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Relation between Johnson noise and heating power in a two-terminal conductor
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We consider the Johnson noise of a two-dimensional, two-terminal electrical conductor for which the electron
system obeys the Wiedemann-Franz law. We derive two simple and generic relations between the Johnson noise
temperature and the heat flux into the electron system. First, we consider the case where the electron system
is heated by Joule heating from a DC current, and we show that there is a universal proportionality coefficient
between the Joule power and the increase in Johnson noise temperature. Second, we consider the case where
heat flows into the sample from an external source, and we derive a simple relation between the Johnson noise
temperature and the heat flux across the boundary of the sample.
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I. INTRODUCTION

Electrical current flowing through a resistor at finite tem-
perature exhibits random temporal fluctuations known as
Johnson-Nyquist noise [1,2]. One can think that this noise
arises because thermal fluctuations in the distribution of elec-
tron velocities act like random current sources within the
sample. The net effect of these random current sources is
to produce a current noise �I whose mean-square value is
proportional to the electron temperature Te as

〈(�I )2〉 = 4kBTe

R
� f . (1)

Here, kB is the Boltzmann constant, R is the sample resistance,
and � f is the noise bandwidth. For a given measurement of
〈(�I )2〉, Eq. (1) defines the “Johnson noise temperature.”1

Electron noise thermometry is a powerful experimental
technique which exploits this relation between current noise
and electron temperature in order to produce an accurate mea-
surement of the electron temperature [3–7]. This technique
has proven especially fruitful as a method for making ultrasen-
sitive bolometers using graphene electrons [8–12], or for more
fundamental studies of the electron thermal conductivity and
heat capacity [7,13–17]. A very recent work [17] has devel-
oped a nonlocal thermometry technique, in which heat flows
across a “bridge” material of interest and into an electron
system (monolayer graphene). The authors (including one of
us) showed that, by measuring the increase in the Johnson
noise in the graphene, one can infer the heat flow across the
bridge, and thus measure its thermal conductance.

Importantly, however, in all of these experimental contexts
the electron temperature is generally nonuniform across the

1Equation (1) can be viewed as a result of the fluctuation-
dissipation theorem at zero frequency and the Wiener-Khinchin
theorem. It is only valid for samples with purely resistive impedence
and at frequencies �kBT/h, where h is Planck’s constant [2].

sample. For example, the metal contacts tend to act as good
heat sinks, keeping the edges of the sample at the lower
bath temperature while Joule heating or other extraneous heat
sources cause the electron temperature to increase toward the
interior of the sample (as depicted in Fig. 1).

Making use of electron noise thermometry therefore re-
quires one to understand the relationship between the Johnson
noise, as measured between a given pair of contacts, and
the distribution of electron temperature across the sample.
Previous theoretical work has examined this relationship in
some generality, including the case where there are many
electrodes with different boundary conditions for the electrical
current [18–23]. The purpose of this paper is to focus on the
two-terminal setup, and to derive a set of general relation-
ships between the measured Johnson noise temperature and
the heating power that may be readily used in a variety of
experiments.

Our primary motivation is the experimental setup of
Ref. [17], in which Johnson noise measurements serve as
a tool for measuring thermal conductance. Previous exper-
iments have examined the situation where the sample is
heated via resistive Joule heating, allowing one to infer
the thermal conductance of the electron system by observ-
ing the corresponding increase in Johnson noise temperature
[3,4,6,7,13–16]. Below we examine this situation in detail,
and show that there is a simple and universal relation between
the Joule power and the increase in Johnson noise tempera-
ture. More interestingly, we also consider the setup pioneered
by Ref. [17], in which heat flows into the electron system via
a “bridge” material, whose properties may be unknown. The
relation that we derive between the heating power injected
from the bridge and the increase in Johnson noise tempera-
ture of the electron system enables one to infer the thermal
conductance of the bridge. In this way the technique provides
a powerful new way of studying a variety of emergent excita-
tions within the bridge material [17].

Throughout this paper we consider situations where elec-
trical current flows between a single pair of source and drain

2469-9950/2021/104(16)/L161403(6) L161403-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9372-6043
https://orcid.org/0000-0003-0774-3563
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.L161403&domain=pdf&date_stamp=2021-10-11
https://doi.org/10.1103/PhysRevB.104.L161403


CALVIN POZDERAC AND BRIAN SKINNER PHYSICAL REVIEW B 104, L161403 (2021)

FIG. 1. A schematic illustration of a two-terminal conductor with
Johnson noise measured between source (S) and drain (D) contacts.
Contour lines indicate contours of the characteristic potential φ, and
arrows indicate −�∇φ. The color corresponds to a hypothetical distri-
bution of electron temperature, produced either by Joule heating or
by injection of heat along the lateral edges, with colder temperatures
near the contacts.

contacts. We focus on the case where the electrical and
thermal conductivity tensors σ̂ and κ̂ , respectively, obey the
Wiedemann-Franz law

κ̂ = L0T0σ̂ , (2)

where L0 = (π2/3)(kB/e)2 is the Wiedemann-Franz ratio,
with −e the electron charge, and T0 is the base electron
temperature. We further restrict ourselves to the case where
the electron temperature Te deviates only slightly from T0,
and to the “hot-electron” limit, in which electron-electron
collisions are strong enough to locally equilibrate electrons
among themselves, while electron-phonon collisions and
other sources of inelastic scattering are negligible. The valid-
ity of neglecting the contributions from phonons, particularly
in graphene, has been discussed at length in previous work
[24–29]. Within this set of assumptions, we derive two sim-
ple relationships between the Johnson noise temperature and
the heating power applied to the electron system, which we
summarize here before deriving below.

First, we consider the case where all heating to the electron
system is provided by a DC voltage V that is applied between
the source and drain contacts (as in Refs. [3,4,13,15]). In this
situation we show that

TJN = PR

12L0T0
, (3)

where R is the two-terminal resistance and P = V 2/R is the
Joule power dissipated in the system (and thus TJN is in-
dependent of R). Here and below, TJN denotes the increase
in Johnson noise temperature from the base temperature T0.
Equation (3) has been derived previously for the special case
of a rectangular sample with spatially uniform current (e.g.,
in Refs. [13,14]). But here we show that it holds generically
for any two-terminal setup, regardless of geometry or of the
structure and spatial variation of the conductivity tensor, so
long as the local electric and thermal currents are described
by Ohm’s law and the Wiedemann-Franz law. [As we discuss

in more detail below, Eq. (3) can also be seen as a limiting
case of a more general expression derived in Ref. [18].]

Second, we consider the case where there is no Joule heat-
ing, but heat is injected into the system through its boundaries.
In this case, the value of TJN depends only on a boundary
integral of the incoming heat current density multiplied by
a characteristic potential that vanishes at either contact [see
Eq. (26) below]. In the special case of interest in Ref. [17],
where κ̂ is diagonal and the heat power Q is injected along a
line of bilateral symmetry in the system,

TJN = QR

8L0T0
. (4)

II. RELATION BETWEEN TJN AND ELECTRON
TEMPERATURE

We consider a two-terminal setup, in which the current
is measured between source and drain electrodes connected
to a conducting sample with arbitrary shape and arbitrary
conductivity tensor σ̂ (which need not be diagonal). Within
the interior of the sample, the current density �j is related to
the electric potential � by Ohm’s law,

�j = −σ̂ �∇� (5)

(i.e., we assume linear, Ohmic response of the current ev-
erywhere). The continuity equation for the current within the
sample (the Laplace equation) is �∇ · �j = 0, or

�∇ · (σ̂ �∇�) = 0. (6)

The boundaries of the sample that do not coincide with either
of the two contacts have a no-current condition

(σ̂ �∇�) · n̂ = 0, (7)

where n̂ is an (outward-facing) unit normal vector.
The local heat current �q(�r) at position �r is related to the

electron temperature T (�r) by the heat equation

�q = −κ̂ �∇T . (8)

For convenience, we define the local electron temperature
T (�r) = Te(�r) − T0 relative to the base temperature T0, and we
consider the limit where T � T0, so that Eq. (2) remains valid.
In regions where the electron system is being heated, the local
power density p(�r) injected into the electron system satisfies

p = −�∇ · (κ̂ �∇T ) (9)

(the heat equation). Throughout this paper we assume that all
heat current is carried by electrons (i.e., we neglect the phonon
contribution to κ̂ and we ignore electron-phonon scattering).
We also assume that the contacts act as good heat sinks that are
held at the base temperature, so that both contacts constitute
T = 0 boundary conditions.

The Johnson noise is related to the local temperature T (�r)
via a characteristic potential φ(�r), which relates the intensity
of a local current source to the magnitude of current collected
between the source and drain electrodes. Specifically [18,19],

TJN =
∫

d2r T (�r) �∇φ(�r) · [σ̂ �∇φ(�r)]∫
d2r �∇φ(�r) · [σ̂ �∇φ(�r)]

. (10)
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In other words, the quantity �∇φ(�r) · [σ̂ �∇φ(�r)] acts as a
weighting function for the local electron temperature.

The characteristic potential φ(�r) satisfies the same Laplace
equation and lateral boundary conditions as the true potential
�(�r) [Eqs. (6) and (7)]. We emphasize, however, that the
characteristic potential is independent of any actual voltage
applied between the source and drain, and φ(�r) is well defined
even in situations where no voltage is applied and �(�r) ≡ 0
everywhere. Without loss of generality, one can choose the
normalization of φ such that φ = 1 at the source contact and
φ = 0 at the drain. We will show below that TJN is independent
of the choice of labels for the two contacts, i.e., that TJN is
unchanged by the operation φ → 1 − φ.

With this choice of normalization for φ, the denominator
of Eq. (10) represents the Joule power dissipated when a unit
voltage is applied between the two contacts, which is equal to
the inverse of the two-terminal resistance R:∫

d2r �∇φ(�r) · [σ̂ �∇φ(�r)] = 1

R
. (11)

Hence, we can rewrite Eq. (10) as

TJN = R
∫

d2r T (�r) �∇φ(�r) · [σ̂ �∇φ(�r)]. (12)

Equation (12) is true generically, regardless of how the tem-
perature distribution T (�r) is established.

III. HEATING BY DC CURRENT

In this section we consider the case where the electron
system is heated via Joule heating by a DC voltage source
(“self-heating”), and there is no heat flow across the lateral
boundaries of the sample. The total Joule power absorbed by
the electron system is equal to P = V 2/R, where V is the
voltage between the two contacts. The Joule heating produces
a temperature distribution that peaks in the interior of the
sample, as the electrons conduct the dissipated Joule heat to
the contacts (as depicted in Fig. 1).

If we define the electric potential such that � = V at the
source and � = 0 at the drain, then the true electric potential
�(�r) and the characteristic potential φ(�r) are directly propor-
tional to each other, �(�r) = V φ(�r). The local Joule power
density pJ = �j · �E , where �E = −�∇� is the electric field, or

pJ = V 2(σ̂ �∇φ) · ( �∇φ). (13)

(Here and below we suppress the argument �r of φ.) Equating
the Joule power pJ to the right-hand side of the heat equation
[Eq. (9)], and using the Wiedemann-Franz law, gives

V 2(σ̂ �∇φ) · ( �∇φ) = −L0T0 �∇ · (σ̂ �∇T ). (14)

From this equation we can derive a relation be-
tween the temperature distribution T (�r) and the charac-
teristic potential φ(�r). First, notice that (σ̂ �∇φ) · ( �∇φ) =
�∇ · (φσ̂ �∇φ) − φ �∇ · (σ̂ �∇φ) (the chain rule). The second term
in this expression is zero by the Laplace equation [Eq. (6)], so
that Eq. (14) can be rewritten as

− V 2

L0T0

�∇ · (φσ̂ �∇φ) = �∇ · (σ̂ �∇T ). (15)

This equation and the relevant boundary conditions (T = 0
at both contacts) is satisfied uniquely by the temperature
distribution

T (�r) = V 2

2L0T0
φ(�r)[1 − φ(�r)]. (16)

Notice, as mentioned above, that the temperature distribu-
tion is invariant under the relabeling of the two contacts,
φ → 1 − φ. Notice also that the heat current across the
lateral boundaries −(κ̂ �∇T ) · n̂ ∝ (1 − 2φ)(σ̂ �∇φ) · n̂ = 0, so
that the appropriate boundary conditions are satisfied.

We can now manipulate Eq. (12) for the Johnson noise
temperature in order to understand its relation with the Joule
power P. On the one hand, a direct substitution of Eq. (16) for
T (�r) into the definition of TJN [Eq. (12)] gives

TJN = V 2R

2L0T0

∫
d2r φ(1 − φ) �∇φ · (σ̂ �∇φ). (17)

On the other hand, one can arrive at an equivalent expression
for TJN by equating the Joule power pJ with the divergence
of the heat current [Eq. (9)], and substituting the resulting ex-
pression for �∇φ · (σ̂ �∇φ) into the definition of TJN [Eq. (12)].
This process gives

TJN = − R

V 2

∫
d2r T (�r) �∇ · (κ̂ �∇T ). (18)

Integrating this expression by parts (using Green’s theorem),
and making use of the fact that either T = 0 or (κ̂ �∇T ) · n̂ = 0
along all the boundaries of the sample, we find

TJN = R

V 2

∫
d2r( �∇T ) · (κ̂ �∇T ). (19)

Plugging in the expression for T in terms of φ [Eq. (16)] and
using the Wiedemann-Franz law gives

TJN = V 2R

4L0T0

∫
d2r(1 − 2φ)2( �∇φ) · (σ̂ �∇φ)

= V 2R

4L0T0
×

[
−4

∫
d2r φ(1 − φ)( �∇φ) · (σ̂ �∇φ)

+
∫

d2r( �∇φ) · (σ̂ �∇φ)

]

= −2TJN + V 2

4L0T0
. (20)

The last line of this sequence follows from the expression for
TJN in Eq. (17) and from the expression for the two-terminal
resistance in Eq. (11). Thus, we arrive at the final, simple, and
generic result

TJN = V 2

12L0T0
, (21)

which is equivalent to Eq. (3) announced in the Introduc-
tion. We note that Eq. (21) can be obtained by taking the
weak heating limit of a more general expression presented in
Eq. (5.5) of Ref. [18]. For convenience, we briefly rederive
that more general expression in the Appendix A. It is also
interesting to note that the Johnson noise temperature has a
simple relation with the maximum temperature in the sample
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Tmax. This relation can be seen by maximizing Eq. (16) with
respect to φ, which gives TJN = 2Tmax/3 [30].

If one defines the thermal conductance Gth such that P =
GthTJN, then

Gth = 12L0T0/R. (22)

This expression for Gth has been used in a number of exper-
imental works (e.g., Refs. [4,7,13–16]), and was derived for
the special case of a rectangular sample with uniform electric
current. But here we have shown that it is completely generic,
independent of both the geometry of the sample and the form
of the conductivity tensor. Equation (22) may break down only
if the Wiedemann-Franz law is violated or if Ohm’s law ceases
to hold (due, for example, to the formation of quantum Hall
edge states, or to a mean-free path that is longer than some
geometric dimension of the sample).

IV. HEATING BY INJECTED HEAT CURRENT

In this section we consider the case where there is no sig-
nificant Joule heating in the sample, and instead the electron
system is heated by an injection of heat current along the
lateral boundaries of the sample (as in the experimental setup
of Ref. [17]).

In this situation without Joule heating, the heat cur-
rent is conserved throughout the interior of the sample,
�∇ · (κ̂ �∇T ) = 0, while the heat current flowing across the
lateral boundaries −(κ̂ �∇T ) · n̂ need not be zero. The charac-
teristic potential, however, still satisfies (σ̂ �∇φ) · n̂ = 0 along
the lateral boundaries since it describes the continuity of elec-
trical current.

From the definition of TJN in Eq. (12) and the Wiedemann-
Franz law,

TJN = R

L0T0

∫
d2r T (�r) �∇φ(�r) · [κ̂ �∇φ(�r)]. (23)

We can integrate this expression by parts using two applica-
tions of Green’s first identity, together with the condition that
either (σ̂ �∇φ) · n̂ = 0 or T = 0 along the boundaries of the
sample. This procedure gives

TJN = R

L0T0

∫
d2r(1 − φ)( �∇T ) · (κ̂ �∇φ). (24)

We can now use the vector identity �X · (M̂ �Y ) = (M̂T �X ) · �Y to
arrive at

TJN = R

L0T0

∫
d2r(1 − φ)( �∇φ) · (κ̂T �∇T ). (25)

Using one more integration by parts, together with the con-
ditions φ(1 − φ) = 0 at the terminals and �∇ · (κ̂T �∇T ) =
�∇ · (κ̂ �∇T ) = 0 in the interior, we arrive at

TJN = R

2L0T0

∫
C

ds φ(1 − φ)(−κ̂T �∇T ) · (−n̂). (26)

Here the notation
∫

C ds denotes a contour integral around the
boundaries of the sample. Notice, as above, that the expression
for TJN depends on φ only through the combination φ(1 − φ),
so that it is independent of the choice of labels for the two
contacts.

In the case where κ̂ is symmetric, so that κ̂ = κ̂T , Eq. (26)
can be interpreted simply as

TJN = R

2L0T0

∫
C

ds φ(1 − φ)�q · (−n̂), (27)

where the term �q · (−n̂) denotes the heat current density that
is injected into the system along the sample boundary. So, for
example, when heat is injected close to one of the contacts,
where φ(1 − φ) is small, the corresponding increase TJN in
the Johnson noise temperature is small. One can think that
TJN is small in this case because the injected heat is absorbed
immediately by the nearest contact without providing much
heating of the electron system. The largest value of TJN for a
given heat flux is realized when the heat is injected at a point
along a line of bilateral symmetry in the system, such that φ =
1 − φ = 1

2 . In this special case (relevant for the experiments
of Ref. [17]),

TJN = QR

8L0T0
, (28)

where Q is the injected heat power.

V. SUMMARY AND CONCLUSION

In this paper we have derived the relationship between the
Johnson noise temperature and the heating power for two
generic situations that are relevant for Johnson noise ther-
mometry. In the case of “self-heating” setups, where heating
to the electron system is provided by a DC current, our pri-
mary result is Eq. (3) [or, equivalently, Eq. (22)]. This result
has been used in a number of experiments, as derived for
a rectangular sample with diagonal conductivity tensor and
spatially uniform current [4,7,13–16]. But it is not generally
appreciated that the result holds generically for any geometry
and even in the presence of a magnetic field or other source
of Hall conductivity. The breakdown of Eq. (3) implies either
a breakdown of Ohm’s law (as may arise, for example, from
the formation of quantum Hall edge states), or the breakdown
of the Wiedemann-Franz law (as may arise from electron-
phonon coupling).

We have also examined the situation where the electron
system is heated by an injection of heat current along the
boundary, as in the nonlocal thermometry setup of Ref. [17].
The most generic result for TJN in this setup is Eq. (26), which
has a simple interpretation in terms of the injected heat current
density when the thermal conductivity tensor is diagonal. In
the case where heat is injected at a point along a line of
bilateral symmetry, TJN adopts the simple form of Eq. (4).
This limiting case result is given a simplified derivation in the
Supplemental Material of Ref. [17].

The approach we have presented can in principle be gen-
eralized to the case of more than two contacts, although we
have not attempted to do so. In this case there is a separate
characteristic potential φnm for each pairs of contacts n, m
[18]. One should also be careful about the boundary condi-
tions associated with other contacts (i.e., whether they are
grounded or floating), which has an effect on the characteristic
potential. We will note, however, that the two-contact descrip-
tion is appropriate for describing the Johnson noise measured
between any pair of contacts that are relatively well separated
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from all others. Indeed, if the electrical conductance between
contacts n and m is much larger than the conductance between
either n or m and any other contact, then the Johnson noise
between n and m can be well approximated by the two-contact
description used here.
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APPENDIX: GENERAL TJN EXPRESSION
FROM JOULE HEATING

In Sec. III we consider Johnson noise resulting from Joule
heating by a DC voltage source in the limit of small devi-
ations of the electron temperature T from the base electron
temperature T0. In fact, this calculation can be carried out
more generally for any temperature deviation (so long as the
assumptions of Ohm’s law, the Wiedemann-Franz law, and
the hot electron regime remain justified). Such a calculation
has been performed in Ref. [18]. Here, for convenience, we
present a brief rederivation of this more general result.

Starting with Eq. (14), but keeping the Wiedemann-Franz
law as κ̂ = L0(T0 + T )σ̂ , we have

V 2(σ̂ �∇φ) · ( �∇φ) = −L0 �∇ · ((T0 + T )σ̂ �∇T ). (A1)

Through the use of the continuity equation, this expression is
written as

V 2 �∇ · (σ̂ �∇(φ(1 − φ))) = L0 �∇ · (σ̂ �∇((T0 + T )2)). (A2)

From this expression, one can make the ansatz that
V 2 �∇(φ(1 − φ)) = L0 �∇((T0 + T )2). By making use of the
boundary conditions [φ(1 − φ) = T = 0 at the contacts], we
arrive at

T (φ) =
√

T 2
0 + V 2

L0
φ(1 − φ) − T0. (A3)

Plugging this expression back into Eq. (A1) validates our
ansatz. Further, if we take the limit of small V , we reproduce
Eq. (16).

In order to calculate the Johnson temperature in the more
general case, we first derive the following relationship:∫

d2r T (φ)( �∇φ) · (σ̂ �∇φ) = 1

R

∫ 1

0
T (φ)dφ. (A4)

We know f ′(φ)( �∇φ) · (σ̂ �∇φ) = ( �∇ f (φ)) · (σ̂ �∇φ) = �∇ ·
( f (φ)σ̂ �∇φ). Therefore, this equality along with an
application of Green’s theorem yields∫

d2r f ′(φ)( �∇φ) · (σ̂ �∇φ) =
∫

ds f (φ)σ̂ �∇φ · n̂. (A5)

Since there is no electric current flowing across the lateral
boundaries, σ̂ �∇φ · n̂ is only nonzero at the contacts. Further,
1/R = ∫

d2r( �∇φ) · (σ̂ �∇φ) = ∫
ds(φ=1)σ̂ �∇φ · n̂. Since the to-

tal current out of the drain is equal to the current into the
source,

∫
ds(φ=0)σ̂ �∇φ · n̂ = −1/R. Combining these expres-

sions with Eq. (A5) results in∫
d2r f ′(φ)( �∇φ) · (σ̂ �∇φ) = 1

R
[ f (1) − f (0)]

= 1

R

∫ 1

0
f ′(φ)dφ. (A6)

By letting f ′(φ) = T (φ) we arrive at Eq. (A4). Plugging this
relationship into the Eq. (12) leads to

TJN =
∫ 1

0
T (φ)dφ = T0

2

[
−1 +

(
1

β
+ β

)
arctan(β )

]
,

β = V

2T0
√

L0
. (A7)

This final result is equivalent to Eq. (5.5) in Ref. [18] (dif-
fering only by a factor of 2 in the definition of TJN) and
reproduces Eq. (21) in the limit of small V .
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