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Crucial role of interfacial s-d exchange interaction in the temperature
dependence of tunnel magnetoresistance
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The tunnel magnetoresistance (TMR) is one of the most important spintronic phenomena but its reduction at
finite temperature is a severe drawback for applications. Here, we reveal a crucial determinant of the drawback,
that is, the s-d exchange interaction between conduction s and localized d electrons at interfacial ferromagnetic
layers. By calculating the temperature dependence of the TMR ratio in Fe/MgO/Fe(001), we show that the
obtained TMR ratio significantly decreases with increasing temperature owing to the spin-flip scattering in the
�1 state induced by the s-d exchange interaction. The material dependence of the coupling constant Jsd is also
discussed on the basis of a nonempirical method.
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Understanding the physics of spin transport at finite tem-
perature is of great importance not only from fundamental
but also from application points of view. A particularly
challenging issue is the temperature decay of the tunnel mag-
netoresistance (TMR) in magnetic tunnel junctions (MTJs)
[Fig. 1(a)], which are used for various magnetic sensors and
nonvolatile magnetic random access memories. Although a
giant TMR ratio has been demonstrated at low temperature in
various MTJs [1–10], its significant reduction with increasing
temperature has also been observed [3–11]. This is a critical
problem to be solved, since MTJs are usually used at room
temperature.

A clue to explain this phenomenon is conduction sp-
electron states in ferromagnets; several experiments [7,10]
have shown that sp-electron states with a smaller effective
mass than d-electron states provide dominant contributions to
transport properties of MTJs. However, most previous theo-
ries [12–19] have focused only on d-electron states and the
d-d exchange interaction between d electrons on neighboring
sites. This is because d-electron states have a large density
of states around the Fermi level and play the main role for
static magnetic properties in bulk ferromagnets at finite tem-
perature. For example, the Curie temperatures of 3d transition
metals have been estimated by the Heisenberg model with
the d-d exchange interaction [12–15]. Moreover, the tem-
perature dependencies of spin polarizations in Heusler alloys
have been understood by spin fluctuations in d-electron states
[16–19]. In contrast, since transport properties in MTJs can
be dominated by sp-electron states as mentioned above, we
need to clarify how these states correlate with the temperature
dependence of the TMR ratio.

In this Letter, we show that an intra-atomic s-d exchange
interaction between conduction s and localized d electrons
plays a significant role for the temperature decay of the TMR
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ratio in Fe/MgO/Fe(001). While this interaction plays an
essential role for the well-known Kondo effect [20], its impor-
tance in the TMR effect has yet to be suggested. We calculate
the temperature dependence of the TMR ratio by employing
the tight-binding model with the s-d exchange interaction.
As shown in Fig. 1(b), increasing the temperature enhances
spin fluctuations in d-electron states, as suggested in previous
studies [16–19]. We find that such spin fluctuations propagate
from d- to s-electron states through the s-d exchange inter-
action. As a result, spin-flip scattering occurs in s-electron
states, leading to a significant reduction of the TMR ratio
[21]. These findings indicate that the s-d not d-d exchange
interaction is the main origin of the TMR reduction, since the
TMR ratio never drops significantly for a small s-d exchange
interaction even if d spins fluctuate. We also find that the
s-d exchange interaction at interfacial ferromagnetic layers
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FIG. 1. (a) An Fe/MgO/Fe(001) MTJ. Spin fluctuations in the
shaded interfacial layers provide a significant reduction of the TMR
ratio with increasing temperature. (b) Illustrations of our idea. When
the temperature increases, the spins of s electrons fluctuate through
the exchange coupling with d-electron spins, which reduces the TMR
ratio significantly.
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contributes dominantly to the TMR reduction. We will finally
estimate the coupling constant of the s-d exchange interac-
tion using a nonempirical method. We show that the material
dependence of the TMR reduction can be explained by the
estimated coupling constants. Our results would be quite im-
portant for future materials design for a smaller temperature
dependence of the TMR ratio.

Our calculation is based on the tight-binding model,

H0 =
∑

i j

∑

μνσ

tμν
i j c†

iμσ c jνσ +
∑

iμσ

ε
μ
iσ niμσ , (1)

where c†
iμσ creates an electron with spin σ in orbital μ at site i,

tμν
i j is the hopping integral of electrons, εμ

iσ is the on-site poten-

tial measured from the Fermi level EF, and niμσ = c†
iμσ ciμσ .

We constructed this type of Hamiltonian for bcc Fe and MgO
[23]. In addition to the one-body terms H0, we considered the
s-d exchange interaction at each Fe site,

Hsd = −2Jsd

∑

i

si · Si, (2)

where si ≡ 1
2

∑
σσ ′ c†

isσ τσσ ′cisσ ′ is the spin operator for s elec-
trons with τσσ ′ being the Pauli matrices and Si is the operator
for the localized spin in the d orbitals, which is assumed
to have S = 2 because of six 3d valence electrons in Fe.
Since the p-orbital states are far from the Fermi level and
do not affect our results, we neglected the p-d exchange
interaction between the p and d electrons. When the tem-
perature increases, the localized spin Si has fluctuations in
the longitudinal (Siz) and transverse (Six and Siy) directions,
leading to spin-flip scattering in the s-electron states through
Hsd . We treat this spin-flip scattering at finite temperature by
mixing the up-spin and down-spin s states within the coher-
ent potential approximation (CPA) [26,27]. By introducing
the orbital-diagonal coherent potentials �sσ (σ =↑,↓) in the
s orbital, the Hamiltonian H = H0 + Hsd of Fe is rewrit-
ten as H = K + V , with K = H0 + ∑

iσ �sσ c†
isσ cisσ and V =∑

iσσ ′ c†
isσ (−Jsd τσσ ′ · Si − �sσ δσσ ′ )cisσ ′ ≡ ∑

i vi. Using vi

and the unperturbed Green’s function P ≡ 1/(ω − K ), the
scattering operator ti is defined as ti = vi(1 − Pvi )−1, where
ω is the energy relative to the Fermi level and is set to 0. We
determined the values of �sσ at each temperature from the
CPA condition 〈ti〉 = 0. Technical details for solving 〈ti〉 = 0
are presented in the Supplemental Material [28]. To solve this,
we assumed a typical temperature dependence of 〈Siz〉, 〈Siz〉 =
S
√

1 − (T/TC)2, where TC is the Curie temperature of Fe
(TC = 1040 K). As the temperature increases, 〈Siz〉 decreases
following this equation. Such a decrease in 〈Siz〉, i.e., the
enhancement of d-spin fluctuation, propagates to s-electron
states through the s-d exchange interaction [Eq. (2)], leading
to the spin-flip s-electron scattering. The real part of �sσ gives
an exchange splitting and the imaginary part gives a finite
lifetime, namely, the occurrence of spin-flip scattering from
|s, σ 〉 to |s, σ̄ 〉. Since the effect of the exchange splitting is
already included in the on-site potential in H0, we considered
only the imaginary part of the coherent potential Im(�sσ ) in
our transport calculations.

We calculated the electronic states of Fe/MgO/Fe(001)
by using the recursive Green’s function method [29,30]

in combination with the above-mentioned parameters (tμν
i j ,

ε
μ
iσ , and �sσ ). This method allows us to calculate the

Green’s function at the (n + 1)th layer gn+1 from that at
the nth layer gn: gn+1 = (ω − ε − t†gnt)−1. Here, ε is the
on-site potential matrix including ε

μ
iσ and �sσ and t is the

hopping-integral matrix composed of tμν
i j . In addition to the

hopping integrals of bulk Fe and MgO, we also need those
at the interface, which were approximately determined by
applying Harrison’s method [31] to the hopping integrals
of bulk Fe. Starting from the left (right) surface Green’s
function of Fe, we obtained the Green’s function at each
layer from Fe to MgO by using the above recursive equa-
tion, leading to the Green’s functions of the left (right)
semi-infinite system [30]. From these we can obtain the
Green’s functions of the entire system Fe/MgO/Fe(001)
[32]. By applying the Kubo-Greenwood formula [32,33]
to the obtained Green’s functions, temperature-dependent
conductances were calculated. Since our system has trans-
lational symmetry in the xy plane, the electronic states
are labeled by the in-plane wave vector k‖ = (kx, ky). The
conductances GP(k‖) = GP,↑(k‖) + GP,↓(k‖) and GAP(k‖) =
GAP,↑(k‖) + GAP,↓(k‖) for parallel and antiparallel magneti-
zation configurations were calculated for each k‖ and were
averaged as GP = ∑

k‖ GP(k‖)/N . Here, the sampling num-
ber N of k‖ points was set to 100 × 100 for ensuring good
convergence of the conductances. The TMR ratio was es-
timated using the optimistic definition, TMR ratio (%) =
100 × (GP − GAP)/GAP.

Figure 2(a) shows the temperature dependencies of the
TMR ratio for different values of Jsd . We focused on negative
values of Jsd because they are reasonable as discussed later.
The TMR ratio decreases with increasing the temperature for
all the values of Jsd . When the temperature increases, the
imaginary part of the coherent potential |Im(�sσ )| increases
as shown in Figs. 2(b) and 2(c), which means an enhancement
of spin-flip scattering and leads to the reduction of the TMR
ratio. A larger |Jsd | gives a faster decrease in the TMR ratio
because of a faster increase in |Im(�sσ )| with increasing the
temperature. More detailed behaviors of |Im(�sσ )| shown in
Figs. 2(b) and 2(c) can be understood as follows. Note here
that the s-d exchange interaction [Eq. (2)] can be rewrit-
ten as Hsd = −2Jsd

∑
i [ 1

2 (si+Si− + si−Si+) + sizSiz], where
si± = six ± isiy and Si± = Six ± iSiy. At T = 0, the localized
d spin has the largest Siz of Siz = 2. Thus, the term si+Si−
in the s-d exchange interaction provides a decrease in Siz of
the localized d spin and an increase in siz of conduction s
electrons, namely, down-to-up spin-flip s-electron scattering
represented by Im(�s↓). This is the reason for the rela-
tion |Im(�s↓)| 	 |Im(�s↑)| at low temperature (T < 100 K).
When the temperature is increased over 100 K, the localized
d spin comes to have a smaller Siz, which enhances the up-to-
down s-electron scattering through the term si−Si+. This also
provides a saturation of the down-to-up s-electron scattering,
since the effect of the term si+Si− is relatively weakened.
These are characterized by an increase in |Im(�s↑)| [Fig. 2(b)]
and a saturation of |Im(�s↓)| [Fig. 2(c)], respectively. In this
work, we neglected the p-d exchange interaction as mentioned
above, since the energy levels of p states in Fe are much higher
than EF (E − EF ≈ 1 eV) and the p-d exchange interaction
has little effect on our results. We confirmed this point by
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FIG. 2. Temperature dependencies of (a) TMR ratios,
(b) |Im(�s↑)|, and (c) |Im(�s↓)| for different values of the
exchange interaction Jsd .

similar calculations including the p-d exchange interaction
(see the Supplemental Material [28]).

Let us further discuss the reduction of the TMR ratio from
the viewpoint of electronic structures. Figure 3(a) shows the
conductances and TMR ratio as a function of temperature at
Jsd = −1.5 eV. As is shown later, this value of Jsd is close
to the one estimated by a nonempirical method. When the
temperature increases, the antiparallel conductance GAP =
GAP,↑ + GAP,↓ largely increases (GAP at 300 K is almost
twice as large as that at 10 K) while the parallel conduc-
tance GP = GP,↑ + GP,↓ hardly changes [35], leading to the
significant reduction of the TMR ratio. Such a dominance of
GAP in the temperature dependence of the TMR ratio is con-
sistent with experimental results in various MTJs [5,11,36].
To deeply understand this behavior, we next focus on the
k‖-resolved conductances shown in Figs. 3(d)–(l). At low
temperature (T = 10 K), the well-known features of the �1

coherent tunneling [37,38] are seen; the up-spin conductance
GP,↑(k‖) in the parallel magnetization state [Fig. 3(d)] has a
broad peak centered at k‖ = (0, 0) = 	 while the down-spin
one GP,↓(k‖) [Fig. 3(g)], which has only a small value at the
	 point, instead has relatively large values in a ring-shaped
region surrounding the 	 point. Such a clear difference in

the conductance can be naturally explained by the half metal-
licity in the �1 state of Fe [Figs. 3(b) and 3(c)], as shown
by pioneering theoretical studies [37,38]. In the antiparallel
magnetization state [Fig. 3(j)], the conductance has only a
very small value at the 	 point owing to the absence of
the �1 down-spin band crossing E = EF [Fig. 3(c)]. When
we increase the temperature to 50 K, the effect of the spin
mixing clearly appears: The down-spin conductance GP,↓(k‖)
[Fig. 3(h)] has large values around the 	 point and the value
just at the 	 point is not so small, which comes from the
feature of the up-spin conductance GP,↑(k‖). On the other
hand, the values of GP,↑(k‖) hardly change [Fig. 3(e)], since
the spin-mixing effect from GP,↓(k‖) is quite small owing
to the relation GP,↓(k‖) � GP,↑(k‖). In the antiparallel state
[Fig. 3(k)], the conductance at the 	 point largely increases
compared to Fig. 3(j) due to the spin-mixing effect in the �1

state, which is the reason why GAP,↑ (= GAP,↓) significantly
increases as shown in Fig. 3(a). In other words, �1 electrons
scattered from the up-spin to down-spin state contribute domi-
nantly to the enhancement of GAP and thereby the reduction of
the TMR ratio. When we increase the temperature to 100 K,
GP,↓(k‖) and GAP,↑(k‖) [Figs. 3(i) and 3(l)] increase further
while GP,↑(k‖) [Fig. 3(f)] hardly changes, leading to a further
reduction of the TMR ratio.

To see the effect of spin mixing at different regions of
ferromagnetic layers, we calculated the TMR ratio for two
additional cases: (i) The s-d exchange interaction was con-
sidered only in the interfacial Fe layers (H interface

sd in Fig. 4);
and (ii) the s-d exchange interaction was considered only in
the bulk regions of Fe except the interfacial Fe layers (Hbulk

sd
in Fig. 4). Figure 4 shows the temperature dependencies of
the TMR ratio for the three cases, which clarifies that the
spin mixing at interfacial Fe layers provides the dominant
contribution to the sharp reduction of the TMR ratio. This
indicates the importance of selecting ferromagnets with small
|Jsd | at the interface for preventing the temperature decay of
the TMR ratio.

Finally, we estimate the coupling constant Jsd using a
nonempirical method. A pioneering theory by Schrieffer and
Wolff [39] has shown that the s-d exchange interaction
[Eq. (2)] can be derived by applying a canonical transforma-
tion to the Anderson Hamiltonian and the coupling constant
Jsd can be expressed as

Jsd ≈ |Vsd |2 U

εd (εd + U )
, (3)

where εd is the energy level of a d orbital with respect to EF,
U is the Coulomb interaction in the d orbital, and Vsd is the
hybridization between the d and s states. This expression can
be understood from virtual electron transitions in the second-
order perturbation processes [40]. Here, we apply Eq. (3)
to bcc Fe1−xCox (0�x�1), since this series of materials is
typically used for MTJs with an MgO tunnel barrier and is
known to give high TMR ratios [1,2,41].

The values of εd , U , and Vsd can be estimated on the basis
of the maximally localized Wannier function (MLWF) method
implemented in the RESPACK code [42]. We first conducted
density functional theory (DFT) calculations of bcc Fe1−xCox

using the QUANTUM ESPRESSO code [43]. We employed the
Perdew–Burke–Ernzerhof exchange-correlation potential [44]
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FIG. 3. (a) Temperature dependencies of the conductances and TMR ratio for Jsd = −1.5 eV. (b), (c) Up- and down-spin bands of Fe
along the � line contributing dominantly to the TMR effect. (d)–(l) The k‖-resolved conductances calculated for Jsd = −1.5 eV [34]. (d)–(f)
GP,↑(k‖) at T = 10, 50, and 100 K, respectively. (g)–(i) The same as (d)–(f) but for GP,↓(k‖). (j)–(l) The same as (g)–(i) but for GAP,↑(k‖). The
unit of the color bars in (d)–(l) is e2/h.

and the optimized norm-conserving Vanderbilt (ONCV) pseu-
dopotentials from PseudoDojo [45]. The primitive bcc unit
cell with a lattice parameter of 2.866 Å was used for all x.
The alloys with 0 < x < 1 were treated by the virtual crystal
approximation. We used 10 × 10 × 10 k-point grids and an
energy cutoff of 108 Ry for the wave functions and 432 Ry
for the electron charge densities. We next constructed the
MLWFs [46,47] using the RESPACK code [42]. By adopting
atomic s, p, and d orbitals as initial projection functions, we
obtained nine MLWFs that reproduce the original DFT band
dispersion around the Fermi level. Here, the inner and outer
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FIG. 4. Temperature dependencies of the TMR ratio calculated
with Jsd = −1.5 eV for three different cases: The s-d exchange in-
teraction was considered in the whole region of the electrodes (Hsd ),
only in the interface region (H interface

sd ), and only in the bulk region
(H bulk

sd ).

energy windows were set to [1 eV, 30 eV] and [0 eV, 55 eV],
respectively, for all x, where the Fermi level was located at
17.86 eV for x = 0 (Fe) and 17.17 eV for x = 1 (Co). The
obtained MLWFs are not the same as the initial atomic orbitals
but sufficiently maintain their features. We also obtained the
hopping integrals and the on-site energy of each MLWF. We
used the nearest-neighbor hopping integrals between s and d
orbitals as Vsd and on-site energies of d orbitals as εd . The
Coulomb interaction parameters were also calculated using
the RESPACK code. Here, we adopted the usual random phase
approximation for calculating the dielectric function [42]. The
energy cutoff for the dielectric function was set to 60 Ry
for ensuring good convergence of the Coulomb interaction
parameters. The polarization function was calculated using 60
bands. The obtained intraorbital screened Coulomb interac-
tion U in each d orbital was used to estimate Jsd given by
Eq. (3). The screened Hund exchange interaction between s
and d electrons was also obtained for each d orbital.

Figure 5 shows x dependencies of Jsd , εd , U , and |Vsd |2
averaged over the d orbitals. First of all, Jsd is negative (i.e.,
antiferromagnetic coupling) for all the values of x, since εd

and εd + U have different signs. As x is increased from 0
(Fe) to 1 (Co), the d level εd gets deeper, which is natural
since Co has more valence electrons than Fe. This also de-
creases the hybridization |Vsd | between the d state and the
s state near EF. These changes in εd and |Vsd | lead to a
decrease in |Jsd | with increasing x. We summarized the values
of Jsd and �TMR in Table I, indicating that the reduction
in the TMR ratio monotonously decreases with increasing x.
This tendency is consistent with previous experimental results
on Fe/MgO/Fe (�TMR ∼ −500%) [11] and Co/MgO/Co
(�TMR � −100%) [41]. Note that there exists another con-
tribution to Jsd different from Eq. (3). It is the Hund exchange
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FIG. 5. The x dependencies of Jsd , εd , U , εd + U , and |Vsd |2 in
bcc Fe1−xCox .

interaction [49], more generally called the direct exchange
interaction [40], between s and d electrons. Using the MLWF
method, we estimated its contribution to Jsd and obtained
small values of 0.25−0.28 eV for all the values of x in
Fe1−xCox. Therefore, we can conclude that the s-d exchange
interaction due to the second-order perturbation [Eq. (3)] pro-
vides the dominant contribution to Jsd . The total value of Jsd

including both the contributions is estimated to be ∼ − 1.5 eV
for x = 0 (Fe), which justifies our choice of Jsd = −1.5 eV in
Figs. 3 and 4.

In summary, we theoretically investigated the temperature
dependence of the TMR effect in Fe/MgO/Fe(001). We clar-
ified a crucial importance of the s-d exchange interaction in
the degradation of the TMR at finite temperature: The s-d
exchange interaction at the interfacial ferromagnetic layers

TABLE I. The x dependencies of Jsd and the reduction of the
TMR ratio at room temperature, �TMR = TMR ratio (300 K) −
TMR ratio (0 K), in bcc Fe1−xCox [48].

x 0 0.2 0.4 0.6 0.8 1.0

Jsd (eV) –1.75 –1.52 –1.35 –1.22 –1.11 –1.03
�TMR (%) –610 –560 –510 –460 –420 –380

provides spin-flip scattering in the �1 states, leading to a
significant reduction of the TMR ratio. To the best of our
knowledge, most of the previous theories on the TMR effect
might have missed this fact, since they have focused only
on the d-d exchange interaction in bulk ferromagnets. Our
findings are also supported by the experimental fact that con-
duction sp-electron states provide dominant contributions to
the transport properties in MTJs. We finally estimated the cou-
pling constant Jsd of the s-d exchange interaction on the basis
of a nonempirical method. By using the present approach, one
can predict the material dependence of the TMR reduction at
room temperature for a wide range of ferromagnets, which
would be quite useful for designing MTJs with a weak tem-
perature dependence of the TMR ratio.
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