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Spatial and magnetic confinement of massless Dirac fermions
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The massless Dirac fermions and the ease to introduce spatial and magnetic confinement in graphene provide
us unprecedented opportunity to explore confined relativistic matter in this condensed-matter system. Here we
report the interplay between the confinement induced by external electric fields and magnetic fields of the
massless Dirac fermions in graphene. When the magnetic length lB is larger than the characteristic length of
the confined electric potential lV , the spatial confinement dominates and a relatively small critical magnetic
field splits the spatial-confinement induced atomiclike shell states by switching on a π Berry phase of the
quasiparticles. When the lB becomes smaller than the lV , the transition from spatial confinement to magnetic
confinement occurs and the atomiclike shell states condense into Landau levels (LLs) of the Fock-Darwin states
in graphene. Our experiment demonstrates that the spatial confinement dramatically changes the energy spacing
between the LLs and generates large electron-hole asymmetry of the energy spacing between the LLs. These
results shed light on puzzling observations in previous experiments, which hitherto remained unaddressed.
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Graphene, with massless Dirac fermions as the low-energy
quasiparticles, provides a unique solid-state system to explore
many oddball effects of quantum-relativistic matter [1–5].
More importantly, the 1-atom-thick structure of graphene is
uniquely amenable to introduce electric and magnetic fields
to tune the behaviors of the relativistic fermions. For exam-
ple, recent experiments demonstrated the confinement of the
massless Dirac fermions in graphene into quasibound states
via whispering-gallery modes by using circular electronic
junctions [6–11], which enable the demonstration of the so-
called Klein tunneling [12] at the atomic scale. By further
introducing the magnetic fields, it is interesting to find that a
small critical magnetic field could lift the angular momentum
quantum numbers of the quasibound states by switching on
a π Berry phase [13] and a large magnetic field can re-
shape the electric potentials into wedding-cakelike structures
through electron-electron interactions [14]. In the meanwhile,
a quite large and unexpected electron-hole asymmetry has
been frequently observed in monolayer graphene when both
the spatial and magnetic confinements coexist [15–20]. For
example, the Fermi velocity for hole could be 30% larger
than that for electron. Usually, such a puzzling observation is
simply attributed to enhanced next-nearest neighbor hopping
in strained structures.
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In this Letter, we use scanning tunneling microscopy
(STM) to directly probe the interplay between the spatial
and magnetic confinements of massless Dirac fermions in
graphene. In our experiment, not only the spatial confinement
is modified by the magnetic field; our result indicates that
the spatial confinement also can strongly affect the effects
of the magnetic confinement. When the magnetic length lB
becomes smaller than the characteristic length of the confined
electric potential lV , the transition from spatial confinement to
magnetic confinement occurs and the quasibound states grad-
ually condense into Landau levels (LLs) of the Fock-Darwin
states in graphene [21]. Our experiments demonstrate that the
spatial confinement can change the energy spacing between
the LLs and introduce large electron-hole asymmetry between
the energy spacing of the LLs.

Our experiments were carried out on electronically decou-
pled monolayer graphene on a 0.7% Nb-doped SrTiO3(001)
substrate at T = 4.2 K (see Supplemental Material for details
[22]), as schematically shown in Fig. 1(a). The single-crystal
SrTiO3 substrate has been annealed in vacuum to obtain
large-area terraces advanced (Fig. S1 [22]). One graphene
sheet was first transferred onto the annealed SrTiO3 to fur-
ther reduce any possible roughness of the substrate and,
then, the second graphene sheet was transferred on the first
one with a relative twist angle >10◦. The large twist angle
between the two adjacent layers ensures that the topmost
graphene sheet is electronically decoupled from the support-
ing substrate [15–20]. Figure 1(b) shows a representative STM
image of the graphene on a SrTiO3 terrace. Our measurement
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FIG. 1. (a) Sketch of the STM setup. The electric field of the STM tip induces band bending to confine the massless Dirac fermions.
(b) A 40 × 25 − nm2 STM image (Vsample = 300 mV, I = 500 pA) of the D1 region. The topmost graphene sheet decouples from the underlying
graphene layer through a large twist angle of about 12°. The left inset shows an atomic-resolved STM image in black rectangle area and the right
inset shows the fast Fourier transform (FFT) image. The white circles are reciprocal lattices of graphene and the green circles are reciprocal
moiré lattices. (c) STS spectra of monolayer graphene. Dirac points are marked with orange arrows. (d) Schematic diagrams of charge orbits
in the circular graphene resonators under different applied magnetic fields. (e) Schematic charge trajectories in momentum space on the Dirac
cone for magnetic fields below (blue) and above (orange) the BC . The orange solid and dashed lines represent m = +1/2 and m = −1/2
modes, respectively. (f), (g) Differential conductance maps vs magnetic fields B. When magnetic field is larger than the BC , there is a large
and sharp jump in energy of the m = +1/2 state in panel (f). No resonances can be observed and the Landau levels are clearly observed in
magnetic fields on the order of 0.1 T in the D2 region. The black dotted lines in panels (f) and (g) guide the trend of the experimental energy
levels.

demonstrated that both the structure and electronic properties
of graphene on a SrTiO3 terrace are quite uniform (Figs. S2
and S3 [22]). However, the Dirac points ED of graphene on
different terraces could be different due to slightly differ-
ent charge transfer between the substrate and the graphene.
Figure 1(c) shows two representative scanning tunneling spec-
troscopy (STS) spectra recorded in two different regions of
the monolayer graphene on different SrTiO3 terraces (labeled
as D1 and D2, respectively). The Dirac points ED in the D1
and D2 regions are at about (147 ± 5) meV and (74 ± 5),
meV, respectively. During the STM measurements, the work
function difference between the metal STM tip and graphene
leads to an electric field acting on graphene and results in
the confining potential on the hole, i.e., a circular electronic
p − n junction, in graphene below the tip [6,13–16,23–27].
Therefore, clear whispering-gallery resonances, correspond-
ing to tunneling into the circular p − n junction modes at
energy ε = μ0 + eVb (μ0 is the local Fermi level) [6], are
observed in the tunneling spectrum of the D1 region [top panel
of Fig. 1(c)]. The energy spacing between the quasibound

states is consistent well with that observed previously in the
tip-induced graphene resonators [6]. The tip-induced con-
fining potential also depends on the tunneling bias between
graphene and the probe tip Vb, as demonstrated explicitly in
Ref. [6]. This allows us to tune the spatial confining potential
by slightly varying the doping of the graphene monolayer (see
Supplemental Material Fig. S4 for details [22]). The depen-
dence of the tip-induced band bending on the Vb makes us
almost unable to detect the effect of the confining potential in
the zero magnetic-field STS measurements in the D2 region
(see Supplemental Material for details [22]) and no resonance
can be measured in tunneling spectrum [bottom panel of
Fig. 1(c)]. The ability to tune the spatial confining potential
allows us to systematically explore the interplay between
the spatial and magnetic confinements of the massless Dirac
fermions in monolayer graphene, as illustrated below.

A prominent effect of the magnetic fields on the quasi-
bound states is the π shift of the Berry phase [13,28,29].
At zero magnetic field, the quasibound states with opposite
angular momenta ±m are degenerate [Fig. 1(d), top] and their
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corresponding momentum-space loops [Fig. 1(e), blue curve]
do not enclose the origin. Therefore, the Berry phase of the
quasibound states is zero. A small magnetic field breaks the
time-reversal symmetry and bends the paths of the +m and
–m quasibound states in opposite directions (in our experi-
ment only the angular momenta ±1/2 states have nonzero
wave-function amplitude in the center of the resonators). At a
critical magnetic field Bc, the Lorentz force can twist the orbit
with angular momentum antiparallel to the magnetic field into
a skipping orbit with loops [Fig. 1(d), bottom]. Then, the
momentum-space loop encircles the Dirac point [Fig. 1(e),
orange curve] and the Berry phase becomes π (the Berry
phase of the orbit with angular momentum parallel to the
magnetic field is still zero). The π shift of the Berry
phase will result in a sudden and large decrease in the
energy of the corresponding angular-momentum (+m) qua-
sibound states [13,28,29]. Such a feature is clearly observed
in our experiment in the D1 region, as shown in Fig.
1(f) [here g(Vb, r = 0, B) = dI/dVb reflects the local density
of states (LDOS) in the center of the graphene resonator
as a function of Vb and B]. A critical magnetic field
lifts the angular momenta ±1/2 degeneracy of the qua-
sibound states and, then, the spacing between the new
states is about one-half the spacing at zero magnetic field
[Fig. 1(f), left].

To further understand our experimental result, we theo-
retically calculated LDOS at r = 0. In our calculations, the
following Hamiltonian is adopted:

H = vF σ · π + U (r) + ED. (1)

Here, vF is the Fermi velocity, ED is the energy of
the Dirac point, σ = (σx, σy) are pseudospin Pauli matrices,
and π = (πx, πy) are the kinematic momenta with πx,y =
−ih̄∂x,y − eAx,y. The symbol h̄ is Plank’s constant divided
by 2π . The axial gauges, Ax = −By/2 and Ay = Bx/2, are
used to preserve the rotational symmetry. For simplicity, we
consider a fixed circular-shaped p-n junction with a parabolic
confining potential U (r) = −κr2. Due to the rotational sym-
metry, the eigenstates of H can be expressed as ψm(r, θ ) =
eimθ√

r
(u1(r)e−iθ/2, iu2(r)eiθ/2)T , with the angular momentum

quantum number m a half-integer number. The LDOS of the
graphene resonator can be expressed as the sum of m-state
contributions [6,28]. The π shift of Berry phase and the sud-
den decrease of energy, as discussed above, can be explained
using the Einstein-Brillouin-Keller rule [30–32] starting from
the Hamiltonian here (see Supplemental Material for details
[22]).

Figure 1(f) shows the simulated LDOS for the D1 re-
gion with vF = 1.275 × 106 m/s, κ = 32 eV/μm2 and ED =
149 meV. Obviously, the results, including the energy spac-
ing 	E of the quasibound states at zero magnetic field,
the sudden and large reduction in the energy of the angular
momentum +1/2 states above the Bc, and the value of the
BC = 2h̄mκ/[e(ED − E )] ≈ 0.3 T, agree quite well with our
experimental results. The good agreement between the ex-
periment and theory indicates that the tip-induced potential
is weakly dependent on the tunneling bias in the measured
range, −25 mV < Vb < 100 mV. Such a result is reasonable
since the variation of the energy induced by the tunneling

bias in the measured range, ∼125 meV, is much smaller than
the work function difference between the metal STM tip and
graphene [6,27]. A characteristic length scale for the confining
potential lV = h̄vF /	E can be estimated as about 20 nm. Ap-
plying a magnetic field B will confine holes in a region of the
magnetic length lB = [h̄/(eB)]1/2. Therefore, for the case that
lV < lB, the spatial confinement dominates and we can ob-
serve the quasibound states, as shown in Fig. 1(f). When lB <

lV , a transition from spatial confinement to magnetic confine-
ment occurs and the LLs begin to be observed. In the D1
region, the characteristic Landau quantization of monolayer
graphene is observed for B > 1.4 T, which also agrees well
with the estimated lV above. In the D2 region, the effect of the
tip-induced confining potential in the zero-field measurement
is almost negligible. Therefore, we observe the characteristic
LLs of monolayer graphene for the magnetic field on the order
of 0.1 T [Fig. 1(g), left]. Such a feature is also reproduced
quite well in our calculation when we consider a very weak
confining potential with κ = 9 eV/μm2 and ED = 74 meV,
as well as vF = 1.1 × 106 m/s. [Fig. 1(g), right]. In graphene
monolayer, the Fermi velocity can be strongly modified, more
than 3 times, by varying its charge-carrier concentration and
dielectric constant of the supporting substrate [33–35]. The
slightly difference of the Fermi velocities in the D1 and D2
regions may be generated by the slight variation of the envi-
ronment embedding graphene.

To further explore the effect of spatial confinement on the
magnetic confinement, the STS spectra in a large range of
magnetic fields and sample bias Vb are measured [left panels
of Figs. 2(a) and 2(b)]. The theoretical Landau quantization
with considering the tip-induced potentials is also calculated
for comparison [right panels of Figs. 2(a) and 2(b)]. Our re-
sult indicates that the spatial confinement strongly affects the
magnetic confinement in several aspects in both the D1 and
D2 regions (even though there is no observable tip-induced
resonance in the zero-field spectra of the D2 region). The
first observable effect generated by the interplay between the
spatial and magnetic confinements is that the tip-induced po-
tential −κr2, which is a repulsive potential for the electron,
inhibits the formation of quasibound states for the electron in
the range B2 < 16κ

(vF e)2 (eVb − ED) [see Supplemental Material
[22] for details]. Therefore, the LLs can appear at the electron
band when B2 > 16κ

(vF e)2 (eVb − ED), i.e., the magnetic confine-
ment overcomes the repulsive potential, as shown in Figs. 2(a)
and 2(b). The second observable effect of the spatial confine-
ment on the Landau quantization is that the zero LL varies
slightly with the magnetic field, as shown in Figs. 2(a) and
2(b). In pristine graphene monolayer, we can observe well-

defined Landau quantization, En = sgn(n)
√

2eh̄ν2
F |n|B + E0,

with the LL number n = 0, ±1, ±2, …(n > 0 corresponds to
electrons and n < 0 to holes), in the presence of high magnetic
field. The energy of the zero LL should be independent of the
magnetic fields in the absence of the spatial confinement (see
Supplemental Material Fig. S6 for details [22]). The variation
of the zero LL in the D1 region is much more pronounced
than that in the D2 region due to the much stronger confining
potential. Our theoretical results, considering both the spatial
confinement and magnetic confinement, reproduce quite well
the main features of our experiment. In our experiment, we
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FIG. 2. Panels (a) (left) and (b) (left) correspond to the spectra recorded in the D1 and D2 regions, respectively. Landau levels of massless
Dirac fermions are clearly observed in the spectra recorded in high magnetic fields. Panels (a) (right) and (b) (right) show the calculated Landau
quantization in the presence of different spatial confinements. The red dotted line is B2 = 16κ

(vF e)2 (eVb − ED ).

observed slight splitting of the LLs, which may arise from
electron-electron interactions that are not taken into account
in our theoretical calculations. Besides the LLs, we observe
several lines intersecting the LLs at the Fermi level and pro-
gressing upward at sharp angles, as shown in Fig. 2. These
charging lines arise from Coulomb charging effects, which

are generated by shifting quasiparticles in the region beneath
the tip into the gaps between the LLs of the adjacent regions
[14–16,23,24].

In pristine monolayer graphene, the slope of the data
En vs sgn(n)

√|n|B directly reflects the Fermi velocity of
the massless Dirac fermions and should be a constant.

FIG. 3. (a), (c) The Landau level energies against sgn(n)(|n|B)1/2 recorded in the D1 and D2 regions, respectively. The squares represent
the experimental data. Black dots correspond to theoretical results extracted from Figs. 2(b) and 2(d) Effective Fermi velocities and vh

F /ve
F as

a function of magnetic fields. The theoretical result without considering the confining potential is also plotted (dashed lines) for comparison.
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However, there are pronounced deviations between the ob-
served Landau quantization in both the D1 and D2 regions
and that expected in pristine monolayer graphene, as plot-
ted in Figs. 3(a) and 3(c), because of the existence of the
tip-induced spatial potential. To qualitatively show the de-
viation, the effective Fermi velocity at each magnetic field
is extracted according to the energy spacing of the LLs,
νF = (En − E0)/[sgn(n)

√
2eh̄|n|B], and is plotted in Figs.

3(b) and 3(d). The deduced “effective Fermi velocity” for
holes is systematically larger than that for electrons, be-
cause the tip-induced potential is a confining potential for
the hole but it is a repulsive potential for the electron. In
the D2 region, the electron-hole asymmetry, as defined by
|νh

F −νe
F |/νe

F , could be as large as 10%. In the D1 region,
the electron-hole asymmetry increases to about 30% due to
the relatively stronger tip-induced potential. Generally, the
electron-hole asymmetry is much more pronounced in small
magnetic fields. Such a result is quite reasonable because the
spatial confinement is expected to change the spacing of the
LLs, especially for the case that the lV is comparable to the
lB. In previous STM studies of the Landau quantization in
monolayer graphene, similar large electron-hole asymmetry
has been frequently observed and is mainly attributed to the
enhanced next-nearest neighbor hopping [15–20]. To account
for the electron-hole asymmetry observed in the experiment,
a large next-nearest neighbor hopping −1 eV is needed to
be used as a fitting parameter in the tight-binding model. In
our experiment, the strain in graphene is negligible, which
removes such a large next-nearest neighbor hopping as the
possible origin of the electron-hole asymmetry. By taking into
account the effects of the tip-induced potential, our calculation
can reproduce quite well the above experimental phenomena
(Figs. 2 and 3), indicating that the large electron-hole asym-
metry observed in STM studies is mainly arising from the
tip-induced potential. The tip-induced potential promotes and
resists the formation of the Landau quantization of the hole
and electron, respectively, resulting in the giant electron-hole
asymmetry.

The Landau quantization of monolayer graphene with dif-
ferent strengths of the confining potential is further calculated
(see Supplemental Material [22] and Fig. S7 for details). Fig-
ure 4 summarizes the calculated Fermi velocity for electrons
and holes as a function of the confining potential. The n-p-n
and p-n-p junctions have opposite confining effects for the
electrons and holes, therefore, generating opposite electron-
hole asymmetry on the energy spacing, i.e., the effective
Fermi velocity, of the LLs. Different charge transfers between
the substrate and the graphene can locally generate the n-p-
n and p-n-p junctions in graphene, as reported in previous
studies [7,9,36,37]. For example, it has been demonstrated
explicitly that a slight structural reconstruction of the Cu
surface can lead to a shift of the Dirac point of the graphene
about 420 meV [7] and a variation of graphene-Cu separation
of about 0.18 nm can generate a shift of the Dirac point of
the graphene about 660 meV [9]. This allowed us to test

FIG. 4. Theoretical Fermi velocity as a function of the confin-
ing potential. The insets schematically show the circular confining
potentials. The n-p-n and p-n-p confining junctions have opposite
effects on the Landau quantization for electrons (solid symbols) and
holes (open symbols), therefore, generating opposite electron-hole
asymmetry.

the above theoretical result in experiment. Our experiment
observed opposite electron-hole asymmetry in the n-p-n and
p-n-p junctions of graphene monolayer (see Supplemental
Material [22] Figs. S8–S10 for details), as obtained in our
theoretical simulation. According to the theoretical result in
Fig. 4, the electron-hole asymmetry increases with increasing
the strength of the confining potential at a fixed magnetic field,
which is consistent with our experimental results obtained
in the D1 and D2 regions. For a fixed confining potential,
the effect of spatial confinement on the Landau quantization
becomes more obvious with decreasing the magnetic fields.
Such a result is quite reasonable because the characteristic
length of the confining potential lV is comparable to the mag-
netic length lB in small magnetic fields and also agrees well
with our experimental results.

In summary, the interplay between the spatial and magnetic
confinements of massless Dirac fermions in graphene is sys-
tematically explored in this work. Our result demonstrates that
a relatively small critical magnetic field lifts the angular mo-
mentum degeneracy of the spatial-confined quasibound states
by switching on a π Berry phase. In turn, the spatial poten-
tial also strongly modifies the magnetic-field induced Landau
quantization and generates giant electron-hole asymmetry in
the energy spacing between the LLs.
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