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Second harmonic generation (SHG) is a fundamental nonlinear optical phenomenon widely used both for
experimental probes of materials and for application to optical devices. Even-order nonlinear optical responses
including SHG generally require the breaking of inversion symmetry, and thus have been utilized to study
noncentrosymmetric materials. Here, we study theoretically the SHG in inversion-symmetric Dirac and Weyl
semimetals under a DC current which breaks the inversion symmetry by creating a nonequilibrium steady state.
Based on analytic and numerical calculations, we find that Dirac and Weyl semimetals exhibit strong SHG
upon application of finite current. Our experimental estimation for a Dirac semimetal Cd3As2 and a magnetic
Weyl semimetal Co3Sn2S2 suggests that the induced susceptibility χ (2) for practical applied current densities can
reach 105 pm V−1 with mid-IR or far-IR light. This value is 102–104 times larger than those of typical nonlinear
optical materials. We also discuss experimental approaches to observe the current-induced SHG and comment
on current-induced SHG in other topological semimetals in connection with recent experiments.
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Introduction. Intense light incident on materials induces
various nonlinear optical responses (NLORs) reflecting the
details of the material properties [1,2]. The study of NLORs
remains an important topic in condensed matter studies since
NLORs not only give rich information about the symme-
try of the materials but also yield useful optical devices.
In recent years, a close relationship between the NLORs
and the notion of band geometry has been revealed [3–8].
In particular, three-dimensional (3D) topological materials
can support novel NLORs [9–17]. Among these, inversion-
symmetry-broken topological semimetals (SMs) are attracting
keen attention as recent optical measurements of TaAs, which
is an inversion-symmetry-broken Weyl semimetal (WSM),
reported strong second harmonic generation (SHG) with a
signal 100 times larger than a typical value in GaAs [13,16],
and other strong nonlinear optical properties as well [18,19].
From the theoretical side, various interesting nonlinear optical
phenomena have been proposed [9,12,14], including a quanti-
zation of the circular photogalvanic effect that originates from
the topological properties of WSMs [14,20].

On the other hand, there are various topological SMs pre-
serving inversion symmetry which are also intensively stud-
ied. One example is topological Dirac semimetals (DSMs),
such as Cd3As2 [21–23] or Na3Bi [24], where the Dirac point
is protected by crystalline symmetry. The other example is
inversion-symmetric magnetic WSMs, such as Co3Sn2S2 [25]
or Mn3Sn [26], where the time-reversal symmetry is bro-
ken instead of the inversion symmetry. In these materials,
odd-order NLORs are only allowed, where the dominant
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effect is the third-order NLOR [17]. However, once the inver-
sion symmetry is broken by applying a suitable perturbation,
inversion-symmetric materials can also exhibit even-order
NLORs.

Motivated by this idea and by general interest in the
creation of nonequilibrium states with new or amplified re-
sponses, we investigate the creation of second-order NLORs
in inversion-symmetric Dirac/Weyl SMs. For the inversion-
symmetry-breaking perturbation, we consider a DC electric
field which makes the electron distribution asymmetric in
momentum space and induces finite current, resulting in bro-
ken inversion symmetry. In this Letter, we focus on SHG,
which is a phenomenon where injected light with frequency
ω is converted into light with a doubled frequency 2ω as
schematically shown in Fig. 1 [27]. SHG from current-driven
materials has been called current-induced SHG (CISHG) and
studied theoretically [28–30] and experimentally in several
materials, such as Si [31], GaAs [32], graphene [33,34], and
superconducting NbN [35].

Still, CISHG in topological materials, especially
Dirac/Weyl SMs, has yet to be explored. Here, we study
CISHG in Dirac/Weyl SMs by taking two complementary
approaches. One is an analytic calculation with ideal Weyl
(Dirac) Hamiltonians and the other is numerical, based on
tight-binding models. The results of both approaches are
consistent and show that inversion-symmetric Dirac/Weyl
SMs support a divergently large CISHG when the Fermi
level is located near the Dirac/Weyl points. Based on our
results, we estimate the order of the nonlinear susceptibility
χ (2), characterizing the strength of the CISHG. We consider
the realistic parameters corresponding to the materials, a
Dirac SM, Cd3As2, and a Weyl SM, Co3Sn2S2, and find
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FIG. 1. Concept of current-induced second harmonic generation.
Dirac/Weyl semimetals (SMs) in a nonequilibrium state carrying
finite current show induced second harmonic generation (SHG), i.e.,
probe light with frequency ω is converted into outgoing light with
frequency 2ω.

that it can reach 105 pm V−1 for practical applied current
densities. These values are 102–104 times larger than those
of typical nonlinear materials [13,36,37]. We also address
the experimental methods to observe the CISHG and the
possibility of CISHG in other topological SMs. Our results
suggest that inversion-symmetric topological materials can
be a promising material platform to explore NLORs, even
those requiring inversion breaking. Because the CISHG in
both Dirac and Weyl SMs is large and highly controllable, it
can be used in experiments to investigate the nonequilibrium
physics of topological materials and future optical devices.

Methods. SHG is characterized by the response tensor σ abc
SHG

defined via ja(2ω) = σ abc
SHG(ω)Eb(ω)Ec(ω), where ja(2ω)

[Ea(ω)] is the Fourier component of the time-dependent cur-
rent ja(t ) [electric field Ea(t )] proportional to e2iωt [eiωt ]. The
indices a, b, c run over {x, y, z} and the sum over repeated
indices is implied throughout this Letter. From the standard
time-dependent perturbation theory [38–40], we have the fol-
lowing expression for the SHG response tensor,

σ abc
SHG(ω) = σ abc

2p,I(ω) + σ abc
2p,II(ω) + σ abc

1p,I (ω) + σ abc
1p,II (ω), (1)

where

σ abc
2p,I(ω) = e3

2h̄2ω2

∫
[dk]va

mnw
bc
nm fmnRγ (2ω − ωnm), (2)

σ abc
2p,II(ω) = e3

2h̄2ω2

∫
[dk]

2va
mn

{
vb

npv
c
pm

}
ωmp + ωnp

fmnRγ (2ω − ωnm),

(3)

σ abc
1p,I(ω) = e3

2h̄2ω2

∫
[dk]

(
wab

mnv
c
nm + wac

mnv
b
nm

)

× fmnRγ (ω − ωnm), (4)

σ abc
1p,II(ω) = e3

2h̄2ω2

∫
[dk]

va
mn

{
vb

npv
c
pm

}
ωpm + ωpn

× { fmpRγ (ω − ωpm) − fnpRγ (ω − ωnp)}, (5)

with va = (1/h̄)∂ka H , wab = (1/h̄)∂ka∂kbH , {vb
npv

c
pm} =

vb
npv

c
pm + vc

npv
b
pm, fmn = fm − fn, fn = f (εn), ωmn =

(εm − εn)/h̄, and Rγ (x) = 1/(x − iγ ), where the integration∫
[dk] ≡ ∫

dkxdkydkz/(2π )3 is performed over the entire
Brillouin zone [41]. Here, εn = εn(k) represents the nth
band of the Hamiltonian H = H (k) (the implicit sum over
repeated indices is also taken for the band indices m, n,

and p) and f (ε) is a distribution function of electrons.
In equilibrium f (ε) = f (0)(ε) ≡ (1 + eβε )−1, which is the
Fermi distribution function with inverse temperature β. The
subscript 2p (1p) denotes the contribution of two-photon
(one-photon) resonance and the subscript I (II) denotes that
the term does (not) contain the factor wab, which becomes
zero in a linearized Hamiltonian.

To calculate the response tensor of CISHG, we need the
distribution function of a nonequilibrium steady state (NESS)
carrying finite current. To obtain it, we use the Boltzmann
equation with the relaxation time approximation under a static
electric field EDC, which is −(eEDC/h̄)(∂ fn/∂k) = −( fn −
f (0)
n )/τ , where τ denotes the relaxation time [5,42–44]. Note

that we can use this approach only when the interband
transition by EDC is negligible [45]. Solving this equation
recursively, we obtain the distribution function for NESS as

fn = f (0)
n + Ea

∂ f (0)
n

∂ka
+ EaEb

∂2 f (0)
n

∂ka∂kb
+ · · · , (6)

with Ea = eτEa
DC/h̄. We use fn in Eqs. (2)–(5) to calculate the

current-induced SHG. The example of fn under the electric
field in the z direction is shown in the right panel of Fig. 2(b)
and the equilibrium distribution f (0)

n is also shown in the left
panel of Fig. 2(b) for reference. From these figures, we can
see the distribution function is deformed and asymmetric in
the kz direction under the electric field.

Analytic results with Weyl Hamiltonian. To study the
CISHG in inversion-symmetric Dirac/Weyl SMs, we take
two complementary approaches. One approach is based on a
simple Weyl Hamiltonian

HWeyl = χv(p − p0) · σ − μσ0, (7)

where σx,y,z(σ0) represents Pauli matrices (2 × 2 identity ma-
trix), σ = (σ x, σ y, σ z ), v = ta/h̄ (t and a correspond the
hopping amplitude and the lattice constant, respectively), p =
h̄k = h̄(kx, ky, kz ), and p0 = h̄k0. The Hamiltonian HWeyl rep-
resents a single Weyl (χ = +1) or anti-Weyl (χ = −1) node
located at k = k0 [the band structure is shown in Fig. 2(a)].
This Hamiltonian is very simple, but the low-energy physics
of Dirac/Weyl SMs are well described by this Hamilto-
nian [46]. WSMs have pairs of Weyl and anti-Weyl nodes
and they locate at different points. On the other hand, DSMs
support Weyl and anti-Weyl nodes at the same point, which is
called a Dirac node. In the following, we start from a calcu-
lation of the SHG of a single (anti-)Weyl node and then sum
up the contributions from all the nodes [47]. For simplicity,
we assume that the electric fields are applied in the z direction
[EDC = (0, 0, Ez )].

By a straightforward calculation with the Weyl Hamil-
tonian (7) [48], we can evaluate Eq. (1) analytically at
zero temperature. Considering the symmetry, the independent
nonzero components are only zzz, zxx, and xzx compo-
nents [1,2,49]. The zzz component of the response tensor from
a single Weyl node is given as

σ zzz
single(ω) = eτEza

h̄

h̄

t

e3

h2

{
− 4

15
F2p(ω) + 1

30
F1p(ω)

}
, (8)
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FIG. 2. (a) Energy dispersion of the Weyl Hamiltonian [Eq. (7)] whose gapless point is located at ±k0 = (0, 0, ±k0 ). (b) Equilibrium
distribution function f (0)(ε(k)) (left) and nonequilibrium distribution function f (ε(k)) up to the order of E2

a (right) in momentum space (ky

is fixed to zero). Here, ε(k) denotes the larger eigenvalue of the Weyl Hamiltonian and the parameters are set as t = 1, a = 1, μ = 0.5,
k0 = 1.0, β = 10, and (Ex, Ey, Ez ) = (0, 0, 0.1). (c), (d) Real and imaginary parts of the CISHG response tensor of Dirac semimetals σ zzz

DSM(ω)
calculated with the Weyl Hamiltonian. The values of the vertical axes are normalized by a constant C = (eτEa/h̄)(h̄/t )(e3/h2). Here, we set
γ = 0.01(t/h̄).

with

F2p(ω) = t

|μ|
t/h̄

ω − |μ/h̄| − iγ /2
, (9)

F1p(ω) = t

|μ|
t/h̄

ω − 2|μ/h̄| − iγ
. (10)

The other independent components are given as σ zxx
single(ω) =

C{−(2/15)F2p(ω) + (3/10)F1p(ω)} and σ xzx
single(ω) = C{(1/5)

F2p(ω) − (7/60)F1p(ω)} with C = (eτEza/h̄)(h̄/t )(e3/h2)
[48]. The differences between the components are only
numerical factors and their qualitative behaviors are same.
Thus, we focus on the zzz component below.

Using these results, we can obtain the CISHG response
tensor for Dirac/Weyl SMs. Since the above results do not
depend on the position and the chirality of the Weyl nodes,
we can calculate the response tensor simply by multiply-
ing the number of Weyl nodes considering the degeneracy.
Therefore, assuming that Weyl (Dirac) SMs have two Weyl

(Dirac) nodes [50], the response tensors for Weyl and Dirac
SMs are σ zzz

WSM(ω) = 2σ zzz
single(ω) and σ zzz

DSM(ω) = 4σ zzz
single(ω),

respectively. The real and imaginary parts of Re [σ zzz
DSM(ω)] are

shown in Figs. 2(c) and 2(d). From these figures and Eqs. (8)–
(10), we can see that the SHG spectra have a large peak
around h̄ω = μ (two-photon resonance) and a small peak
around h̄ω = 2μ (one-photon resonance). The height of the
two peaks is proportional to 1/μ [51], leading to a diverging
enhancement with μ → 0 [52]. This suggests that Dirac/Weyl
SMs where the Fermi level is near the Dirac/Weyl points
can show strong SHG [45]. The divergent behavior comes
from the gapless nodes which are protected by the band
topology [18,53].

Numerical results with tight-binding models. Let us move
on to the numerical calculation with a tight-binding Hamil-
tonian describing DSMs. This approach is closer to real
materials than the previous approach because we consider
multiple (in this model, four) bands and take the nonlinearity
and periodicity of the band structure into account. We use the

L161202-3



TAKASAN, MORIMOTO, ORENSTEIN, AND MOORE PHYSICAL REVIEW B 104, L161202 (2021)

FIG. 3. (a) Energy dispersion, (b) joint density of states (JDOS), and (c) topological phase diagram of the tight-binding model [Eq. (11)].
NDSM, WTI, and NI denote normal (i.e., topologically trivial) Dirac semimetal, weak topological insulator, and normal insulator, respectively.
The white star symbol corresponds to the value for (d) and (e). (d), (e) Real and imaginary parts of the CISHG response tensor of Dirac
semimetals σ zzz

DSM(ω) calculated with the tight-binding Hamiltonian. The values in the vertical axes are normalized by a constant C =
(eτEza/h̄)(h̄/t )(e3/h2). The parameters that we used are t = 1.0, t1 = 1.0, t2 = 2.0, t3 = 1.0, t4 = 1.0, m = 2.0, β = 100, and γ = 0.01(t/h̄).
(f) m dependence of the peak value in σ zzz

DSM/C at h̄ω = μ = 0.05t . Other parameters are the same as those in (d) and (e). The red star symbol
corresponds to the topological phase transition.

following tight-binding model,

HTB(k) = f1(k)σzτx + f2(k)σ0τy

+ f3(k)σxτx + f4(k)σyτx + f5(k)σ0τ3, (11)

with

f1(k) = t1 sin(akx ), f2(k) = −t1 sin(aky), (12)

f3(k) = (t2 + t3)[cos(aky) − cos(akx )] sin(akz ), (13)

f4(k) = −(t2 − t3) sin(akx ) sin(aky) sin(akz ), (14)

f5(k) = m − t4{cos(akx ) + cos(aky)} − t cos(akz ), (15)

introduced in Ref. [53]. As shown in the topological phase di-
agram [Fig. 3(c)], this model hosts several topological phases.
In particular, the topological DSM phase is realized in a wide
range of parameters. In this phase, the energy dispersion has
a pair of Dirac points located on the kz axis [Fig. 3(a)]. These
Dirac cones are protected by the C4 rotational symmetry and
topologically robust, which is also the case in the typical
topological DSM material, Cd3As2 [53].

Using this model, we calculate the SHG response tensor
σ zzz

DSM(ω) under the z-directed electric field EDC = (0, 0, Ez ) at
finite temperature [54]. By numerical calculations, we obtain
the SHG spectra shown in Figs. 3(d) and 3(e). First, we find
strong peaks around h̄ω ∼ μ for μ ∼ 0 and they show a di-
vergent enhancement as μ → 0. These are consistent with our
analytic results. Thus, we conclude this behavior comes from
the topologically protected Dirac nodes. Indeed, changing the
parameter from the Dirac SMs to the other gapped regime,
the response vanishes at the topological phase transition point
as shown in Fig. 3(f). Note that the same behavior also ap-
pears in the other nonzero components zxx and xzx [48]. The
other important feature in the spectra is the appearance of
a large peak when μ/t ∼ 1.1–1.6. This behavior reflects the
van Hove singularity at μ/t = 1.0. Indeed, the joint density
of states (JDOS) [55] shows a singularity at h̄ω/t ∼ 2.0 as
shown in Fig. 3(b) [56]. Note that this peak is very small in the
other components because the band structure around the van
Hove singularity is strongly anisotropic [48]. We also study
the tight-binding model for the Weyl SMs [57]. The results are
also consistent with our analytical results and show a similar
divergent response as μ → 0 [48].

Discussion. Our calculation suggests that Dirac and Weyl
SMs show very strong CISHG. To connect these results with
experiments, we estimate the strength of CISHG. First of all,
we need to specify an experimental setup to give an estimate
because the achievable electric field depends on the type of ex-
periment. We propose two kinds of experimental setups shown
in Fig. 4 [58]. One is a standard SHG measurement under a
DC bias voltage. The other is a THz pump SHG measurement,
where the pump frequency is low enough to be seen as a
static field [59]. The former approach is static and thus should
be easier than the other one, which is time resolved. On the
other hand, the latter approach is advantageous for applying
a strong electric field because very strong THz fields such as
1–80 MV/cm has been achieved [60].

Next, we estimate the strength of the electric fields inside
the material. For the DC bias case, the experimental control
parameter is current density rather than field strength. Fol-
lowing the Ohm’s law, the internal electric field Ein is given
as Ein = j/σ , where j and σ are the current density and the
conductivity, respectively. For the THz pump case, we have
to take into account the mismatch of impedance. The internal
electric field is represented as Ein = 2Eext/(n + 1) with the
external pump field Eext and the refractive index n. In the

FIG. 4. Two experimental approaches to observation of CISHG.
(a) Standard SHG measurement with applying a DC bias voltage to
induce a current. (b) Pump-probe-type SHG measurement. The pump
pulse should be at low enough frequency compared to interband
excitations that the induced state is the same as that created by a DC
voltage, which for most materials extends up to the terahertz (THz)
range.
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THz regime, the refractive index is given as n = √
σ/(i�ε0),

where ε0 is the vacuum permittivity and � is the pump field
frequency. To be specific, we consider two materials: a Dirac
semimetal, Cd3As2, and a Weyl semimetal, Co3Sn2S2 [61].
Using the low temperature conductivity of these materials [62]
and assuming j ∼ 107 A/m2, Eext ∼ 400 kV/m, and � ∼
0.5 THz as typical values, we obtain Ein ∼ 4.4 (30) V/m for
the DC bias case and Ein ∼ 2 (4) kV/m for the THz pump
case in Cd3As2 (Co3Sn3S2).

To estimate the strength of CISHG, we evaluate the non-
linear susceptibility χ zzz = σ zzz/(2iωε0). The susceptibility
takes the largest value when the probe frequency is resonant
to the Fermi energy, i.e., ω ∼ μ/h̄, and we consider this reso-
nant case below. The Fermi energy of Cd3As2 (Co3Sn3S2) is
typically 100 (50) meV [23,25,63] and thus the frequency of
probe light is 24 (12) THz, which corresponds to the wave-
length 12.5 (25) μm in the mid-IR (far-IR) regime. Using the
formula (8) with the parameters for Cd3As2 (Co3Sn2S2) [64],
we obtain |Re χ zzz| ∼ 1.2 × 103 (1.1 × 102) pm V−1 in the
DC bias case and |Re χ zzz| ∼ 5.5 × 105 (1.1 × 105) pm V−1

in the THz pump case. Compared to the typical value of
the susceptibility of SHG, such as 3.6 × 103 pm V−1 of
TaAs (the fundamental wavelength λ = 800 nm) [13], 3.5 ×
102 pm V−1 of GaAs (λ = 810 nm) [36], 15–19 pm V−1 of
BiFeO3 (λ = 1.55 μm) [37], the values evaluated above are
very large and suggest that Cd3As2 and Co3Sn2S2 are promis-
ing candidates showing very strong CISHG. For the DC bias
case, the response is relatively small because the internal
electric fields are small, but CISHG of Cd3As2 can be com-
parable to SHG of TaAs due to its longer relaxation time.
Remarkably, the responses of both Cd3As2 and Co3Sn2S2 in
the THz pump case are 102 times larger than that of TaAs,
which has the largest χ (2), and 104 times larger than that
of BiFeO3 [65].

We comment on the possibility of the CISHG in other
topological SMs. Since our analytic results are only based on
the simple Weyl point Hamiltonian without any assumption
about symmetry, similar CISHGs can occur even in inversion-
symmetry-broken Weyl SMs, such as TaAs. Such materials
are expected to show a large CISHG in addition to the original

SHG, and these two contributions are separable via changing
the applied electric field. Very recent experiments [66] suggest
that indeed the CISHG component is detectable in TaAs using
an optically pumped current, which is found to change the
symmetry of SHG in the plane perpendicular to that mate-
rial’s polar axis; our model predicts that the signal induced in
Cd3As2 should be much stronger because its relaxation time is
at least an order of magnitude longer. Furthermore, our tight-
binding calculation suggests that the van Hove singularities
can be an origin of a large CISHG while they are not divergent
as the CISHG from Weyl nodes. Thus, since topological nodal
SMs have van Hove singularities protected by its topology,
they are also expected to be candidate materials showing
strong CISHG.

In this Letter, we have shown that Dirac/Weyl SMs with
inversion symmetry show very strong CISHG, and inversion-
breaking topological SMs may also be expected to show
strong CISHG on top of the zero-current ordinary SHG.
These results suggest that topological SMs have value as a
nonlinear optical material whose SHG intensity is control-
lable from zero to a very large value by electric current.
Moreover, the SHG is also controlled by changing the di-
rection of the current. This high degree of control can
provide another route to realize switchable nonlinear optical
devices.
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