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Mixing of Landau levels has been understood to be essential in governing the nature of the ground state for the
even-denominator fractional quantum Hall effect. The incompressibility of the ground state at filling factor 5/2
in the strong Landau-level-mixed systems, such as the ZnO quantum well, is not always stable. Here we present
an approach to generally deal with this kind of system and satisfactorily explain the recent experiments [Falson
et al., Sci. Adv. 4, eaat8742 (2018)] by implementing the screening plus the thickness effect. Further, the phase
diagrams of the incompressibility of the ground state indicate that the phase transitions can be explicitly extracted
by observing the lowest gap of the collective modes when the magnetic field and the width of the quantum well
are tuned. We also predict the incompressibility of the two-dimensional electron gas in higher Landau levels
in another strong Landau-level-mixed system, viz., the black phosphorene, by considering the screening effect
where the relevant even-denominator fractional quantum Hall effects can possibly be observed.
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For the past four decades, the quantum Hall effects
have been the epitome of elegant phenomena in condensed
matter physics [1]. Ever since the observation of the even-
denominator fractional quantum Hall effect (FQHE) [2], it has
been recognized that some difficulties remain in explaining
this effect. Experimentally, the spin polarization of the 5/2
FQHE state is still debated [3] and very high-quality samples
are an absolute requirement to resolve the issue. A couple of
trial wave functions have been proposed thus far for this sys-
tem [4,5]. However, the numerical results are somewhat size
dependent so that the trial wave-function candidates are not
so satisfactory and show relatively poor performance when
compared with the numerical wave functions. It is also possi-
ble that both the long-range and the short-range interactions
are important but the Haldane’s pseudopotentials are limited
to a spherical geometry. In a toroidal geometry the numerical
strategy, although not entirely trouble free, can be a powerful
alternative approach.

In practice, the even-denominator FQHE is proposed to
be useful in topological quantum computation [6] since the
non-Abelian excitations in the even-denominator FQHE are
robust against many environment noises due to the topological
protection. Determining the nature of the even-denominator
FQHE states is therefore important for the development of
quantum computation. The Moore-Read Pfaffian trial wave
function (or its particle-hole conjugate anti-Pfaffian state) is
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the most plausible candidate for the ground state, albeit the
overlap between this wave function and the numerical results
is not high. A particle-hole symmetric Pfaffian state for the
ground state is proposed [7] that is believed to be stable when
the Landau-level (LL) mixing and the influence of disorders
in the two-dimensional electron gas (2DEG) are included [8].
Further studies have indicated the existence of a phase transi-
tion when the LL mixing increases [9]. The incompressibility
of the 2DEG depends on the strength of the LL mixing, which
can be effectively considered by screening the Coulomb po-
tential. In the framework of screening, the surprise missing
of the 5/2 plateau in ZnO quantum well has been explained
[10,11]. In a more recent experiment performed in 2018,
however, Falson et al. reported that the 5/2 FQHE is recov-
ered in one sample [12], which could not be explained by
our previous theoretical approach. In order to understand the
strong LL-mixed 2DEG in general, and why the 5/2 FQHE is
survived in one sample but is still missing in another sample of
the 2018 experiment, we need to consider the screening effect
together with the thickness effect associated with the quantum
well in our analysis below.

The 2DEG discussed here has a unique property that the LL
gap is very small compared to the Coulomb energy gap. The
LL mixing is therefore strong and influences the properties
of the ground state, and its incompressibility may be absent.
A dimensionless quantity is defined to characterize the LL-
mixing strength: the ratio of the Coulomb interaction strength
EC = e2/ε� to the LL gap Ecyc = h̄ωc, κ = EC/Ecyc, where ε

is the dielectric constant of the material, � = 25.656/
√

B nm
is the magnetic length, and ωc is the cyclotron frequency in
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the magnetic field B. This ratio is typically small in a conven-
tional GaAs quantum well in a strong magnetic field, and is a
constant 0.5–0.8 in graphene [13]. In contrast, it is very large
in ZnO, κ > 10 (the same order as in black phosphorene).
The perturbation theory approach, including the three-body
interaction which is based on the expansion of κ [14], is not
appropriate for these systems. To overcome this difficulty, we
make use of the screened Coulomb potential in the relevant
LL, which is obtained by integrating out all the other LLs, to
effectively describe the LL mixing.

As has been done in previous works [11], we also consider
the electron-electron interaction described by the screened
Coulomb potential in our present approach. However, if we
just consider the pure 2DEG, we only have unstable 5/2
FQHE in both systems considered in the experiment [12,15],
which clearly conflicts with the experimental observations. It
has been suggested that we need to consider the third dimen-
sion, the thickness, of the quantum well in order to get a better
understanding of the present situation. For simplicity, the
confinement of the quantum well is approximately described
either by a parabolic potential [16,17] or an infinite square
potential [18]. We will compare these two approximations, of
which the results are supposed to be coincident.

The many-body Hamiltonian is given by

H =
∑
n,i,σ

En,σ c†
n,i,σ cn,i,σ + 1

2

∑
σ,σ ′

∑
n1, . . . , n4
i1, . . . , i4

V
n1,n2,n3,n4

(s),i1,i2,i3,i4

× c†
n1,i1,σ

c†
n2,i2,σ

′cn3,i3,σ
′cn4,i4,σ

, (1)

where c is the electron operator, En,σ is the kinetic energy of
the LL n with spin σ , ni is the LL index, and i1,...,4 are the
guiding center indices. The Coulomb interaction matrix ele-
ment V

n1,n2,n3,n4
(s),i1,i2,i3,i4

depends on the confinement potential, which
will be explicitly given in the following cases. We perform
the exact diagonalization scheme to numerically solve the
Hamiltonian with the translational symmetry in the toroidal

geometry [19–21]. The collective modes of the system at
zero temperature are obtained, and the incompressibility or
instability of the FQHE state is then determined.

The virtual process between these LLs in the density re-
sponse function should be excluded to avoid double counting
of the correlations if more LLs are involved in the Hamil-
tonian. In the following, we need to analyze the screened
dielectric functions in detail for different confinement poten-
tials.

The noninteracting Hamiltonian can be exactly solved in
a parabolic potential in a tilted (or perpendicular) magnetic
field, and the screened Coulomb potential has been studied
[17]. We will numerically evaluate the collective modes in
different magnetic fields and different widths of the quantum
well based on the formulations of Ref. [17].

For an infinite square potential, the noninteracting Hamil-
tonian can also be exactly solved when the magnetic field
is perpendicular to the xy plane, in which the z compo-
nent of the wave function can be separated, �m,n,X (r, z) =√

2/Lz sin(mπz/Lz )ψn,X (r), where Lz is the width of the
quantum well, m is the Landau band index, n is the LL index,
X is the guiding center index, and ψn,X (r) is the wave function
of a conventional 2DEG in a magnetic field in the Landau
gauge.

The screened dielectric function is given by

εs(q,qz ) = 1 − 4πe2(
q2 + q2

z

)
ε
χ0

nn(q,qz ), (2)

where the three-dimensional momentum contains the in-plane
momentum q and the z-component momentum qz. χ

0
nn(q,qz ) is

the noninteracting retarded density-density response function
computed in the random phase approximation in the static
limit [22]. If we consider that the relevant LLs are all in the
lowest band, i.e., mi = 1, then the screened Coulomb interac-
tion matrix element is

V
n1,n2,n3,n4

(s),i1,i2,i3,i4
= e2

ε�

2

πNs

∑
q

V
n1,n2,n3,n4

i1,i2,i3,i4
(q)

∫ ∞

0

dqz�

εs(q, qz )
(
q2 + q2

z

)
�2

32π4[1 − cos (qzLz )](
4π2qzLz − q3

z L3
z

)2 , (3)

where
∑

means that the term of q = 0 is excluded in the sum-
mation, and V n1,n2,n3,n4

i1,i2,i3,i4
(q) is the Coulomb interaction matrix

element for a 2DEG in a conventional zero-width quantum
well without screening [22]. The integral includes the width
and screening corrections.

Let us check the theory to see whether it agrees with
the experiment [10] by using the following parameters: half
width of the wave function (W = Lz/1.5) about 5–6 nm, di-
electric constant ε = 8.5, and effective mass of the electron
m∗ = 0.44me with the electron mass me. We first assume
the incompressible phase as the ground state, and evaluate
the lowest excitation gap in the collective modes separating
the incompressible ground state from the excitations. If the
gap is larger than 10−4e2/ε�, then the FQHE is supposed
to be stable. The reason for this particular choice of 10−4

is because this energy corresponds to about 20 mK, which

guarantees that the thermal fluctuation cannot overwhelm
the incompressibility of the system, as otherwise the FQHE
cannot be observed in the current experimental condition.
It is clearly shown in Fig. 1 that the collective modes (at
the crosses) are softened at B = 3.75 T and the translational
invariant liquid phase no longer has the lowest energy. The
2DEG is compressible no matter what kind of potential is
chosen, which coincides with the experimental observation
and the previous theoretic work [11]. Figure 1 also shows the
phase diagram of the ground state at ν = 5/2 for different val-
ues of magnetic fields and widths of the wave function, since
the qualitative variation of the gap must represent the changes
in the ground states. The phase diagrams for the two different
potentials are qualitatively similar, i.e., the 5/2 FQHE is only
stable when the quantum well is thick and the LL mixing
is weak (small κ). Note that the LLs are crossing and the
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FIG. 1. The lowest energy gaps in the collective modes for dif-
ferent magnetic fields and widths of the wave functions in the ZnO
quantum wells. Other parameters are extracted from Ref. [10], m∗ =
0.44me and ε = 8.5, and Ne = 11. The confinement of the 2DEG
in the z direction is (a) parabolic potential and (b) infinite square
well. When the gap is below 10−4e2/ε� (could be negative), which
is shown in the purple region, the 2DEG is not incompressible. The
crosses mark the sample in Ref. [10], where 5/2 FQHE is missing.

noninteracting ground states are changed in the white regions
in Fig. 1.

Let us now move on to the new experiments [12] where
the effective mass is m∗ = 0.3me at magnetic fields B = 9.6 T
(sample a) and 7.2 T (sample b), corresponding to κ = 5.4
and 6.2, respectively. The perturbation theory is still not very
useful. Again, we compute the phase diagrams for this effec-
tive mass in parabolic and infinite square potentials, shown
in Fig. 2. It is clear that for the infinite square well, we can

FIG. 2. Lowest gaps in the collective modes for different mag-
netic fields and the widths of the wave functions in the ZnO quantum
well with m∗ = 0.3me and ε = 8.5 represent the phase diagram in
the strong LL mixed system. The confinement of the 2DEG in the z
direction is (a) a parabolic potential and (b) an infinite square well.
The left cross and the right dot mark the phase of samples b and a
in Ref. [12], respectively. The first three principle components of the
wave functions, which are extracted from the lines shown in (a) and
(b), respectively, are shown in (c) and (d).

quantitatively find that the 5/2 FQHE is stable in sample a and
unstable in sample b (in Ref. [12]), while the incompressibility
of the 2DEG can be obtained qualitatively in the parabolic
potential. It implies that the infinite square well may be a
better approximation to describe the quantum well. Moreover,
the second incompressible states found in tilted magnetic field
in Ref. [12] can be explained by the phase transition induced
by the LLs crossing when the Zeeman coupling is in excess of
the LL gap [17].

The phase diagrams are not qualitatively different from
those of m∗ = 0.44me. Some important features can be found
here. First, there is an arclike region isolated around the
compressible region where the gaps become smaller or even
negative for both types of potentials. It is similar to the case
discussed in Refs. [9,23] where a topological phase transition
was suggested. Here we also observe that the LL-mixing
strength causes the phase transition. In addition, the width of
the quantum well is even involved to induce more than one
phase transition, which is not expected earlier. Roughly, when
BW < 30 T nm where W is the wave-function width, the
2DEG is compressible. Second, the energy gaps are somewhat
size dependent. The gap becomes smaller when the electron
number is increased. However, dealing with a larger num-
ber of electrons is not currently feasible, and we expect that
for larger systems the FQHE in sample a still survives. We
examine its stability in a three-LL model, i.e., we consider
the Hamiltonian with three LLs N = 0, 1, 2 with Ne = 15
and the virtual process in these three LLs are excluded in
the screening. The collective mode clearly supports that the
ground state is incompressible.

To understand more about the incompressible phase, we
perform the principle component (PC) analysis [24] to the
ground state at zero momentum, as shown in Figs. 2(c) and
2(d). The wave functions are extracted along the black lines in
Figs. 2(a) and 2(b). The first PC is almost the same in the arc
region, which means that the ground states in the arc region
share the same phase.

We next report on our study of black phosphorene, another
strong LL-mixed system. Here we need to consider its bilayer
structure in which the interlayer Coulomb potential is differ-
ent from the intralayer Coulomb potential. We are required to
extend the formula of screening to a bilayer system, i.e., the
Coulomb potential and the density response function should
be replaced by matrices,

V s(q) =
(

V s
11(q) V s

12(q)

V s
21(q) V s

22(q)

)
, (4)

where V s
kl (q) is the screened Coulomb potential between lay-

ers k and l [22].
Black phosphorene has a rectangular crystal lattice. There

are four atoms A, B,C, D in a unit cell in which A, B are
in layer 1 and C, D are in layer 2. It can be simplified to a
two-band model when we only work on the bands near the
Fermi surface [25]. The positive and negative filling factors
correspond to the conduction and the valance bands, respec-
tively.

The single-particle wave function is written as

ψ
bp
n,X = 1√

2

∑
m

(
un,mψm,X (|B〉 + |C〉)

vn,mψm,X (|A〉 + |D〉)

)
, (5)
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where un,m and vn,m can be obtained by diagonaliz-
ing the noninteracting Hamiltonian which is given in

Refs. [25,26]. The Coulomb interaction matrix element
reads

V
n1,n2,n3,n4

(s),i1,i2,i3,i4
= e2

εbp�

∑
q

V s
11 + V s

12

2Ns

∑
j1,..., j4

V
j1, j2, j3, j4

i1,i2,i3,i4
(q)

(
u∗

n1, j1
un4, j4

+ v∗
n1, j1

vn4, j4

)(
u∗

n2, j2
un3, j3 + v∗

n2, j2
vn3, j3

)
.

Note that the interlayer distance d may not be negligible [27],
although d is as small as 2.13 Å.

Black phosphorene is also a large κ system (κ > 5.6 when
B < 10 T) due to its heavy effective mass. The mobility of
this system is sufficiently high so that the −4/3 FQHE has
already been observed [28]. We check the stability of this odd
denominator FQHE for verification of our present approach.
With screening, the ν = ±1/3,±4/3 FQHEs are stable [22],
which is not surprising and is compatible with the experiment
results. We then explore whether the even denominator FQHE
is observable in this material. Interestingly, the even denom-
inator states ±5/2 and ±7/2 FQHEs are not stable, since
the eigen wave function is composed of different ψm,i. The
weights of ψm �=1,i play important roles in destabilizing these
FQHEs.

For the higher LL N = 2 (|ν| = 9/2, 11/2), the FQHEs
survive due to the LL screening. As shown in Fig. 3, the 2DEG
may not be incompressible until B > 40 T if the screening
is not considered, since the FQHE is not stable for Ne = 5.
However, at ν = 11/2 the FQHE can be stabilized for a much
lower magnetic field (B > 26 T in the conduction band) for
Ne = 5. In addition, the gap does not change too much when
Ne � 7. For ν = 9/2, although the gap decreases a bit when
Ne is increased from 7 to 11, this gap is still of the order of

FIG. 3. The lowest gaps in the collective modes of the LL N = 2
black phosphorene states in different magnetic fields: (a) without
screening, (b) |ν| = 9/2 with screening, and (c) |ν| = 11/2 with
screening.

10−3e2/εbp� which is one order larger than that in ZnO. We
thus expect that 11/2 FQHE can be observed, but the mobility
of this material may need to be further increased. We also
assume that the 9/2 FQHE state is observable (provided the
smaller system of Ne = 5 can be ignored). That prediction
requires experimental verification.

Summary and remarks. From the phase diagrams of the
ground state at ν = 5/2 in the strong LL-mixing region, we
find that the two stable FQHE regions (with large energy gap
from the incompressible ground state) for both the parabolic
and infinite square well potentials roughly coincide: the ar-
clike region surrounded by low (or negative) energy gap
regions. This means that the phase transitions between the
incompressible phase and the compressible phase occur more
than once when either κ or width is varied. Moreover, even in
the incompressible phase region, the topological phase tran-
sition between the (anti-)Pfaffian state and the particle-hole
symmetric state which is suggested to be stabilized by the
LL mixing [8], could also be possible by tuning the magnetic
field [9] or the width of the quantum well. The topological
features of the ground state should be determined in a thermal
transport experiment [29]. We believe that the particle-hole
symmetry [30] can be conserved by the extremely strong
LL mixing, albeit the topological order of the 5/2 FQHE is
still puzzling (especially when κ ∼ 1), since the numerical
evidence has confirmed that the 5/2 FQHE can be stabi-
lized at shift −1 on a sphere when κ is large enough [9].
This argument is also compatible with the screening theory
employed here, in which the two-body interaction with renor-
malized Coulomb interaction does not break the particle-hole
symmetry.

By combining the screening and finite width corrections,
we have successfully explained the latest experiments in ZnO.
In the strong LL mixing limit, this strategy effectively takes
the related correlations of other LLs into account and obeys
the conservation laws. Moreover, we predict the stability of
the 5/2 FQHE and present the phase diagrams at this fill-
ing factor for different magnetic fields and quantum well
widths. The phase diagram should be amenable to verifica-
tion by the experiments. Another kind of strong LL mixed
system, the black phosphorene, is also considered and we
have shown that the even denominator FQHEs are stabilized
in higher LLs by the screening. This is also expected to be
observed experimentally. The screening theory is expected
to be applicable for study of the FQHE in black arsenic
(in the same nitrogen family as phosphorus) with spin-orbit
coupling [31] which also has strong LL mixing, and is prob-
ably helpful to understand the even denominator FQHE in
monolayer WSe2 [32]. Indeed, our present approach has
laid the foundation for future studies of strongly LL-mixed
systems.
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