinement
(spinon-to-magnon) transition of the spin excitations across

 0.3. In this case, the spectral analysis coincides with the EE
analysis. However, for the transverse modes at M, as can be
seen in Fig. 3(c), no qualitative change of the line shapes of
the spectral functions could be observed when the Hubbard
interaction increases, especially from a = 0 to a 
 0.03. It
is hard to determine whether magnons are fractionalized into
spinons at this point from the spectral perspective. To resolve
this dilemma, we have to resort to the EE analysis. As shown
in Fig. 3(d), the EE of the lowest-energy mode at M is loga-
rithmically divergent with the system size when the Hubbard
interaction exceeds a critical value (a 
 0.03). Such a specific
scaling behavior implies the formation of stable magnons
with a � 0.03. On the other hand, when a � 0.03, the EE
scales proportional to −ln(N − 1) up to N = 30 [44]. This
is related to the N − 1-fold degeneracy of the lowest-energy

spinon particle-hole pairs. For a single mode in the degenerate
manifold, the averaged EE converges to a constant. Thus, the
spin excitations at M with a 
 0 are deconfined spinons.

For the longitudinal modes at �′, regardless of the Hubbard
interaction strength, the spin excitations seem to be well-
defined Higgs modes at first sight. After all, they exhibit quite
sharp peaks in the spectral function [see Fig. 4(a)]. However,
the convergence of the EEs in Fig. 4(b) rebuts this physical
picture implied by the spectral function, and S(q) = −ln4
denotes four degenerate free spinon particle-hole pair exci-
tations. At M, the case for the longitudinal mode is similar
to that of the transverse mode, where the confinement and
deconfinement of spinons cannot be determined by the spec-
tral functions due to their continuous evolution with a [see
Fig. 4(c)]. By the evaluation of the EEs as in Fig. 4(d), it can
be concluded that a stable Higgs mode emerges as a � 0.26.

In summary, we propose an entanglement entropy analysis
to identify the confinement and deconfinement of spin excita-
tions. Applying it to the honeycomb-lattice antiferromagnet,
we elaborate quantitatively the deconfinement-to-confinement
transition of spinons in the anomalous spectra, indicating the
avoided fractionalization of magnons in the strong Hubbard
interaction regime. We find the Higgs mode at the �′ point is
always deconfined as spinons, although it appears as a sharp
well-defined quasiparticle from the spectral perspective.

The anomalous continuum of the spin excitations in the
recent experiments of YbCl3 and YbBr3 [14–17] is close to
the a = 0.2–0.3 case in this paper, where the spectra peak at
K is more broadening than that at M, and is not pushed down
to be a well-defined rotonlike mode. But the experiments do
not show a definite bottom of the continuum at K . Thus, the
effective models of the two compounds remain to be verified.
Moreover, the fluctuations induced by the frustrations may not
be limited to the SU(2) RVB type. Investigations beyond the
mean-field level is needed to determine whether a Z2 spin-
liquid type is more favorable.

It is noted that there exists another scenario to account for
the anomalous spectra in the high-energy region, which is
attributed to the magnon damping [17,45–51] instead of the
deconfinement of spinons. In principle, the EEs for damped
magnons and deconfined spinons should have different scal-
ing behaviors. The EE analysis could be generalized to more
unbiased methods in future works to help settle down this
debate.
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