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Distorted 3Q state driven by topological-chiral magnetic interactions

Soumyajyoti Haldar ,1,*,† Sebastian Meyer ,1,*,‡ André Kubetzka ,2 and Stefan Heinze 1

1Institute of Theoretical Physics and Astrophysics, University of Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
2Department of Physics, University of Hamburg, 20355 Hamburg, Germany

(Received 26 May 2021; revised 20 August 2021; accepted 21 October 2021; published 11 November 2021)

We predict the occurrence of unexpected magnetic ground states in ultrathin Mn films due to the frustration of
higher-order interactions. Based on density functional theory we show that significant chiral-chiral interactions
occur in hexagonal Mn monolayers due to large topological orbital moments which interact with the emergent
magnetic field. Due to the competition with biquadratic and four-spin interactions superposition states of spin
spirals such as the 2Q state or a distorted 3Q state arise. Simulations of spin-polarized scanning tunneling
microscopy images suggest that the distorted 3Q state could be the magnetic ground state of a Mn monolayer on
Re(0001).
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Noncollinear spin structures are of fundamental interest in
magnetism since they allow to obtain insight into the underly-
ing microscopic interactions and are promising for spintronic
applications [1,2]. For example, the frustration of Heisenberg
exchange interactions is the origin of spin spiral states found
in many rare-earth elements or in the fcc phase of Fe. The
competition with beyond nearest-neighbor exchange occurs
due to the long-range nature of the Ruderman-Kittel-Kasuya-
Yosida interaction characteristic for transition and rare-earth
metals. Spin spirals can also arise due to the Dzyaloshinskii-
Moriya (DM) interaction which is present in materials with
broken inversion symmetry such as surfaces or interfaces [3].

Recently, more complex magnetic states such as the su-
perposition of spin spirals [4–6] or atomic scale spin lattices
[7–9] have raised much attention. They can occur due to terms
beyond the pair-wise Heisenberg or DM interactions such as
higher-order exchange interactions [10–12]. They might also
be driven by the recently proposed topological-chiral [13] and
chiral multispin interactions [14–16]. A prominent example of
a multi-Q state—a superposition of symmetry equivalent spin
spirals (1Q states)—is the 3Q state [4]. The 3Q state, which
has been predicted as the ground state of a Mn monolayer on
Cu(111) [4], is an intriguing noncollinear spin structure on
a two-dimensional lattice which leads to topological orbital
moments and a topological Hall effect even in the absence
of spin-orbit coupling [17]. It has also been predicted to
trigger topological superconductivity in a conventional super-
conductor [18]. Recently, the 3Q state has been discovered in
a Mn monolayer on the Re(0001) surface by spin-polarized
scanning tunneling microscopy (SP-STM) [6]. However, the
locking of the spin structure to the atomic lattice could not
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be explained and it was speculated that a distortion of the 3Q
state could be the origin.

Here we demonstrate based on density functional theory
(DFT) that the frustration of higher-order interactions in ultra-
thin films leads to unexpected magnetic ground states. Besides
fourth-order terms such as the biquadratic or four-spin in-
teractions, which are typically considered, the chiral-chiral
interaction which is of sixth order can play an essential role.
For free-standing Mn monolayers we show that large topolog-
ical orbital moments occur which interact with the emerging
magnetic field leading to significant chiral-chiral interactions.
By the interplay of this term with biquadratic and four-spin
interactions, complex spin structures such as the 2Q state or
the distorted 3Q state can be stabilized. For Mn monolayers
on Cu(111) and Re(0001) we predict similarly large chiral-
chiral interactions which can induce a distorted 3Q magnetic
ground state for Mn/Re(0001). Simulated scanning tunnel-
ing microscopy images show that the predicted distorted 3Q
ground state of Mn/Re(0001) is consistent with previous ex-
periments.

We have used DFT as implemented in the FLEUR code
[19] which is based on the full-potential linearized augmented
plane wave method [20] to calculate total energies of non-
collinear spin structures [21] for unsupported Mn monolayers
and on the Re(0001) surface. We have also used the VASP

code [22], which is based on the projector augmented wave
method [23–25], to study Mn/Re(0001) and Mn/Cu(111).
Calculations have been performed in the local density and
scalar-relativistic approximation, i.e., neglecting spin-orbit
coupling. Computational details can be found in the Supple-
mental Material [26].

For unsupported Mn monolayers we have calculated the
energy dispersion of spin spirals since they are the fundamen-
tal solution of the classical Heisenberg model. Spin spirals can
be characterized by a vector q from the Brillouin zone (BZ).
The calculated energy dispersion is qualitatively the same for
all considered Mn monolayers (see Ref. [26]). Among all spin
spiral states, the row-wise antiferromagnetic (RW-AFM) state
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FIG. 1. Spin structures for a hexagonal Mn monolayer along the
continuous path given by Eq. (1) from (a) the 2Q state via (d) the 3Q
to (h) the 1Q state. Yellow arrows denote magnetic moments which
rotate in the xy plane (shown in the coordinate system above), red
arrows denote moments in the positive z direction, green arrows in
the negative z direction. The angle α is applied to rotate ±z spins
into the −x direction and ±y spins to the +x direction. (a) 2Q state
with α = 0◦, (b) α = 12◦, (c) α = 24◦, (d) 3Q state with α ∼ 35◦,
(e) α = 50◦, (f) α ∼ 60◦, (g) α = 75◦, (h) 1Q state (RW-AFM) with
α = 90◦.

[Fig. 1(h)] is the energetically lowest state and the exchange
coupling is strongly antiferromagnetic. The RW-AFM state
can propagate along one of the three symmetry equivalent
directions of the surface corresponding to the M points of
the two-dimensional BZ, i.e., 1Q states. One can construct
linear combinations of two or three of these degenerate 1Q
states under the constraint of fixed spin length at every lattice
site resulting in the 2Q [Fig. 1(a)] and the 3Q [Fig. 1(d)]
state, respectively. These states are energetically degenerate
with the 1Q states within the classical Heisenberg model. The
established approach to determine the higher-order exchange
constants in fourth order relies on DFT total energies of such
multi-Q states [12].

In this work, we propose a path in the magnetic configura-
tion space (Fig. 1) which allows us to go beyond fourth order
terms and reveals different ground states. It is motivated by the
speculation of a distorted 3Q ground state of Mn/Re(0001)
[6]. We start from the 2Q state, Fig. 1(a), and rotate all spins
in this structure continuously into the 1Q (RW-AFM) state,
Fig. 1(h). This is achieved based on the Rodriguez rotation
formula such that the spin sν

i at site i in the νth rotation step is
given by (see Ref. [26] for details)

sν
i = s2Q

i cos αν + s1Q
i sin αν, (1)

where s2Q
i and s1Q

i are the spin directions in the 2Q and 1Q
state, respectively. The rotation angle αν is varied from 0 to
90◦. The 3Q state corresponds to αν ≈ 35◦, Fig. 1(d). It can
be demonstrated that pair-wise Heisenberg exchange terms,
−Ji j (si · s j ), where Ji j are the exchange constants, do not
vary along this path (Ref. [26]). Therefore, any change of the
total energy obtained via DFT can only be explained by terms
beyond the Heisenberg exchange.
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FIG. 2. (a) Energy along the 2Q-3Q-1Q path given by Eq. (1)
in hexagonal Mn unsupported monolayers (UMLs) for different
in-plane lattice constants. Symbols denote total energies calculated
from DFT using the FLEUR code, the lines show the fit to higher-order
exchange interaction terms. The two insets show the contribution
of the fourth and sixth order terms to the fit. Red color shows the
result for a = 4.6 a.u., orange and blue color for the theoretical and
experimental in-plane lattice constant of Cu(111), respectively, and
green color the values for the theoretical in-plane lattice constant of
Re(0001) [27]. (b) Absolute value of the orbital moment per Mn atom
along the direction perpendicular to the Mn UML. Symbols denote
DFT values and lines the fit to the scalar spin chirality (see text for
details). (c) Orbital moment of the 3Q state vs the absolute value of
the sixth-order energy contributions at the 1Q with respect to the 3Q
state [cf. lower inset of (a)].

Figure 2(a) shows the total DFT energies calculated for the
path defined by Eq. (1) via the FLEUR code for a hexagonal
unsupported monolayer (UML) of Mn with different in-
plane lattice constants, i.e., distance between nearest-neighbor
atoms. For the Mn UML with a lattice constant of a = 4.6
a.u., we find that the 3Q state is the energetically lowest spin
configuration. If we slightly increase the lattice constant to
the value of the theoretical Cu lattice constant, the 2Q state
shifts below the 3Q state. In addition, a small local energy
minimum occurs close to the 3Q state. If the lattice constant is
increased further to the experimental value of Cu, the energy
minimum of the distorted 3Q state [Fig. 1(f)] becomes more
pronounced but the 2Q state remains the lowest state. For the
even larger Re lattice constant, the energy of the 1Q state has
moved below the 2Q state. There is a tiny energy minimum
for a distorted 1Q state with an angle of α ≈ 75◦ [Fig. 1(g)].
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The higher-order exchange interactions (HOIs) of fourth
order are the biquadratic interaction and the three-site and
four-site four spin interactions [12]:

H4th = −
∑

i, j

Bi j (si · s j )
2 −

∑

i jk

Yi jk[(si · s j )(s j · sk )

+ (s j · si )(si · sk ) + (si · sk )(sk · s j )]

−
∑

i jkl

Ki jkl [(si · s j )(sk · sl ) + (si · sl )(s j · sk )

− (si · sk )(s j · sl )], (2)

where Bi j,Yi jk , and Ki jkl are the higher-order exchange con-
stants which can be obtained via DFT [6,12,28].

The energy of these three terms varies along the given path
according to the function E4th(α) = κ4th(2 cos4 α + 6 sin4 α −
4 cos2 α sin2 α) with a strength κ4th (see Ref. [26]). This func-
tion has local extrema at the 1Q, 2Q, and 3Q state [see upper
inset of Fig. 2(a)]. Since the 2Q state is always in between
the 1Q and the 3Q state, i.e., it cannot be the lowest state
as long as higher-order terms are restricted to fourth order,
it has been excluded in previous DFT calculations for Mn
UMLs and Mn/Cu(111) [4]. However, the total energy cal-
culations for Mn UML [Fig. 2(a)] cannot be explained based
on the higher-order interactions given by Eq. (2). Note that
the DFT calculations were performed in the scalar-relativistic
approximation, i.e., neglecting spin-orbit coupling, such that
chiral-multispin interactions [14–16] cannot occur.

Recently, it has been demonstrated that, due to the inter-
action of the topological orbital moment, which can arise
in noncollinear spin structures even in the absence of spin-
orbit coupling [8,17], with the emergent magnetic field the
so-called chiral-chiral interaction occurs [13,29]:

HCC = −
∑

i jk

κCC
i jk [si · (s j × sk )]2 (3)

with a site-dependent interaction strength κCC
i jk . This sixth

order interaction scales with the square of the scalar spin
chirality χi jk = si · (s j × sk ) which varies for the given path at
every site as χi jk ∝ cos2 α sin α (see Ref. [26]). Therefore, the
chiral-chiral interaction is proportional to cos4 α sin2 α [lower
inset of Fig. 2(a)].

In order to check the importance of this interaction in our
Mn UMLs we have calculated via DFT the topological orbital
moment, which is proportional to the scalar spin chirality
[Fig. 2(b)]. As expected it exhibits a maximum at the 3Q
state and vanishing values for the 2Q and 1Q state and is
oriented perpendicular to the film. The orbital moment for the
3Q state is in good agreement with previous calculations [17].
An excellent fit is achieved for the angle dependent variation
of the orbital moment [Fig. 2(b)] by using the analytical form
of the scalar spin chirality given above.

The competition of fourth- and sixth-order interactions can
explain the observed trend of the DFT energy curves for the
Mn UMLs as shown by the insets of Fig. 2(a). The fourth-
order contribution favors the 3Q state for the three smaller
lattice constants and the 1Q state for the Re lattice constant.
The sixth-order interaction, on the other hand, favors the 1Q
and the 2Q state and drives the transition to the distorted 3Q
state.

The trend of DFT curves in Fig. 2(a) is captured by con-
sidering only the fourth- and sixth-order (see Ref. [26]). To
improve the fit, we added contributions from eighth- and
tenth-order terms in Fig. 2(a). The need to go beyond fourth-
order terms to fit DFT total energy curves has been noticed
before but was not explained [30]. Such an expansion of a
spin model for itinerant magnets in a power series of cosines
between spins has been proposed in Ref. [31] starting from
the Liechtenstein formula [32].

To show the significance of the chiral-chiral interaction,
we take a closer look at the sixth-order term [lower inset
of Fig. 2(a)]. The energy difference between the 3Q and the
1Q state of the sixth-order term increases proportional to the
square of the topological orbital moment from a = 4.6 a.u. up
to a = 4.85 a.u. [Fig. 2(c)]. This is expected since the chiral-
chiral interaction is proportional to the square of the scalar
spin chirality while the orbital moment is linear with this
quantity. At the Re lattice constant, a = 5.24 a.u., the orbital
moment further increases, while the energy contribution from
the sixth order term decreases. Due to the large increase of
the lattice constant the local density of states changes signif-
icantly (see Ref. [26]) and thereby also κCC

i jk , which depends
on the electronic structure (cf. Supplementary Information of
Ref. [13]).

Note, that the bicubic interaction (si · s j )3, which is pos-
sible in systems with a spin moment of � 3μB [12], could
also contribute to the sixth order energy term since it exhibits
the same functional form along the given path (see Ref. [26]).
However, the large topological orbital moments and the scal-
ing of the sixth-order energy with the orbital moment provide
strong evidence that the chiral-chiral interaction is dominat-
ing.

Now we turn to Mn monolayers on surfaces. The 3Q state
has been predicted for Mn/Cu(111) [4], however, the 2Q state
was not considered in that study. The DFT total energy curve
along the path of Eq. (1) [Fig. 3(a)], obtained via VASP, is
consistent with the expectation of Ref. [4], i.e., the 3Q state is
lowest and the 2Q state lies between the 3Q and the 1Q states.
However, a fit to the DFT data points can be significantly
improved by taking a sixth order exchange term into account,
in addition to the fourth order term [inset of Fig. 3(a)]. The
topological orbital moments are of the same order of magni-
tude as for the UMLs and can be fit by the scalar spin chirality
[Fig. 3(c)]. This shows that the chiral-chiral interaction is
significant in this system.

Experimentally, the 3Q state was discovered in hcp-
Mn/Re(0001) [6]. From previous DFT calculations it is
known that the RW-AFM state (1Q state) is energetically low-
est among all spin spiral states [6]. The 3Q state formed from
a superposition of the three equivalent RW-AFM states [4] is
even slightly lower in total energy. Surprisingly, the perfect
3Q state is only a local energy maximum along the path given
by Eq. (1) while there are two local energy minima: one at the
2Q state and one for a distorted 3Q state [Fig. 3(b)]. In the
FLEUR calculation the 2Q state is slightly lower in energy and
in VASP the two states are energetically nearly degenerate [33].

Similar to the case of the UMLs, higher-order terms can
significantly improve the fit of the energy curve of hcp-
Mn/Re(0001) [inset of Fig. 3(b)]. In particular, the sixth
order terms, corresponding to the chiral-chiral or bicubic
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FIG. 3. Energy along the continuous 2Q-3Q-1Q path given by
Eq. (1) for (a) Mn/Cu(111) and (b) hcp-Mn/Re(0001). Filled cir-
cles are energies calculated from DFT, the lines show the fit to
higher-order-exchange interaction (insets show fourth and sixth order
terms). For Mn/Cu(111) DFT calculations were performed using
the VASP code and for hcp-Mn/Re(0001) both the FLEUR (squares)
and the VASP codes (circles) were applied. (c) Absolute value of the
orbital moment per Mn atom directed perpendicular to the surface.
Symbols denote DFT values and lines the fit to the scalar spin
chirality.

interaction, are decisive to capture the two local energy
minima. The topological orbital moments are smaller for hcp-
Mn/Re(0001) [Fig. 3(c)] than for Mn/Cu(111) and so is the
sixth order energy contribution.

Complex noncollinear spin structures in ultrathin films as
proposed in this work can be resolved down to the atomic
scale using SP-STM [34–36]. In order to check whether the
three magnetic states compared above can be distinguished
in an experiment, we have simulated SP-STM images for the
2Q state, the 3Q state, and the distorted 3Q state for three
different magnetization directions of the STM tip (Fig. 4). For
the 2Q state the contrast is very similar for the three cases
which indicates that different rotational domains will look the
same. For the 3Q state, in contrast, the SP-STM image for an
out-of-plane magnetized tip (middle panel in the upper row
of Fig. 4) is qualitatively different from that for a tip with an
in-plane magnetization component (lower two panels in the
middle row). Thereby, the 2Q and the 3Q state can be clearly
distinguished if different rotational domains are imaged or
if the tip magnetization is rotated by an external magnetic
field.

FIG. 4. Simulated spin-polarized scanning tunneling microscopy
images at constant height (0.8 nm) for the 2Q, the 3Q, and the
distorted 3Q (60◦) state (left, middle, and right row, respectively) for
three different tip magnetization directions as indicated in the upper
right corner of every image. The simulations have been performed
using the model described in Ref. [34]. All panels have the same
color scale of 1.5 pm from black to white.

In contrast, the SP-STM images of the distorted 3Q state
are very similar to those of the ideal 3Q state and much
harder to distinguish experimentally. However, the perfect 3Q
state exhibits only a very weak coupling to the atomic lattice
and the energetically preferred rotation of the 3Q state is in
contrast to SP-STM experiments for hcp-Mn/Re(0001) [6].
The reduced symmetry of the distorted 3Q state, however,
facilitates an effective coupling to the atomic lattice, e.g., via
the easy in-plane magnetic anisotropy of hcp-Mn/Re(0001).

In conclusion, we have demonstrated that topological-
chiral magnetic interactions can be significant in ultrathin
films. Their competition with biquadratic and four-spin inter-
actions can lead to unexpected types of magnetic ground states
such as the 2Q or the distorted 3Q state. The experimental ver-
ification of these spin structures would provide direct evidence
of the topological-chiral magnetic interactions.
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