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Hopfield neural network in magnetic textures with intrinsic Hebbian learning
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Macroscopic spin ensembles with brainlike features such as nonlinearity, stochasticity, self-oscillations,
memory effects, and plasticity, form attractive platforms for neuromorphic computing. We propose an artificial
neural network consisting of electric contacts on conducting films with tunable magnetic textures that is
superior to conventional implementations, because it does not require resource-demanding external computations
during training. Simulations show that the feedback between anisotropic magnetoresistance and current-induced
spin-transfer torque in malleable magnetic textures autonomously trains the network according to the Hebbian
learning principle. We illustrate the idea by simulating the pattern recognition by a four-node Hopfield neural
network.
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Introduction. Neuromorphic computing is a rapidly de-
veloping field in information technology with impressive
performance in tasks such as pattern recognitions or language
translation. However, von Neumann architectures that emulate
brain-inspired algorithms with physically separated comput-
ing and storage units are very inefficient. For example, the
power consumption of the Alpha Go processor (∼1 MW) is
50 000 times higher than that of a human brain (∼20 W) [1,2].
A sustainable route towards artificial intelligence would be an
architecture with hard-wired neuromorphic functions. Spin-
tronic devices share features of the brain, such as nonlinearity,
memory, self-oscillations, stochasticity, plasticity, high de-
grees of freedom, etc. [3]. These advantages already led to
alternative computing schemes, such as the stochastic [4,5],
in-memory logic [6], as well as neuromorphic computing [7].

The artificial neural network (ANN) is a widely used
model for neuromorphic computing, with artificial neurons
and synapses that emulate biological system [8]. Neurons
are devices with output signals that spike when the in-
tegrated input reaches a certain threshold, while synapses
connect the neurons with tunable weights. Spintronic devices
can mimic both functionalities. For example, spin-torque
oscillators can serve as artificial neurons and recognize spo-
ken digits and vowels [9,10]. The nonlinear dynamics of
skyrmion fabrics can preprocess information for reservoir
computing [11–13].
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Memristors with an electric resistance that depends on
its history are widely used as artificial synapses [14–17].
Spintronics offers memristor functionalities by reconfig-
urable magnetic configurations whose resistance depends on,
for example, the positions of magnetic domain walls [18],
the number of skyrmions [19–21], or the texture in
antiferromagnet/ferromagnet bilayers [22], all of which can
be controlled by applied fields or currents.

In most software and hardware realizations of an ANN, the
weight-updating process of the synapses is based on external
algorithms, such as the back-propagation method in which
external computations allocate new weights based on the re-
sults of a previous cycle. Unfortunately, this is expensive in
terms of resource and energy consumption [23]. Here, we
propose a platform for neuromorphic computation that can
learn “naturally” by itself. The proposed network is based
on an electrically conducting magnetic thin film with an in-
homogeneous magnetic texture, with weights encoded by the
conductance matrix between attached electrodes. Convention-
ally, weights are updated during the training cycle according
to algorithms inspired by Hebb’s learning principle [24]: Cells
that fire together wire together. We propose that this principle
can be intrinsically embedded in the dynamic evolution of
the magnetic texture under the current-induced spin-transfer
torque, hence external intervention and computation are no
longer needed [25]. As a proof of principle, we simulate the
performance of a four-node Hopfield network on a magnetic
thin film with maze spiral domains as shown in Fig. 1(g).

Modeling. The dynamics of the magnetization M(ṙ, t )
of a ferromagnetic film with saturation magnetization
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FIG. 1. Magnetic textures with plasticity. (a) Snapshot of a maze domain structure at t0 = 0 ns (color code for out-of-plane magnetization
and arrows for in-plane magnetization). (b) Calculated conductance |G| in longitudinal (x̂) and transverse (ŷ) directions. Snapshots of
magnetization [(c), (e)] and current density |j| [(d), (f)] distributions at t1 = 10 ns and t2 = 50 ns, respectively. An applied V0 = 0.05 V
drives a current along the x direction. (g) Left: Schematical Hopfield network formed by four neurons with values ui and weights wi j . Right:
Implementation of this network by a magnetic thin film with a texture that stores weights that can be trained by currents. The inputs are the
voltages Vi at the electrodes and the outputs are the currents Ii into the film. The conductances Gi j are equivalent to the weights in the Hopfield
network.

Ms is governed by the Landau-Lifshitz-Gilbert (LLG)
equation

∂m
∂t

= −γ m × Heff + αm × ∂m
∂t

+ τd, (1)

where m = M/Ms, γ is the gyromagnetic ratio, and α is the
Gilbert damping constant. The effective magnetic field

Heff = A∇2m + Km · ẑ − D∇ × m (2)

consists of the exchange interaction, the perpendicular
easy-axis anisotropy along ẑ, and a bulk-type Dzyaloshinskii-
Moriya interaction (DMI) [26–28], parametrized by A,
K , and D, respectively. The current-induced spin-transfer
torque [29–31] in Eq. (1),

τd = μBP

eMs
(j · ∇)m, (3)

is proportional to the electric current density j, where μB is the
Bohr magneton, P the (conductivity) spin polarization, and −e
the electron charge. The dipolar interaction is not important
for the energetics of submicrometer scale textures and may be
disregarded for the DMI-stabilized ones considered here.

The electric current density j is proportional to the local
electric field E,

j(r) = �̂[m(r)] · E(r), (4)

where �̂[m] is the 2 × 2 conductivity matrix of a magnetic
thin film with the anisotropic magnetoresistance (AMR) [32],
i.e., a local resistivity depending on the angle θ between
the current flow and the local magnetization m(r) as

ρ = ρ‖ cos2 θ + ρ⊥ sin2 θ . Inverting this relation, the Carte-
sian elements �i j[m] = σ⊥ + σδmimj with σ⊥ = 1/ρ⊥, σδ =
1/ρ‖ − 1/ρ⊥ and the AMR ratio a = 2(ρ‖ − ρ⊥)/(ρ‖ +
ρ⊥) [11–13,33]. A large enough current-induced torque in
Eq. (1) rotates the magnetization that in turn modulates the
current distribution by Eq. (4). We solve the spatiotemporal
Eqs. (1) and (4) self-consistently under the constraint ∇ · j =
0 by the COMSOL MULTIPHYSICS [34] finite element code.

Magnetic synapse. In magnetic films with DMI,
D > 4

√
AK/π [28,35,36], a spiral maze domain texture

emerges [37] as illustrated by Fig. 1(a) for a 400 nm × 400 nm
slab with thickness 1 μm. Parameters are typical for, e.g.,
Pt/CoFe/MgO, but combined with a large AMR ratio
a = 150% found in Sr2IrO4 [38], and D = 6.5 × 10−3 A. In
this system many energetically nearly degenerate textures
span a huge configuration space that is accessible by small
variations in temperature, field, or voltage. Here, we focus on
the overdamped regime with α = 0.3, which can be reached
by rare earth doping [39]. The low-energy realizations of
magnetic textures are then stable in the absence of applied
torque and forces and the effects of weak pinning may be
disregarded [see Supplemental Material (SM) [40]].

Under the action of the spin-transfer torque caused by an
electric voltage V0 applied across the film, the texture and
its conductance evolve with time. Figures 1(c)–1(f) show
snapshots for V0 = 0.05 V applied in the x direction, as in
Fig. 1(a). The domains tend to align perpendicular to the
current flow to minimize the spin-transfer torque, as observed
in thin films of lanthanum strontium manganite [41] and
MgO/CoFeB/Pt multilayers [42], but the sample boundaries
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FIG. 2. Trained four-node Hopfield network. The memorized patterns are {Vi} = {+ − +−}, {+ − −+}, and {+ + −+}, respectively.
(a)–(c) Magnetization distribution (top panel, arrows for in-plane magnetization and color code for out-of-plane magnetization) and current
density distribution log |j| (bottom panel, magenta cones for electric current j on a logarithmic scale). (d)–(f) The effective energy E ′ [Eq. (7)]
is minimal for the trained voltage patterns.

prevent perfect alignment. The current-induced reorientation
of the texture increases/decreases the conductance in the lon-
gitudinal (x̂)/transverse (ŷ) direction, as seen in Fig. 1(b). The
magnetic texture acts as memristors that saturate only when
high voltages are applied for a sufficiently long time.

A self-learning Hopfield network. The magnetic textures
equipped with electrodes establish a Hopfield network [43,44]
of fully connected neurons that can recognize patterns.
Figure 1(g) sketches a Hopfield network with four neurons
connected by the underlying magnetic film. The neuron in-
puts are the voltages at the electrodes, which we adopt to
be binary {Vi = ±V0}. According to Kirchhoff’s law Ii =∑

j Gi j[m]Vj , the current through the electrodes is governed
by a (symmetric) conductance matrix Gi j[m] = G0

i j + G′
i j[m]

with texture-independent Ĝ0 and dependent Ĝ′ contribu-
tions [45]. Current conservation requires

Gii = −
∑

j �=i

Gi j > 0 with Gi j < 0 for i �= j, (5)

where a current is positive when flowing into the electrodes.
Ĝ0 can be measured by saturating the magnetic film by a
sufficiently strong magnetic field perpendicular to the film and
satisfies the same constraints as Ĝ in Eq. (5). The difference
Ĝ′ = Ĝ − Ĝ0 is still bound by G′

ii = −∑
j �=i G′

i j but the non-
diagonal elements G′

i j can have either sign.
We may distinguish the current contributions from Ĝ0 and

Ĝ′: Ii = I0
i + I ′

i , where

I ′
i =

∑

j

G′
i jVj . (6)

This completes the formulation of the Hopfield network with
Vj = ±V0 the neuron inputs, G′

i j the tunable weights, and
sgn(I ′

i ) the neuron outputs. Analogous to the the bipolar Ising
spin glass model [46], we define the functional energy

E ′ = −
∑

i

I ′
iVi = −

∑

i, j

G′
i jViVj = 2V 2

0

∑

Vi �=Vj

G′
i j . (7)

Physically, −E ′ is the power consumption for a conductance
matrix Gi j relative to that of the texture-free thin film (G0

i j):
−E ′ = −E − (−E0) with −E0 = ∑

i G0
i jViVj . With fixed G0

i j ,
we know −E0 in advance for arbitrary inputs {Vi}. The energy
Eq. (7) therefore measures the additional Joule heating caused
by the magnetic texture.

The film can be trained to memorize a pattern encoded
by an array of binary values V ≡ {Vi} simply by letting the
magnetization evolve under the voltages {Vi}. The texture
adjusts itself to the current-induced spin-transfer torque such
that the conductances (|Gi j | and |G′

i j |) between electrode i
and j increase when Vi �= Vj , thereby decreasing the objective
function E ′ in Eq. (7). The conductances between electrodes
with the same voltage cannot be directly trained, but they tend
to decrease when other conductances grow.

Figure 2 shows examples of a four-neuron network that
was trained to memorize three patterns that were imprinted
by voltage distributions over the nodes as {+ − +−}, {+ −
−+}, {+ + −+}, respectively. The top panels show the post-
training texture and current density distributions. The lower
panels of Fig. 2 show the energies Eq. (7) of the trained texture
when fed by all possible inputs. The energy is minimized
when the trial pattern (up to a global sign change) agrees with
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the memorized pattern. For instance, Fig. 2(d) shows clear
minima for the equivalent {+ − +−} and {− + −+} states.
Due to the point (rotating the pattern according to center)
and mirror symmetry (flipping the voltage sign), there are
eight degenerate patterns for Fig. 2(c) [two for Fig. 2(a), four
for Fig. 2(b)], representing 14 out of 16 possible states (that
include the trivial {+ + ++} and {− − −−}) spanned by a
four-node Hopfield network.

The memorized pattern can be retrieved by standard infer-
ring algorithms, for example by feeding the neurons with a
random initial pattern of binary voltages {Vi(0)} with small
amplitudes that do not perturb the texture. The voltages can
be then updated either asynchronously or synchronously [44]
with Vi(t + 1) = sgn[I ′

i (t )]V0, where the sign function serves
as an activation function which introduces nonlinearity to the
network. The self-consistent state with Vi = sgn(I ′

i )V0 corre-
sponds to the minimum of the energy function Eq. (7) and the
memorized pattern [40].

Intrinsic Hebbian learning. In other types of hardware-
implemented synapses, such as cross-bar grid memris-
tors [47,48], the weight-updating requires learning algorithms
(such as the back-propagation method) [49] that have to be ex-
ecuted externally. In contrast, the weight updating in magnetic
textures does not require any external interference but happens
automatically via a positive feedback mechanism between the
training current and the texture response. The reinforcement
of the interconnection of two neurons by a voltage difference
is analogous to Hebb’s learning rule in neuroscience [24] that
simultaneous activation of neurons leads to increased synaptic
strength.

By dividing the continuous training process into discrete
temporal slices, i.e., regarding the voltages as a train of pulses,
the conductance (weight) matrix evolves as

Gn+1
i j = Gn

i j + �n
i j[{Vi}]. (8)

Here, �n
i j updates at step-n the weight for the connection

between node i and j, depending mainly on the voltage dif-
ference Vi − Vj , leading to a monotonous increase of weight.
The plasticity alone required by Hebbian learning is typi-
cally unstable [50], since either all weights may grow to
a maximum or decay to a minimum. However, the con-
ductance matrix in the proposed network will not reach
overall saturation since the magnetic strips twist and move
but cannot be easily created or destroyed, especially in the
presence of topological defects stabilized by the DMI. The
strengthening of certain connections therefore weakens oth-
ers, e.g., seen in Fig. 1(b). This competition of the weight
modulations replicates another typical feature of organic
synapses [44,50,51].

Discussion. We treat the conductance difference Ĝ′ as
synaptic weight, hence we infer by the current difference I ′

i ,
which is facilitated by a large AMR ratio a. In Ni80Fe20 thin
films a ∼ 8% [52], −10%/6% in single-crystalline CoxFe1−x

alloys depending on growth direction concentration x [53],

and ∼80% in bilayered La1.2Sr1.8Mn2O7 single crystals [54].
In antiferromagnetic Sr2IrO4 it can reach a ∼ −160% [38]. A
larger DMI than used here (>0.002 J/m2) reduces the pitch
of the spirals and improves the efficiency of the spin-transfer
torque. The parameters and voltages are chosen optimistically
to keep computation times manageable. The general idea
works for less optimal materials, but at the costs of higher
power dissipation and training times. We show in the SM that
the planar and anomalous Hall effects [40,55] may be disre-
garded because the in-plane and perpendicular magnetizations
vanish on average in the absence of an external field [56].

The bulk-type DMI considered above generates Bloch-type
domain walls, that the current induced torque tends to realign
such that the conductance increases. In materials with a domi-
nant fieldlike spin-transfer torque [31] or with interfacial-type
DMI [28,57], a negative feedback reduces the conductance
by applying currents (see SM [40]). Our network scheme can
cooperate as well with such negative feedback by swapping
the roles of voltage and current in the inferring process and
using the resistance instead of conductance as weights in the
objective function.

Our proof-of-principle device can only store a 4-pixel pat-
tern. Larger pictures can be stored by increasing the number of
nodes, e.g., with positions mimicking the locations of physical
pixels (see SM [40]). Scaling up the network increases the
storing capacity in the form of more complex and multiple
input patterns, and multiple patterns can be memorized when
the energy function has multiple local minima [43]. The per-
formance can be optimized also by flexible node positions
and/or three-dimensional textures.

Conclusion. We proposed a neural network formed by
electric contacts to conducting magnets with a complex mag-
netization texture. Because of the plasticity of the magnetic
textures, the weights of the synapses can be automatically
updated during the training process via a positive feed-
back mechanism between the current-induced spin-transfer
torque and the electrical conductance. At the same time,
the increase of synaptic weights is constrained by the AMR
effect of chiral magnetization texture induced by DMI.
We numerically simulate training of and retrieval from a
four-node Hopfield network. The concept works also for
other types of neural networks and other materials with
both “plasticity” and “competence,” such as reconfigurable
ferroelectrics with conducting domain walls [58,59] and con-
ducting nanowire networks [60]. Our work paves the way to
realize hardware-based neuromorphic computing with intrin-
sic Hebbian learning.
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