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Jiabin Yu ,1,* Yang Ge,2 and Sankar Das Sarma1

1Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics,
University of Maryland, College Park, Maryland 20742, USA

2Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

(Received 30 March 2021; accepted 25 October 2021; published 9 November 2021)

Although fragile topology has been intensely studied in static crystals in terms of Wannier obstruction, it is
not clear how to generalize the concept to dynamical systems. In this work we generalize the concept of fragile
topology, and provide a definition of fragile topology for noninteracting Floquet crystals, which we refer to as
dynamical fragile topology. In contrast to the static fragile topology defined by Wannier obstruction, dynamical
fragile topology is defined for the nontrivial quantum dynamics characterized by the obstruction to static limits
(OTSL). Specifically, the OTSL of a Floquet crystal is fragile if and only if it disappears after adding a symmetry-
preserving static Hamiltonian in a direct-sum way preserving the relevant gaps (RGs). We further present a
concrete 2 + 1D example for dynamical fragile topology, based on a model that is qualitatively the same as the
dynamical model with anomalous chiral edge modes in Rudner et al. [Phys. Rev. X 3, 031005 (2013)]. The fragile
OTSL in the 2 + 1D example exhibits anomalous chiral edge modes for a natural open boundary condition, and
does not require any crystalline symmetries besides lattice translations. Our work paves the way to study fragile
topology for general quantum dynamics.
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I. INTRODUCTION

In static band insulators, nontrivial topology [1–3] is
defined by Wannier obstruction [4–7], i.e., obstruction to
the existence of maximally localized symmetric Wannier
functions for the ground state. Here maximally localized
symmetric Wannier functions can be intuitively viewed as lo-
calized atomic orbitals. Continuously deforming a topological
insulator (by definition having Wannier obstruction) into an
atomic insulator (by definition having no Wannier obstruc-
tion) must either break certain symmetries or close the gap
near the Fermi energy. Wannier obstruction of a topological
insulator is defined to be fragile [8,9] if the obstruction disap-
pears after adding an atomic limit to the occupied subspace
in a symmetry-preserving way [Fig. 1(a)]. The K-theoretic
classification, as well as the corresponding bulk-boundary
correspondence, of stable topology [1–3,10,11] fails to fully
capture fragile topology, since K theory [12] requires a sta-
ble equivalence which is immune to adding trivial systems.
Therefore, considerable research efforts [8,9,13–35] have
been dedicated to characterizing and understanding fragile
topology during the last three years. In particular, nontrivial
boundary signatures of eigenvalue-indicated fragile phases
have been experimentally observed in an acoustic metama-
terial with a specially constructed twisted boundary condition
[22,23]. However, it is not straightforward to impose such a
twisted boundary condition on naturally occurring condensed
matter systems, such as twisted bilayer graphene, which has
been predicted to host fragile topology [17,36–45] (unless
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the emergent particle-hole symmetry is strictly imposed [42]).
Nontrivial [46] boundary signatures of fragile topology for
natural open boundary conditions remain elusive [25]. Fur-
thermore, all the examples of fragile topology previously
studied require crystalline symmetries in addition to lattice
translations.

An important open question is how to generalize the con-
cept of fragile topology from static crystals to dynamical
systems. A classic type of dynamical systems are non-
interacting Floquet systems—noninteracting systems with
time-periodic Hamiltonians—which is the focus of this work.
In recent years, the topology in Floquet systems has been
intensely studied [47–78], especially in the presence of crys-
talline symmetries [79–104]. In particular, Ref. [98] discussed
the fragility of Wannier obstruction in Floquet crystals. How-
ever, nontrivial dynamics of Floquet crystals is characterized
by OTSL instead of Wannier obstruction [55,62,64,67,69–
72,78,103]. Only Floquet crystals with OTSL can exhibit
phenomena that are forbidden in static crystals, such as
anomalous chiral edge modes [55] in the absence of nonzero
Chern numbers [105]. Then, the specific question that we
will address is whether the concept of fragile topology can
be naturally generalized to the dynamical setting of Floquet
crystals with OTSL, regardless of static Wannier obstruction.

In this work we provide a natural definition of fragile topol-
ogy with respect to OTSL [Fig. 1(b)], which we refer to as
dynamical fragile topology. Specifically, the OTSL of a topo-
logically nontrivial Floquet crystal is fragile if and only if the
OTSL disappears after adding a symmetry-preserving static
Hamiltonian in a direct-sum way that preserves RGs. Here the
precisely defined RGs are topologically relevant quasienergy
band gaps, as explained later. By definition, dynamical fragile
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FIG. 1. In (a) and (b) we schematically show the definitions of
static fragile topology and dynamical fragile topology. In (c) we
schematically plot the quasienergy bands for a two-band 1 + 1D
Floquet crystal U , for which we choose both quasienergy gaps to
be RGs. In either (d) or (e) we schematically plot the quasienergy
bands of a direct-sum system that consists of U (blue) and an added
one-band static Hamiltonian (green). In (d) both RGs of U are pre-
served, while one RG of U is closed in (e). In (c)–(e) all quasienergy
bands are plotted in a time-independent phase Brillouin zone (PBZ)
[�k, �k + 2π ) with the PBZ lower bound �k in a RG (if RGs exist).
The orange dashed lines mark the boundaries of the PBZ.

topology cannot be fully captured by K-theory as long as
static limits (i.e., Floquet crystals with static Hamiltonians)
are treated as trivial systems. To demonstrate the existence
of dynamical fragile topology in tight-binding models, we
provide a concrete 2 + 1D example that has no crystalline
symmetries besides lattice translations, based on a slight mod-
ification of the model in Ref. [55]. In particular, the 2 + 1D
example has anomalous chiral edge modes for a natural open
boundary condition. Therefore, unlike static fragile topology,
dynamical fragile topology does not rely on crystalline sym-
metries besides lattice translations, and can have nontrivial
boundary signatures for natural open boundary conditions.

II. GENERAL DISCUSSION

A noninteracting Floquet system can be described by a
time-periodic single-particle Hamiltonian H (t ) = H (t + T )
with T > 0 the time period, and the corresponding time-
evolution operator given by the Dyson series reads

U (t ) = T exp

[
−i

∫ t

0
dt ′H (t ′)

]
(1)

satisfying U (t + T ) = U (t )U (T ). In Eq. (1), T is the time-
ordering operator, h̄ = 1 is chosen, and the initial time is set
to zero without loss of generality [103].

Time-reversal symmetry of H (t ) can be naturally broken
by the dynamics, and crystals in normal phases typically do

not have particle-hole or chiral symmetries; thus we can focus
on symmetry class A [71] in which time-reversal, particle-
hole, and chiral symmetries are all absent. Nevertheless, H (t )
can preserve a time-independent crystalline symmetry group
G. Examples of G include space groups in 3 + 1D and plane
groups in 2 + 1D, which may contain lattice translation sym-
metries, rotation symmetries, mirror symmetries, and so on.
The lattice translation symmetries in G allow us to label
the time-independent bases of the underlying single-particle
Hilbert space as |ψk,a〉, where k is a Bloch momentum in
the first Brillouin zone (1BZ), and a takes N different values
for all other degrees of freedom (e.g., spin and orbital). By
defining |ψk〉 = (· · · |ψk,a〉 · · · ), H (t ) and U (t ) in the space
spanned by |ψk〉 are represented as

H (t ) =
∑

k

|ψk〉h(k, t )〈ψk|, U (t ) =
∑

k

|ψk〉U (k, t )〈ψk|.
(2)

Eigenvalues of U (k, T ) have the form e−iEm,kT with m =
1, . . . , N , and Em,k are called quasienergy bands.

The quasienergy band gaps play an particularly important
role in Floquet topology [62,71,72,103], similar to that of
energy band gaps in static band topology. Nevertheless, unlike
a static band insulator whose physically relevant band gap is
uniquely determined by the filling, Floquet systems like U do
not have a well-defined occupied subspace, and thereby we
have to choose relevant quasienergy band gaps (i.e., RGs) for
them based on the physics of interest. In other words, choice
of RGs is an essential step in describing Floquet topology.
After choosing RGs for U , we arrive at a Floquet crystal
U that is characterized by its time-evolution operator U (t )
equipped with the time period T , the RG choice, and the
crystalline symmetry group G. [See Fig. 1(c) for a schematic
example].

According to Refs. [62,103] the topological equivalence
between two G-invariant Floquet crystals is defined by a con-
tinuous deformation that connects them while preserving G
and all RGs. Then, as proposed in Ref. [103], a Floquet crystal
is defined to have OTSL if and only if it is topologically
distinct from all G-invariant static limits [106]. In other words,
given a Floquet crystal U with G, it has OTSL if and only
if we cannot continuously deform U into the time-evolution
operator of any static Hamiltonian while preserving all sym-
metries in G and keeping open all RGs of U . For example, the
2 + 1D two-band dynamical model in Ref. [55], which has
zero Chern numbers and has anomalous chiral edge modes,
has OTSL if all bulk quasienergy gaps are chosen to be RGs.
The reason is that 2 + 1D static systems cannot have chiral
edge modes when all bands have zero Chern numbers, and
thus connecting the 2 + 1D dynamical model to any 2 + 1D
static crystal in a symmetry-preserving way must close cer-
tain RGs to change the Chern numbers. For general 2 + 1D
Floquet systems with G containing only lattice translation
symmetries, Refs. [55,62,71] suggests to classify them by
a winding number W defined in Ref. [55] and the Chern
numbers of the bulk quasienergy bands. Based on Ref. [55], a
nonzero W and zero Chern numbers can indicate OTSL when
all bulk quasienergy gaps are relevant, since a nonzero W in
this case can indicate the existence of anomalous chiral edge
modes. But a nonzero W itself does not necessarily indicate

L180303-2



DYNAMICAL FRAGILE TOPOLOGY IN FLOQUET … PHYSICAL REVIEW B 104, L180303 (2021)

OTSL, since static systems can have nonzero W ’s as Ref. [55]
pointed out. One experimental signature of OTSL (though not
conclusive) is the closing of certain RGs when deforming the
dynamical system to any static limit while preserving G. We
believe this signature of OTSL is experimentally accessible
since tracking the quasienergy spectrum while deforming the
systems has been achieved in experiments like Ref. [78].

We now define dynamical fragile topology [Fig. 1(b)].
Suppose the Floquet crystal U has OTSL. Its OTSL is de-
fined to be fragile if and only if the OTSL disappears after
adding a G-invariant static Hamiltonian HSL in a direct-sum
way that preserves all RGs. HSL is allowed to have addi-
tional symmetries that are absent in the Floquet crystal U ,
but they are irrelevant to our discussion. The direct-sum way
is required by K-theory, suggesting that the bases of HSL,
denoted by |ψSL

k 〉 = (· · · |ψSL
k,aSL

〉 · · · ), must be orthogonal to
the bases |ψk,a〉 of U . Then the underlying Hilbert space of
the direct-sum Hamiltonian HDS(t ) = H (t ) + HSL is spanned
by |ψDS

k 〉 = (|ψk〉, |ψSL
k 〉). In this direct-sum space, the time-

evolution operator UDS(t ) is represented as

UDS(t ) =
∑

k

∣∣ψDS
k

〉
UDS(k, t )

〈
ψDS

k

∣∣, (3)

where

UDS(k, t ) =
(

U (k, t )
e−ihSL(k)t

)
, (4)

and hSL(k) is the continuous representation of HSL furnished
by |ψSL

k 〉. Since HSL is G invariant, UDS(t ) also preserves G.
Preserving RGs means that all RGs of U are kept open

in the quasienergy band structure given by UDS(k, T ). [See
a RG-preserving example UDS in Fig. 1(d) and nonpreserving
example in Fig. 1(e).] Then we can choose the RGs of UDS to
be the same as those of U . Combined with the time period
T and the crystalline symmetry group G, we now have a
direct-sum Floquet crystal UDS. The absence of OTSL in turn
means that UDS has no OTSL, or equivalently UDS(t ) can
be continuously deformed into the time-evolution operator of
a static Hamiltonian without breaking symmetries in G and
without closing any RGs of UDS. Although there is no off-
diagonal coupling in Eq. (4), symmetry-preserving couplings
are allowed when constructing the deformation of UDS. Cru-
cially, as long as we can find one HSL that yields a direct-sum
UDS without OTSL, the OTSL of U is fragile.

We emphasize that any fragile OTSL that satisfies the
above definition is still fragile even if we allow UDS to close
RGs of U . The intuition is that if UDS closes certain RGs
of U [like Fig. 1(e)] and we choose the remaining RGs of
U as RGs of UDS, it would be easier for UDS to lose OTSL
since the deformation of UDS is constrained by fewer RGs.
Furthermore, our general discussion does not rely on specific
RG choices for the dynamical U . One straightforward RG
choice for the dynamical U is taking all quasienergy gaps
to be relevant, which has been adopted in both theoretical
[62] and experimental [78] works, while other choices are
also consistent with the above definition. In general, there are
no efficient methods of determining fragile OTSL, because
there is no rigorously proven complete topological classifi-
cation for generic Floquet crystals with arbitrary crystalline
symmetry groups. In other words, even if the direct-sum UDS

TABLE I. The nonzero expressions of dx,y in the Hamiltonian in
Eq. (5) within one time period. dx,y = 0 for t ∈ [0, T

5 ) ∪ [ 4T
5 , T ).

t [ T
5 , 2T

5 ) [ 2T
5 , 3T

5 ) [ 3T
5 , 4T

5 )

dx −1.25 cos(ky ) −1.25 cos(kx − ky ) −1.25 cos(kx )
dy 1.25 sin(ky ) −1.25 sin(kx − ky ) −1.25 sin(kx )

has trivial topological invariants according to the currently
known classification, there is no proof that UDS must have
no OTSL. Therefore, we cannot tell from the known classi-
fication whether fragile OTSL exists in tight-binding models.
In order to prove the existence, we present below a concrete
example demonstrating fragile OTSLs.

III. 2 + 1D EXAMPLE WITH p1 PLANE GROUP

Based on a slightly modified version of the model in Ref.
[55], we introduce a 2 + 1D example that has fragile OTSL. In
particular, we will demonstrate that dynamical fragile topol-
ogy can have nontrivial boundary signatures for a natural open
boundary condition. The crystalline symmetry group for this
example is G = p1, which only contains lattice translations.
For the dynamical model, we consider a square lattice with
two spinless localized orbitals (labeled by 1,2) on each lattice
site, resulting in the bases |ψk〉 = (|ψk,1〉, |ψk,2〉). With these
bases, the two-band tight-binding Hamiltonian H (t ) that we
use is represented as

h(k, t ) = E0σ0 + dx(k, t )σx + dy(k, t )σy + δσz, (5)

where h(k, t + T ) = h(k, t ) with T = 2π determining the
unit of energy, the lattice constant is set as the unit of length,
E0 = 0.01, δ = 0.1, and the detailed expressions of dx and dy

are shown in Table I.
The time-evolution operator U (t ) and time-evolution ma-

trix U (k, t ) in the space spanned by |ψk〉 can be derived
from Eqs. (1) and (2). We plot the bulk quasienergy bands of
the dynamical U in Fig. 2(a), showing two bulk quasienergy
bands and two bulk quasienergy gaps. By choosing both bulk
quasienergy gaps to be RGs, we complete a Floquet crystal
U with time period T and G = p1. Direct calculation shows
that each bulk quasienergy band has a zero Chern number.
We further plot the quasienergy bands of U for an open
boundary condition along y in Fig. 2(b), which shows one
chiral gapless mode in each bulk RG at each edge. According
to Ref. [55], such chiral edge modes are anomalous, and U
must have OTSL, because chiral edge modes are forbidden
in static systems with only vanishing Chern numbers [106].
We emphasize that the model Eq. (5) is qualitatively the
same as the dynamical two-band model with anomalous edge
modes in Ref. [55], since (i) both models have two bulk
quasienergy bands with zero Chern numbers, (ii) both models
have one anomalous chiral edge mode at each edge in each
bulk quasienergy gap, and (iii) both models have the winding
number W defined in Ref. [55] being 1 [106]. The explicit dif-
ferences between them, which are minor, are detailed in [106].

Next we show that the OTSL of U is fragile. To do so, we
need to add a static Hamiltonian to form a direct-sum Floquet
crystal. The static Hamiltonian that we add is a two-band static
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FIG. 2. In this figure we show the dynamical fragile topology
in the 2 + 1D example. All RGs are labeled according to the bulk
quasienergy bands. In (a) and (c) we plot the bulk quasienergy
bands of dynamical U and direct-sum UDS, respectively, in the PBZ
[−π, π ). In (b), (d), and (e) we plot quasienergy bands of the dynam-
ical U , the direct-sum UDS, and a four-band static limit, respectively,
for an open boundary condition along y. Specifically, we choose
20 lattice sites along y, and only include bulk states (dense lines)
and the (01̄)-edge states (in-gap isolated lines) for (b), (d), and (e).
The orange dashed lines are the PBZ boundaries. In (c) and (d) the
quasienergy bands given by the dynamical U and the added static
Hamiltonian HSL are, respectively, marked in blue and green. In (f)
we show the quasienergy range (purple regions) of bulk quasienergy
bands derived from the deformation Ũ2D,s1 (T ). The white regions
indicate the deformed RGs, and the orange dashed lines are the
deformed PBZ boundaries.

tight-binding Hamiltonian HSL on the same square lattice as
the dynamical U . We consider two localized orbitals (labeled
as 3,4) on each lattice site for HSL, and make sure that the
resultant bases |ψSL

k 〉 = (|ψk,3〉, |ψk,4〉) are orthogonal to the
bases of the dynamical U . We choose the matrix representa-
tion of HSL as

hSL(k) = 1

2
+ 1

3π
[M(k)σz + sin(kx )σx + sin(ky)σy], (6)

where M(k) = cos(kx ) + cos(ky) − 1, and hSL(k) represents a
simple lattice model for the quantum anomalous Hall effect
[107]. Quantum anomalous Hall effect has been experimen-

tally realized [108,109]. According to Eq. (3), the bases of the
direct-sum Hamiltonian HDS(t ) = H (t ) + HSL are |ψDS

k 〉 =
(|ψk〉, |ψSL

k 〉), and the matrix representation UDS(k, t ) of the
time-evolution operator UDS(t ) can be derived by Eq. (4). As
shown in Fig. 2(c), the four bulk quasienergy bands given by
UDS(k, T ) keep open both bulk RGs of U . We can then choose
the bulk RGs of U to be the RGs of UDS, giving us a direct-sum
Floquet crystal UDS together with T and G = p1.

In particular, the bulk bands of the static Hamiltonian HSL

have nonzero Chern numbers, which give one chiral edge
mode on each edge [Fig. 2(d)]. The chiral edge mode brought
by HSL crosses with a counterpropagating chiral edge mode
of the dynamical U in the lower bulk RG. As the crossing
is unstable, the structure of the chiral modes suggests that
the direct-sum UDS might be topologically equivalent to a
four-band static limit shown in Fig. 2(e). To confirm it, we
construct a continuous deformation Ũ2D,s1 (t ) from UDS (s1 =
0) to the four-band static limit (s1 = 1). As shown in Fig. 2(f),
both RGs of UDS are kept open along the deformation (s1 ∈
[0, 1]) and become the RGs of the four-band static limit at
s1 = 1, indicating that UDS is topologically equivalent to the
four-band static limit and thus has no OTSL [106]. Therefore,
OTSL of the dynamical U is fragile, and the fragile OTSL
has anomalous chiral edge modes for a natural open boundary
condition. Moreover, the fragile OTSL does not need any
crystalline symmetries besides lattice translations.

IV. PHYSICAL IMPLICATIONS

We now discuss the physical implications of the defined
dynamical fragile topology. One way [48,57,110,111] to gen-
erate a well-defined Floquet system is applying a temporal
drive to certain modes in a static system, while leaving the
other modes (effectively) static. For example, Ref. [57] used
laser to excite only the low-energy electrons in a sample,
leaving high-energy modes (effectively) undriven. For this
method, it is important to carefully control the applied drive
(like carefully choosing the laser wavelength in the above ex-
ample [57]) so that the driven modes have negligible coupling
to the remaining static modes. Then, the driven modes form
an isolated Floquet subsystem, which can have well-defined
OTSL.

One natural question is whether the OTSL in such a
Floquet subsystem still exists if the coupling between the
subsystem and the surrounding static modes becomes strong.
Our definition provides a formalism to address this question.
Specifically, when the dynamical U is a Floquet subsystem
with OTSL, the added static Hamiltonian HSL will correspond
to the surrounding static modes that might have large coupling
to U . In a physical situation where the coupling between U
and the surrounding static modes is allowed to be nonzero,
the nonzero coupling may introduce nonzero off-diagonal
coupling in Eq. (4). Then, the OTSL of the entire system
should be determined by the direct-sum UDS rather than U ,
since U is not isolated and the nonzero off-diagonal coupling
in Eq. (4) can be naturally included during the deformation of
UDS. In this case, if UDS has no OTSL, it means that the OTSL
in U can be destroyed by the surrounding static modes, and
thereby is fragile. In other words, if the Floquet subsystem
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U has fragile OTSL, its OTSL will disappear when certain
surrounding static modes are included.

Even if the dynamical U is not a subsystem of a larger
system, it is also possible to test the fragility of OTSL in
U by explicitly adding a static Hamiltonian. For example,
the 2 + 1D Floquet topological phases with anomalous edge
modes have been observed in a cold-atom system [78] and a
photonic system [69]. In the photonic waveguide arrays, the
fragility of OTSL may be tested by adding a set of straight
waveguides as a static Hamiltonian [59,112].

V. CONCLUSION AND DISCUSSION

To sum up, we introduce a definition for dynamical frag-
ile topology with respect to OTSL, and present a concrete
2 + 1D example. The 2 + 1D example shows that dynamical
fragile topology does not rely on crystalline symmetries other
than just lattice translations, and can have clear boundary
signatures—such as anomalous chiral edge modes—for a nat-
ural open boundary condition.

In the presence of crystalline symmetries beyond lattice
translations, dynamical fragile topology can also exist in tight-
binding models. To demonstrate this point, we construct a
1 + 1D model with inversion symmetry, which is carefully
discussed in Ref. [106]. Briefly speaking, the 1 + 1D dy-
namical model with OTSL is given by a chain of spinless s
and p orbitals with time-dependent onsite energy and nearest-
neighbor hopping, and its OTSL disappears after adding a
static chain of spinless d orbitals. This example also shows
that the fragile OTSL in certain cases can be destroyed by
adding a static atomic insulator. We emphasize that although

we destroyed the fragile OTSL in the 2 + 1D example by
adding a Chern insulator, we cannot rule out the possibility
that adding certain static atomic insulators may also do the
job. Finding such static atomic insulators for the 2 + 1D ex-
ample would be an interesting future direction. Furthermore,
although our work focuses on symmetry class A, the definition
of dynamical fragile topology can be generalized to other
symmetry classes by including more internal symmetries.

Finally, we compare and contrast our results to Ref. [71].
Reference [71] presented a K-theoretic classification of uni-
tary loops (i.e., time-periodic unitary evolution) of Floquet
crystals. We emphasize that Ref. [71] defined dynamical topo-
logical systems by nontrivial unitary loops, while we use the
OTSL definition proposed in Ref. [103]. Having nontrivial
unitary loops is not equivalent to having OTSL, because static
limits may have nontrivial unitary loops. (See Appendix A of
this work and Appendix C of Ref. [55].) Due to the different
definitions, the dynamical model in the 2 + 1D example is
identified as stable dynamical topological by the K-theoretic
classification in Ref. [71], while we find a fragile OTSL
in it [106].

ACKNOWLEDGMENTS

J. Yu thanks Yu-An Chen, Biao Lian, Zhi-Da Song, Xiao-
Qi Sun, Zhi-Cheng Yang, and Rui-Xing Zhang for helpful
discussions. In particular, J. Yu thanks Zhi-Da Song for pro-
viding critical comments, and thanks Xiao-Qi Sun for the
information on straight waveguides as static Hamiltonians in
photonic systems. This work is supported by the Laboratory
for Physical Sciences.

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and super-
conductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classi-
fication of topological quantum matter with symmetries, Rev.
Mod. Phys. 88, 035005 (2016).

[4] A. A. Soluyanov and D. Vanderbilt, Wannier representa-
tion of z2 topological insulators, Phys. Rev. B 83, 035108
(2011).

[5] B. Bradlyn, L. Elcoro, J. Cano, M. Vergniory, Z. Wang, C.
Felser, M. Aroyo, and B. A. Bernevig, Topological quantum
chemistry, Nature (London) 547, 298 (2017).

[6] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-based
indicators of band topology in the 230 space groups, Nat.
Commun. 8, 50 (2017).

[7] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and
R.-J. Slager, Topological Classification of Crystalline Insula-
tors through Band Structure Combinatorics, Phys. Rev. X 7,
041069 (2017).

[8] H. C. Po, H. Watanabe, and A. Vishwanath, Fragile Topol-
ogy and Wannier Obstructions, Phys. Rev. Lett. 121, 126402
(2018).

[9] J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. G. Vergniory,
C. Felser, M. I. Aroyo, and B. A. Bernevig, Topology of

Disconnected Elementary Band Representations, Phys. Rev.
Lett. 120, 266401 (2018).

[10] A. Kitaev, Periodic table for topological insulators and super-
conductors, AIP Conf. Proc. 1134, 22 (2009).

[11] D. S. Freed and G. W. Moore, Twisted equivariant matter, Ann.
Henri Poincare 14, 1927 (2013).

[12] A. Hatcher, Vector bundles and K-theory, 2003, https://pi.
math.cornell.edu/∼hatcher/VBKT/VBpage.html (2016).

[13] B. J. Wieder and B. A. Bernevig, The axion insulator as a
pump of fragile topology, arXiv:1810.02373.

[14] B. Bradlyn, Z. Wang, J. Cano, and B. A. Bernevig, Discon-
nected elementary band representations, fragile topology, and
Wilson loops as topological indices: An example on the trian-
gular lattice, Phys. Rev. B 99, 045140 (2019).

[15] S. Liu, A. Vishwanath, and E. Khalaf, Shift Insulators:
Rotation-Protected Two-Dimensional Topological Crystalline
Insulators, Phys. Rev. X 9, 031003 (2019).

[16] A. Bouhon, A. M. Black-Schaffer, and R.-J. Slager, Wilson
loop approach to fragile topology of split elementary
band representations and topological crystalline insulators
with time-reversal symmetry, Phys. Rev. B 100, 195135
(2019).

[17] J. Ahn, S. Park, and B.-J. Yang, Failure of Nielsen-Ninomiya
Theorem and Fragile Topology in Two-Dimensional Systems
with Space-Time Inversion Symmetry: Application to Twisted

L180303-5

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevB.83.035108
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevLett.121.126402
https://doi.org/10.1103/PhysRevLett.120.266401
https://doi.org/10.1063/1.3149495
https://doi.org/10.1007/s00023-013-0236-x
https://pi.math.cornell.edu/~hatcher/VBKT/VBpage.html
http://arxiv.org/abs/arXiv:1810.02373
https://doi.org/10.1103/PhysRevB.99.045140
https://doi.org/10.1103/PhysRevX.9.031003
https://doi.org/10.1103/PhysRevB.100.195135


JIABIN YU, YANG GE, AND SANKAR DAS SARMA PHYSICAL REVIEW B 104, L180303 (2021)

Bilayer Graphene at Magic Angle, Phys. Rev. X 9, 021013
(2019).

[18] S. H. Kooi, G. van Miert, and C. Ortix, Classification of
crystalline insulators without symmetry indicators: Atomic
and fragile topological phases in twofold rotation symmetric
systems, Phys. Rev. B 100, 115160 (2019).

[19] H.-X. Wang, G.-Y. Guo, and J.-H. Jiang, Band topology in
classical waves: Wilson-loop approach to topological numbers
and fragile topology, New J. Phys. 21, 093029 (2019).

[20] M. B. de Paz, M. G. Vergniory, D. Bercioux, A. García-
Etxarri, and B. Bradlyn, Engineering fragile topology in
photonic crystals: Topological quantum chemistry of light,
Phys. Rev. Research 1, 032005(R) (2019).

[21] Y. Hwang, J. Ahn, and B.-J. Yang, Fragile topology protected
by inversion symmetry: Diagnosis, bulk-boundary correspon-
dence, and Wilson loop, Phys. Rev. B 100, 205126(R) (2019).

[22] Z.-D. Song, L. Elcoro, and B. A. Bernevig, Twisted bulk-
boundary correspondence of fragile topology, Science 367,
794 (2020).

[23] V. Peri, Z.-D. Song, M. Serra-Garcia, P. Engeler, R. Queiroz,
X. Huang, W. Deng, Z. Liu, B. A. Bernevig, and S. D. Huber,
Experimental characterization of fragile topology in an acous-
tic metamaterial, Science 367, 797 (2020).

[24] Z.-D. Song, L. Elcoro, Y.-F. Xu, N. Regnault, and B. A.
Bernevig, Fragile Phases as Affine Monoids: Classification
and Material Examples, Phys. Rev. X 10, 031001 (2020).

[25] A. Alexandradinata, J. Höller, C. Wang, H. Cheng, and L. Lu,
Crystallographic splitting theorem for band representations
and fragile topological photonic crystals, Phys. Rev. B 102,
115117 (2020).

[26] Z. Li, H.-C. Chan, and Y. Xiang, Fragile topology based he-
lical edge states in two-dimensional moon-shaped photonic
crystals, Phys. Rev. B 102, 245149 (2020).

[27] C. Shang, X. Zang, W. Gao, U. Schwingenschlögl,
and A. Manchon, Second-order topological insulator
and fragile topology in topological circuitry simulation,
arXiv:2009.09167.

[28] C. S. Chiu, D.-S. Ma, Z.-D. Song, B. A. Bernevig, and A. A.
Houck, Fragile topology in line-graph lattices with two, three,
or four gapped flat bands, Phys. Rev. Research 2, 043414
(2020).

[29] C.-Y. Ji, Y. Zhang, Y. Liao, X. Zhou, J.-H. Jiang, B. Zou, and
Y. Yao, Fragile topologically protected perfect reflection for
acoustic waves, Phys. Rev. Research 2, 013131 (2020).

[30] J. L. Mañes, Fragile phonon topology on the honeycomb lat-
tice with time-reversal symmetry, Phys. Rev. B 102, 024307
(2020).

[31] A. Bouhon, G. F. Lange, and R.-J. Slager, Topological cor-
respondence between magnetic space group representations,
Phys. Rev. B 103, 245127 (2021).

[32] A. Bouhon, T. Bzdušek, and R.-J. Slager, Geometric approach
to fragile topology beyond symmetry indicators, Phys. Rev. B
102, 115135 (2020).

[33] B. J. Wieder, Z. Wang, J. Cano, X. Dai, L. M. Schoop, B.
Bradlyn, and B. A. Bernevig, Strong and fragile topological
Dirac semimetals with higher-order Fermi arcs, Nat. Commun.
11, 627 (2020).

[34] A. Skurativska, S. S. Tsirkin, F. D. Natterer, T. Neupert,
and M. H. Fischer, Flat bands with fragile topology through

superlattice engineering on single-layer graphene, Phys. Rev.
Research 3, 032003 (2021).

[35] G. F. Lange, A. Bouhon, and R.-J. Slager, Subdimensional
topologies, indicators and higher order phases, Phys. Rev. B
103, 195145 (2021).

[36] M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki,
and L. Fu, Maximally Localized Wannier Orbitals and the Ex-
tended Hubbard Model for Twisted Bilayer Graphene, Phys.
Rev. X 8, 031087 (2018).

[37] L. Zou, H. C. Po, A. Vishwanath, and T. Senthil, Band
structure of twisted bilayer graphene: Emergent symmetries,
commensurate approximants, and Wannier obstructions, Phys.
Rev. B 98, 085435 (2018).

[38] J. Kang and O. Vafek, Symmetry, Maximally Localized Wan-
nier States, and a Low-Energy Model for Twisted Bilayer
Graphene Narrow Bands, Phys. Rev. X 8, 031088 (2018).

[39] J. Liu, J. Liu, and X. Dai, Pseudo Landau level representation
of twisted bilayer graphene: Band topology and implications
on the correlated insulating phase, Phys. Rev. B 99, 155415
(2019).

[40] H. C. Po, L. Zou, T. Senthil, and A. Vishwanath, Faithful tight-
binding models and fragile topology of magic-angle bilayer
graphene, Phys. Rev. B 99, 195455 (2019).

[41] Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig,
All Magic Angles in Twisted Bilayer Graphene Are Topologi-
cal, Phys. Rev. Lett. 123, 036401 (2019).

[42] Z.-D. Song, B. Lian, N. Regnault, and A. B. Bernevig, TBG II:
Stable symmetry anomaly in twisted bilayer graphene, Phys.
Rev. B 103, 205412 (2021).

[43] J. Herzog-Arbeitman, Z.-D. Song, N. Regnault, and B. A.
Bernevig, Hofstadter Topology: Noncrystalline Topologi-
cal Materials at High Flux, Phys. Rev. Lett. 125, 236804
(2020).

[44] B. Lian, F. Xie, and B. A. Bernevig, Landau level of fragile
topology, Phys. Rev. B 102, 041402(R) (2020).

[45] V. Peri, Z.-D. Song, B. A. Bernevig, and S. D. Huber, Fragile
Topology and Flat-Band Superconductivity in the Strong-
Coupling Regime, Phys. Rev. Lett. 126, 027002(R) (2021).

[46] Here, for boundary modes to be nontrivial, (i) their spectrum
must be inside the bulk gap, and (ii) they are stable even when
the underlying Hilbert space includes all irreducible symmetry
representations.

[47] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore,
and D. M. Stamper-Kurn, Spontaneous symmetry breaking in
a quenched ferromagnetic spinor Bose–Einstein condensate,
Nature (London) 443, 312 (2006).

[48] T. Oka and H. Aoki, Photovoltaic Hall effect in graphene,
Phys. Rev. B 79, 081406(R) (2009).

[49] J.-i. Inoue and A. Tanaka, Photoinduced Transition Between
Conventional and Topological Insulators in Two-Dimensional
Electronic Systems, Phys. Rev. Lett. 105, 017401(R) (2010).

[50] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological
characterization of periodically driven quantum systems, Phys.
Rev. B 82, 235114 (2010).

[51] N. H. Lindner, G. Refael, and V. Galitski, Floquet topological
insulator in semiconductor quantum wells, Nat. Phys. 7, 490
(2011).

[52] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker,
G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller,

L180303-6

https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1103/PhysRevB.100.115160
https://doi.org/10.1088/1367-2630/ab3f71
https://doi.org/10.1103/PhysRevResearch.1.032005
https://doi.org/10.1103/PhysRevB.100.205126
https://doi.org/10.1126/science.aaz7650
https://doi.org/10.1126/science.aaz7654
https://doi.org/10.1103/PhysRevX.10.031001
https://doi.org/10.1103/PhysRevB.102.115117
https://doi.org/10.1103/PhysRevB.102.245149
http://arxiv.org/abs/arXiv:2009.09167
https://doi.org/10.1103/PhysRevResearch.2.043414
https://doi.org/10.1103/PhysRevResearch.2.013131
https://doi.org/10.1103/PhysRevB.102.024307
https://doi.org/10.1103/PhysRevB.103.245127
https://doi.org/10.1103/PhysRevB.102.115135
https://doi.org/10.1038/s41467-020-14443-5
https://doi.org/10.1103/PhysRevResearch.3.033133
https://doi.org/10.1103/PhysRevB.103.195145
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevB.98.085435
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevB.99.155415
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevLett.123.036401
https://doi.org/10.1103/PhysRevB.103.205412
https://doi.org/10.1103/PhysRevLett.125.236804
https://doi.org/10.1103/PhysRevB.102.041402
https://doi.org/10.1103/PhysRevLett.126.027002
https://doi.org/10.1038/nature05094
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevLett.105.017401
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1038/nphys1926


DYNAMICAL FRAGILE TOPOLOGY IN FLOQUET … PHYSICAL REVIEW B 104, L180303 (2021)

Majorana Fermions in Equilibrium and in Driven Cold-Atom
Quantum Wires, Phys. Rev. Lett. 106, 220402 (2011).

[53] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler,
Transport properties of nonequilibrium systems under the
application of light: Photoinduced quantum Hall insula-
tors without Landau levels, Phys. Rev. B 84, 235108
(2011).

[54] B. Dóra, J. Cayssol, F. Simon, and R. Moessner, Optically En-
gineering the Topological Properties of a Spin Hall Insulator,
Phys. Rev. Lett. 108, 056602 (2012).

[55] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Anoma-
lous Edge States and the Bulk-Edge Correspondence for
Periodically Driven Two-Dimensional Systems, Phys. Rev. X
3, 031005 (2013).

[56] M. Thakurathi, A. A. Patel, D. Sen, and A. Dutta, Floquet
generation of Majorana end modes and topological invariants,
Phys. Rev. B 88, 155133 (2013).

[57] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik,
Observation of Floquet-Bloch states on the surface of a topo-
logical insulator, Science 342, 453 (2013).

[58] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Flo-
quet topological insulators, Phys. Status Solidi RRL 7, 101
(2013).

[59] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Photonic Floquet topological insulators, Nature (London) 496,
196 (2013).

[60] Z. Zhou, I. I. Satija, and E. Zhao, Floquet edge states in a
harmonically driven integer quantum Hall system, Phys. Rev.
B 90, 205108 (2014).

[61] M. Lababidi, I. I. Satija, and E. Zhao, Counter-Propagating
Edge Modes and Topological Phases of a Kicked Quantum
Hall System, Phys. Rev. Lett. 112, 026805 (2014).

[62] F. Nathan and M. S. Rudner, Topological singularities and the
general classification of Floquet–Bloch systems, New J. Phys.
17, 125014 (2015).

[63] C. W. von Keyserlingk and S. L. Sondhi, Phase structure
of one-dimensional interacting Floquet systems. I. Abelian
symmetry-protected topological phases, Phys. Rev. B 93,
245145 (2016).

[64] Y.-G. Peng, C.-Z. Qin, D.-G. Zhao, Y.-X. Shen, X.-Y. Xu,
M. Bao, H. Jia, and X.-F. Zhu, Experimental demonstration
of anomalous Floquet topological insulator for sound, Nat.
Commun. 7, 13368 (2016).

[65] D. V. Else and C. Nayak, Classification of topological phases
in periodically driven interacting systems, Phys. Rev. B 93,
201103(R) (2016).

[66] E. Zhao, Anatomy of a periodically driven p-wave supercon-
ductor, Z. Naturforschung Teil A 71, 883 (2016).

[67] M. Fruchart, Complex classes of periodically driven topologi-
cal lattice systems, Phys. Rev. B 93, 115429 (2016).

[68] I.-D. Potirniche, A. C. Potter, M. Schleier-Smith, A.
Vishwanath, and N. Y. Yao, Floquet Symmetry-Protected
Topological Phases in Cold-Atom Systems, Phys. Rev. Lett.
119, 123601 (2017).

[69] L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit,
Observation of photonic anomalous Floquet topological insu-
lators, Nat. Commun. 8, 13756 (2017).

[70] S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P.
Öhberg, N. Goldman, and R. R. Thomson, Experimental

observation of anomalous topological edge modes in a slowly
driven photonic lattice, Nat. Commun. 8, 13918 (2017).

[71] R. Roy and F. Harper, Periodic table for Floquet topological
insulators, Phys. Rev. B 96, 155118 (2017).

[72] S. Yao, Z. Yan, and Z. Wang, Topological invariants of Floquet
systems: General formulation, special properties, and Floquet
topological defects, Phys. Rev. B 96, 195303 (2017).

[73] A. Eckardt, Colloquium: Atomic quantum gases in period-
ically driven optical lattices, Rev. Mod. Phys. 89, 011004
(2017).

[74] M. Tarnowski, F. N. Ünal, N. Fläschner, B. S. Rem, A.
Eckardt, K. Sengstock, and C. Weitenberg, Measuring topol-
ogy from dynamics by obtaining the Chern number from a
linking number, Nat. Commun. 10, 1728 (2019).

[75] T. Oka and S. Kitamura, Floquet engineering of quantum
materials, Annu. Rev. Condens. Matter Phys. 10, 387 (2019).

[76] M. S. Rudner and N. H. Lindner, Band structure engineering
and non-equilibrium dynamics in Floquet topological insula-
tors, Nat. Rev. Phys. 2, 229 (2020).

[77] M. Nakagawa, R.-J. Slager, S. Higashikawa, and T. Oka, Wan-
nier representation of Floquet topological states, Phys. Rev. B
101, 075108 (2020).

[78] K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt, M. D.
Liberto, N. Goldman, I. Bloch, and M. Aidelsburger, Re-
alization of an anomalous Floquet topological system with
ultracold atoms, Nat. Phys. 16, 1058 (2020).

[79] T. Morimoto, H. C. Po, and A. Vishwanath, Floquet topologi-
cal phases protected by time glide symmetry, Phys. Rev. B 95,
195155 (2017).

[80] S. Xu and C. Wu, Space-Time Crystal and Space-Time Group,
Phys. Rev. Lett. 120, 096401 (2018).

[81] S. Franca, J. van den Brink, and I. C. Fulga, An anomalous
higher-order topological insulator, Phys. Rev. B 98, 201114(R)
(2018).

[82] M. Rodriguez-Vega, A. Kumar, and B. Seradjeh, Higher-order
Floquet topological phases with corner and bulk bound states,
Phys. Rev. B 100, 085138 (2019).

[83] Y. Peng and G. Refael, Floquet Second-Order Topological In-
sulators from Nonsymmorphic Space-Time Symmetries, Phys.
Rev. Lett. 123, 016806 (2019).

[84] K. Ladovrechis and I. C. Fulga, Anomalous Floquet topo-
logical crystalline insulators, Phys. Rev. B 99, 195426
(2019).

[85] R. Seshadri, A. Dutta, and D. Sen, Generating a second-order
topological insulator with multiple corner states by periodic
driving, Phys. Rev. B 100, 115403 (2019).

[86] K. Plekhanov, M. Thakurathi, D. Loss, and J. Klinovaja,
Floquet second-order topological superconductor driven via
ferromagnetic resonance, Phys. Rev. Research 1, 032013(R)
(2019).
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