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Magnetically switchable spin-wave retarder with 90◦ antiferromagnetic domain wall
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Polarization, denoting the precession direction with respect to the background magnetization, is an intrinsic
degree of freedom of a spin wave. Using magnetic textures to control the spin-wave polarization is fundamental
and indispensable toward reprogrammable polarization-based magnonics. Here, we show that due to the intrinsic
cubic anisotropy, a 90◦ antiferromagnetic domain wall naturally acts as a spin-wave retarder (waveplate). More-
over, for a 90◦ domain wall pair developed by introducing a second domain in a homogenous antiferromagnetic
wire, the sign of the retarding effect can be flipped by simply switching the magnetization direction of the
intermediate domain.
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Introduction. The core issue of current information tech-
nology is the enormous power dissipation in signal pro-
cessing. In conventional electronics, since bits are typically
encoded in high/low voltages, heat is unavoidably gener-
ated in signal switching due to repeated charging/discharging
[1,2]. To ease the dynamical dissipation caused by an im-
balanced energy flow, it is natural to encode the binary
information in the spin or polarization, as routinely imple-
mented in spintronics [3,4], optics [5,6], acoustics [7], as well
as magnonics [8–13] focusing on spin-wave manipulation.

Due to its intrinsic magnetic nature, a spin wave can seam-
lessly interact with a magnetic texture, and together they
provide an integrated scheme for information harnessing in
a purely magnetic way [14–17]. With fully unlocked polar-
ization for a spin wave in antiferromagnets [10,18–22], their
interplay features are remarkably enriched. The antiferromag-
netic skyrmion is shown to induce a polarization-dependent
magnon Hall effect [23,24], and a uniaxial 180◦ antifer-
romagnetic domain wall with the Dzyaloshinskii-Moriya
interaction (DMI) can induce spin-wave polarizing and re-
tarding [9], as well as double refraction [25]. Conversely,
the motion of the domain wall in antiferromagnets can be
also controlled via simply tuning the spin-wave polarization
[26–28].

Despite the flexibility endowed by the polarization from
the spin-wave side, the development of purely magnetic logic
devices is still much impeded by the lack of enough repro-
grammability from the magnetic texture side. Indeed, the logic
functions of current magnetic devices are mostly realized by
the trivial existence/absence of magnetic textures [29–31]. A
promising candidate with intrinsic reprogrammability is the
90◦ domain wall with multiple variants in materials with cubic
magnetic axes, including CoFe2O4 [32], Fe [33], cubic NiO
[34], Heusler alloys [35], Mn2Au [36], and CuMnAs [37].
The 90◦ domain wall has been studied both experimentally
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and theoretically, including spin-wave guiding [14] and re-
fraction [38], and domain wall motion driven by an electric
current [39] or spin-orbit field [40,41]. However, efforts in
incorporating both 90◦ domain walls and polarized spin waves
to fully unleash the power of magnetic reprogrammability are
still lacking.

In this Letter, we investigate the scattering behaviors of a
polarized spin wave across a 90◦ antiferromagnetic domain
wall. We show that due to the underlying cubic anisotropy,
a 90◦ antiferromagnetic domain wall shifts the relative phase
between two orthogonal linear spin-wave modes. We further
propose that a 90◦ domain wall pair functions as a repro-
grammable spin-wave retarder (waveplate), where the sign of
the retarding effect can be flipped via switching the central
domain direction. Using cubic anisotropic antiferromagnets
for spin-wave manipulation extends the current wisdom of
designing magnetic devices based on easy-axis or easy-plane
magnets [17,42–45].

Basic model. Consider an antiferromagnetic wire with cu-
bic anisotropy lying along the x axis as shown in Fig. 1, where
the red (blue) arrows denote the magnetization m1/2 in two
sublattices, respectively. We define the normalized staggered
order n = (m1 − m2)/|m1 − m2|, and the total magnetization
m = m1 + m2. Under the orthogonal constraint n · m = 0,
the dynamics of the staggered order n is governed by the
Landau-Lifshitz-Gilbert (LLG) equation for antiferromagnets
[26,27,40,46,47]

n × n̈ = γ Jn × (γ h − αṅ), (1)

where ṅ ≡ ∂t n, n̈ ≡ ∂2
t n, γ is the gyromagnetic ratio, α is

the Gilbert damping constant, and h = −(1/μ0Ms)δU/δn
is the effective magnetic field acting upon n, with μ0 the
vacuum permeability and Ms the saturation magnetization.
The magnetic energy U consists of the exchange coupling
and cubic anisotropy contributions, U = Ue + Uc =
(μ0Ms/2)

∫
dx[Jm2 + A(∂xn)2 + K (n2

xn2
y + n2

yn2
z + n2

xn2
z )],

where J and A are the inter/intra-sublattice exchange
constants, and K > 0 is the cubic anisotropy constant
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FIG. 1. Schematics of a magnetically switchable spin-wave
retarder (waveplate) in cubic anisotropic antiferromagnets. By
preparing a y/z domain in the center of a homogeneous x domain,
a 90◦ antiferromagnetic domain wall pair of x-y-x (or x-z-x) type
forms. The spin-wave retarding effect of such a structure can be
magnetically switched: By changing the intermediate domain to ŷ/ẑ
directions, the linear spin wave is transformed to left/right circular
spin waves, respectively.

[41,48]. Due to interweaving sublattices, the long-range
dipolar interaction is neglected in this antiferromagnetic
environment.

The energy contour of cubic anisotropy in a magnetic
Bloch sphere is shown in Fig. 2(a), where only one-eighth
of the sphere is depicted due to the mirror symmetry with
respect to all three Cartesian axes x̂i = {x̂, ŷ, ẑ}. For conve-
nience, we further denote i, j, k = {1, 2, 3} as three different
indices obeying the relation x̂i × x̂ j = εi jk x̂k with εi jk the
Levi-Civita symbol. As demonstrated, the cubic anisotropic
energy Uc minimizes for magnetization n with one pure Carte-
sian component |ni| = 1 and n j = nk = 0, increases when
the magnetization has mixed components, and maximizes for
the magnetization with equal components |ni| = |n j | = |nk| =

1/
√

3. According to the above features of cubic anisotropy,
there are three different magnetic domains in the x̂i (i =
1, 2, 3) direction as the ground state. When the xi domain
and x j domain meet, a 90◦ domain wall arises with its
magnetization lying in the xi-x j plane, and the out-of-plane
magnetization component vanishes with nk = 0.

Under cubic anisotropy, a 180◦ domain wall in between
the ±x̂i domains is not stable, and naturally splits into two
separate 90◦ domain walls, thus it is excluded here [49,50].
For simplicity, we refer to the domains pointing in both ±x̂i

directions as the xi domain, since here their difference in
polarization manipulation is minor.

Polarization-dependent spin-wave scattering. When a spin
wave is excited within a uniform domain, its two linear po-
larization modes are degenerate since the cubic anisotropy is
invariant under the interchange of any two axes, as shown
in Fig. 2(a). As the spin wave propagates upon the domain
wall, these two linear polarizations become in-plane and out-
of-plane modes in reference to the domain wall plane, as
illustrated in Fig. 2(b). For in-plane modes, magnetization
oscillations upon the domain wall are still with two magneti-
zation components, thus the spin-wave dynamics is almost un-
affected by the cubic anisotropy, while the out-of-plane modes
involve the third magnetization component, and thus are sub-
ject to an additional suppression of the cubic anisotropy.
Due to the distinct behaviors of in-plane and out-of-plane
modes under cubic anisotropy, polarization-dependent spin-
wave scattering thus arises in a 90◦ domain wall.

To proceed with the investigations on the spin-wave scat-
tering, we denote the 90◦ domain wall as n0, and the spin wave
as δn = n‖ê‖ + n⊥ê⊥, where ê‖ and ê⊥ are the in-plane and
out-of-plane directions with respect to the domain wall plane
subtended by n0. For the x-y domain wall, its magnetic pro-
file is n0 = (

√
[1 − tanh(x/W )]/2,

√
[1 + tanh(x/W )]/2, 0),

with W = √
A/K the characteristic width, and the x-z (y-z)

domain walls take a similar form [39]. With the above domain
wall profile, the spin-wave dynamics is then recast from LLG

(a) (b) (c)

FIG. 2. The retarding effect of a 90◦ domain wall. (a) Contour plots of the cubic anisotropy energy in a Bloch sphere. The green/orange
arrows denote the two polarization directions of spin waves, and the green/orange solid lines plot the corresponding total magnetization
projected in the Bloch sphere. (b) Schematics of polarized spin waves in a 90◦ domain wall. The red/blue arrows denote the domain
wall magnetizations in two sublattices, and the green/orange arrows depict two linearly polarized spin waves. The green/orange lines plot
the effective potentials experienced by the in-plane and out-of-plane spin-wave modes. (c) The interpolarization phase difference �ϕ as a
function of spin-wave frequency. The solid line plots the full-scattering calculations [51], and the dots are extracted from micromagnetic
simulations. The red dot denotes the working frequency f0 = 10.2 GHz for the 90◦ domain wall acting as a one-eighth waveplate. Inset: The
transmission probability T for n‖ (green) and n⊥ (orange), respectively. The calculations are based on a synthetic antiferromagnet [33,52] with
the following magnetic parameters: the inter/intra-sublattice exchange coupling constants J = 1 × 106 A/m and A = 3.28 × 10−11 A m, the
cubic anisotropy constant K = 3.88 × 104 A/m, and the gyromagnetic ratio γ = 2.21 × 105 Hz/(A/m).
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equation (1) to Klein-Gordon-like equations,

−n̈‖ = γ 2J
[−A∂2

x + V0(x)
]
n‖, (2a)

−n̈⊥ = γ 2J
[−A∂2

x + V0(x) + Vc(x)
]
n⊥, (2b)

where the potential V0 = K[1 − 2 sech2(x/W )] is caused
by the inhomogeneous domain wall profile, and Vc =
(5/4)K sech2(x/W ) solely emerging for the out-of-plane
mode is induced by the cubic anisotropy. The potential V0 is
the celebrated Pöschl-Teller type potential sharing the same
profile as the 180◦ domain wall case [26,27,53,54], which
always passes the spin wave perfectly.

From Eq. (2), in homogeneous domains far away from
the domain wall (|x| � W ), the in-plane and out-of-plane
modes are degenerate with the dispersion relation ω =
γ
√

J (Ak2 + K ), with ω the spin-wave frequency and k the
wave vector. Inside the domain wall, the degeneracy of the two
modes is lifted by the potential Vc, leading to a phase differ-
ence accumulated between two modes across the domain wall.
Figure 2(c) plots the interpolarization phase difference �ϕ ≡
ϕ⊥ − ϕ‖ obtained from full-scattering calculations [51,55]
and extracted from micromagnetic simulations, which overlap
well with each other. The positive phase difference �ϕ > 0,
together with an almost perfect transmission of both modes
(except for some reflections in the low-frequency range) as
demonstrated in Fig. 2(c), corroborate the retarding effect of
the 90◦ domain wall.

For the xi-x j domain wall, the out-of-plane direction is al-
ways ê⊥ = x̂k , while the in-plane direction gradually changes
ê‖ = x̂ j → x̂i, indicating a rotation of the polarization basis.
In addition, for xi-x j and xi-xk domain walls starting from the
same xi domain, the roles of linear-x j (linear-xk) modes as
the in-plane (out-of-plane) mode are exchanged, as illustrated
in Fig. 2(a) [51]. Moreover, when the linear-x j (linear-xk)
mode penetrates through three cyclically connected xi-x j-xk-xi

domain walls, it is transformed into the orthogonal linear-xk

(linear-x j) mode rather than restoring its original polarization
direction. These unique polarization basis variation features
in cubic anisotropic systems highlight the non-Abelian behav-
iors of SU(2) spin rotation [56].

Spin-wave retarder. The rotation of the polarization basis
together with the phase difference �ϕ indicate that a 90◦
domain wall acts as a rotated retarder [57] for the spin wave.
For pure retarding functionality, a pair of 90◦ domain walls
is necessary, where the basis rotation is canceled, while the
phase difference is doubled. Such a domain wall pair can
be straightforwardly prepared by placing a second domain
in a homogeneous magnetic wire, as illustrated in Fig. 1.
In between two xi domains, the intermediate domain may
either be an x j domain or xk domain to form such a domain
wall pair. And for these two configurations, the in-plane and
out-of-plane directions are exchanged, leading to the opposite
sign of the phase difference between the linear-x j and linear-
xk components, i.e., �φ ≡ ϕk − ϕ j = ±2�ϕ (see details in
Fig. S1 [51]).

The retarding effect of the domain wall pair is verified
by micromagnetic simulations, as plotted in Fig. 3. A 45◦-
linear spin wave with a working frequency f0 = 10.2 GHz
is injected from the left side of an x-y-x (or x-z-x) domain
wall pair. The phase difference �φ levels off inside each

(a)

(b)

FIG. 3. Micromagnetic simulations of the spin-wave retarder
based on a domain wall pair. (a) The spatial evolution of the in-
terpolarization phase difference �φ extracted from micromagnetic
simulations. The orange/green lines are for the x-y(z)-x domain
wall pair, and the blue line is for the homogenous x domain for
reference. (b) The spatial profile of the spin-wave components in
the x-y-x (upper panel) and x-z-x (lower panel) domain wall pair.
The blue/red lines plot the n′

y and n′
z components, which refers to

ny/z in the x domain and their extensions within the domain wall
pair. In (a) and (b), two domain walls are located at x = ±500 nm,
the spin-wave frequency is f = 10.2 GHz, the magnetic parameters
follow Fig. 2, and the damping constant is artificially set to α = 0 for
better demonstration of the retarding effect.

domain, but increases/decreases by π/4 as the spin wave
passes through each x-y (or x-z) domain wall in Fig. 3(a).
After the spin wave reaches the x domain on the right side, it
acquires a phase difference of ±π/2 as expected, indicating
that the 45◦-linear spin wave becomes left/right circularly
polarized, respectively. Typical snapshots of a spin wave
propagating in the domain wall pair are further depicted in
Fig. 3(b). For convenience, we denote n′

y/z as extensions of
the spin-wave components ny/z in the x domain to the whole
domain wall pair region. While overlapping on the left side,
the n′

y component lags/advances the n′
z component as the spin

wave penetrates through the x-y-x (or x-z-x) domain wall pair,
highlighting their opposite retarding effects.

Magnetic reprogrammability. The antiferromagnetic do-
main can be switched to different directions by exerting an
effective Néel-order magnetic field induced by current pulses
[34,36,37,58,59]. By rewriting the central domain using such
a staggered field, the retarding effect of the domain wall pair
is then reprogrammed, as shown in Fig. 4. When a Néel-order
magnetic field HN = HN

y ŷ of duration 1 ns is applied, the
central domain quickly switches from the x̂ direction to the
designated n0 = ŷ direction after a stabilization time of 2 ns,
and the spin-wave phase difference �φ quickly changes from
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(a)

(b)

FIG. 4. Reprogrammable spin-wave retarder by switching the
magnetization of the central domain. (a) Timing diagram of magnetic
signals in one programming cycle of 6 ns. A Néel-order magnetic
field HN is applied at [0, 1] ns for central domain writing, and the
magnetic structure n0 waits for stabilization at [1, 3] ns, while the
interpolarization phase difference �φ is read at [3, 6] ns. The in-
sets schematically show the state of the domain wall pair, and the
spatial profile of two spin-wave components at the right x domain.
(b) Time evolution of the phase difference �φ in 12 programming
cycles. The red dots are the phase difference extracted from the
simulations, and the background blue/orange/green colors are for
the stabilized x/y/z domain, respectively. In (a) and (b), the magnetic
wire lies at [−1000, 1000] nm, the domain walls are prepared at
±350 nm, the 45◦-linear spin wave with frequency f = 10.2 GHz
is continuously excited at x = −500 nm, and the output spin wave
is read at x = 600 nm. The Gilbert damping constant inside the wire
is α = 1.4 × 10−2, and is increased to α = 0.1 near the boundaries
(|x| > 900 nm) to absorb redundant spin waves.

0 to 0.5π in Fig. 4(a). The signals in the last 3 ns of the 6 ns
full cycle become stable and clean, thus the retarder is ready
for the next programming cycle.

In Fig. 4(b), a train of 12 external field pulses is applied to
switch the central domain arbitrarily between three orthogonal
directions [51]. For all 12 cycles, the output phase difference
�φ steadily switches to 0 or ±π/2, when the central domain
is stabilized in the x̂/ŷ/ẑ directions. The switching to the
central x domain corresponds to the elimination of the domain
wall pair, thus abundant spin waves are released, leading to

a slightly lower signal quality. Despite the fluctuations, the
phase difference �φ still clearly falls into three well-separated
ranges, highlighting the robustness of the reprogrammable
retarder.

Discussion. The retarding effect also arises in the 180◦
domain wall with easy-axis anisotropy in Ref. [9], but the
underlying mechanisms are distinct: The degeneracy of po-
larizations is lifted by the intrinsic cubic anisotropy in this
work, but relies on the external DMI in Ref. [9]. In addi-
tion, the cubic anisotropy preserves high symmetry, while the
DMI conversely requires one to break the inversion symmetry.
The involvement of only the exchange coupling and cubic
anisotropy also implies that the retarding effect in this work
is universally applicable to all cubic anisotropic antiferromag-
nets.

To switch the domain wall pair between two configurations
(e.g., x-y-x and x-z-x configurations), one simply needs to
change the magnetic state of the central domain. These two
configurations are symmetric with each other, sharing a simi-
lar structure and exactly the same energy, but introducing the
opposite retarding effect. In this sense, the reprogrammability
demonstrated here is truly symmetric, and distinguishes from
previous proposals simply based on the presence/absence
states. To guarantee the symmetry of the reprogrammability,
triplet degeneracy is required, with one state as the reference
and the other two for switching, e.g., the triple equivalent
domains hosted by the cubic anisotropy. The spirit of sym-
metric reprogrammability thus coincides with the polarization
(spin)-based manipulations via exploring the additional de-
gree of freedom, rather than breaking symmetry in the existing
degrees of freedom.

Toward experiments. The polarized spin wave can be ex-
cited by applying an oscillating magnetic field via an antenna,
and then can be detected via the antiferromagnetic spin
pumping by attaching an adjacent Pt layer [18,60], which con-
verts the left/right circular polarizations to positive/negative
electrical signals. In addition, the application of a global Néel-
order magnetic field should remove remanent multidomains in
the wire.

Conclusion. In conclusion, we demonstrate that a 90◦
antiferromagnetic domain wall pair naturally functions as a
reprogrammable spin-wave retarder. By switching the mag-
netic direction of the central domain, the linear spin wave can
be converted to either a left- or right-circular mode. Due to the
rich functionality and embedded reprogrammability, the cubic
anisotropic antiferromagnet manifests as another platform for
magnetic information processing.
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