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Highly accurate and constrained density functional obtained with differentiable programming
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Using an end-to-end differentiable implementation of the Kohn-Sham self-consistent field equations, we
obtain a highly accurate neural network–based exchange and correlation (XC) functional of the electronic
density. The functional is optimized using information on both energy and density while exact constraints are
enforced through an appropriate neural network architecture. We evaluate our model against different families
of XC approximations and show that at the meta-GGA level our functional exhibits unprecedented accuracy for
both energy and density predictions. For nonempirical functionals, there is a strong linear correlation between
energy and density errors. We use this correlation to define an XC functional quality metric that includes both
energy and density errors, leading to an improved way to rank different approximations.
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Density functional theory (DFT) serves without doubt as
the workhorse method for electronic structure simulations
in materials science and physics and has gained popular-
ity within the chemistry community in recent decades. This
is in no small part due to its favorable scaling, allowing
users to tackle system sizes out of reach for most correlated
wave-function methods. However, inferences made from nu-
merical simulations are only ever as good as their underlying
approximations. This remains true for DFT, where these ap-
proximations are bundled somewhat opaquely in the elusive
exchange-correlation (XC) functional. The Hohenberg-Kohn
theorem guarantees that if this functional were known,
ground-state properties of any interacting many-electron sys-
tem could be described exactly [1]. In practice, one needs to
pick from a plethora of different approximations, which often
boils down to finding the right functional, cost and accuracy-
wise, for the problem at hand.

It comes as no surprise that developing new and more
accurate density functionals is a field of research on its own.
Practitioners of this field generally have worked following two
orthogonal approaches. Going back to Perdew and Wang [2],
one approach tries to develop functionals from first principles
only, without any empirically fit parameters. Some of the most
notable functionals from this family include PBE [3], TPSS
[4], and SCAN [5], which have proven themselves to be both
versatile and reliable. Another approach, pioneered by Becke
[6], is to fit functionals containing empirical parameters to
either experimental or highly accurate simulated data. The
size of these datasets can range from a few atoms to thousands
of molecules and chemical reactions.

Beyond improving energies, approaching the exact func-
tional should also lead to more accurate densities. However, a
recent study suggested that most empirically fitted functionals
fall short of this expectation [7]. This is concerning, not only
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from a theoretical point of view but also for practical reasons.
For example, the quality of a functional’s electronic density
is related to its ability to correctly describe a molecule’s re-
sponse to an external electric field [8].

A guided approach towards empirical functionals that pro-
duce better densities is clearly needed. This task poses great
challenges, as the Kohn-Sham equations introduce a nonlin-
ear relationship between functional form and self-consistent
density. A guided optimization of such functionals requires
knowledge of the gradients of the functional with respect
to changes in the density. Pioneering work by Nagai et al.
[9] circumvented the problem of missing gradients by adopt-
ing a simulated annealing approach to optimize a functional.
DeePKS [10] uses a Coulomb-like term with randomized
prefactor in its loss function that drives the functional to-
wards the correct density. A breakthrough solution to this
problem was very recently proposed by Li et al. [11], using
differentiable programming, a tool that has previously been
used to solve related problems in electronic structure [12].
By implementing the solution to the Kohn-Sham equations in
JAX, a Python library that supports automatic differentiation
on arbitrary operations, they can probe the electron density
response to changes in the functional parametrization. The
authors further showed that incorporating physical knowledge
in the form of Kohn-Sham equations into the optimization
algorithm has a regularizing effect making the algorithm more
data-efficient. Their work, however, was limited to the study
of one-dimensional model systems.

Here we optimize a density functional using an end-to-end
differentiable implementation of the Kohn-Sham equations. In
contrast to other approaches that have used machine learning
to approximate the exact functional [9,10,13,14], we impose a
set of known constraints on the functional form. These include
a local Lieb-Oxford bound [15–17] (LOB), which proves to
be an important ingredient to obtaining a more transferable
model.

To make our training process computationally feasible,
we mostly limit our training set to linear systems. We show
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that this can be done without loss of generality, meaning
that a thus optimized functional is still applicable to more
complex molecules. With the goal of obtaining a model with
a good balance between computational cost and accuracy,
we choose to optimize a neural network–based meta-GGA
functional. We demonstrate that it shows optimal accuracy
at the meta-GGA level across a diverse selection of datasets
both with respect to energy as well as density predictions,
in many cases outerperforming the front-runner SCAN [5]
by a significant margin. Our analysis of different functionals
identifies a high linear correlation between energy and density
errors for nonempirical models. Using this relationship we de-
fine a compound metric which we term energy-density error.
Ranked by this metric, our model is competitive even with
functionals of the hybrid family.

At the heart of Kohn-Sham (KS) density functional theory
lie the KS equations{− 1

2∇2 + vs[n](r)
}
ψi(r) = εiψi(r). (1)

In this approach, the electron density n(r) is computed
from the occupied one-particle orbitals n(r) = ∑N

i |ψi(r)|2,
and the potential is given as

vs[n](r) = vext (r) + vH [n](r) + vXC[n,ω](r). (2)

Here, vext (r) is the external potential created by the ion cores,
vH (r) is the Hartree potential capturing the Coulomb inter-
action of the density with itself, and vXC(r) is the functional
derivative of the exchange-correlation functional with respect
to the electron density vXC(r) = δEXC[n,ω]

δn(r) . As all quantities
except for the exchange-correlation functional are known, the
goal of this work will be to find a parametrization ω of EXC

which accurately reproduces reference energies and electron
densities while generalizing well to unseen systems.

As the potential depends on the density and therefore
implicitly on the eigenstates ψi, the KS equations need to
be solved iteratively. A popular ansatz used in chemistry
codes, and the one we choose here due to its efficiency for
molecular systems, is to expand the eigenstates in Eq. (1)
in terms of atom-centered Gaussian orbitals ψi = ∑

μ Ciμφμ.
One advantage of using a Gaussian basis is that integrals
can be precomputed analytically and stored to disk, reducing
on-the-fly computations to simple tensor contractions. For this
work, we have made use of the open-source python code
PYSCF [18,19]. We have reimplemented all routines needed
to solve the Kohn-Sham equations to utilize PyTorch [20],
making them end-to-end differentiable. One- and two-electron
integrals were computed with the original version of PYSCF as
the basis sets can be considered fixed for the purpose of this
work.

A fully differentiable implementation of the self-consistent
field (SCF) method necessitates that gradients occurring for
every mathematical operation, at every SCF iteration, be
held in memory until they are used during back-propagation.
Especially tensor operations that involve grid points, such
as the ones needed to generate the real-space density on
which the XC functional is evaluated, contribute a high
memory cost. We have chosen to partially circumvent this
problem by largely restricting our training set to linear closed-
shell molecules during training. We take advantage of their

cylindrical symmetry by evaluating grid integrals on a reduced
grid, namely, a disk in the zx plane. To obtain the radial part
of this grid, we make use of the methods provided by PYSCF

to generate Treutler-Ahlrichs type grids. For the angular part,
we use a simple Legendre-Gauss quadrature. The size of the
reduced grid is chosen so that it reproduces the number of
electrons, integrated exchange-correlation energy, as well as
the exchange-correlation potential (in the atomic orbital basis)
given by a reference calculation using a converged three-
dimensional grid.

We followed the common practice of defining the
exchange-correlation energy in terms of the energy per
unit particle EXC[n,ω] = ∫

εXC[n,ω](r)n(r)dr. We further
decompose this energy density into its exchange and corre-
lation parts εXC[n,ω](r) = εx[n,ωx](r) + εc[n,ωc](r) which
are both independently parametrized. This allows us to factor-
ize both functionals into fixed parts describing the behavior
of a uniform electron gas (UEG) eUEG

x/c [n] and parametrized
enhancement factors Fx/c[n,ωx/c] that take into account ef-
fects from inhomogeneities. The exchange energy density of
the UEG is given as εUEG

x [n](r) = − 3
4 (3/π )1/3n1/3(r), and the

parametrization of εUEG
c by Perdew and Wang [21] was used.

Rather than having our functionals depend on the electron
density and its derivatives directly we define the following
commonly used dimensionless quantities which will serve as
input to our functionals:

x0 = n1/3, (3)

x1 = 1
2

{
(1 + ζ )4/3 + (1 − ζ )4/3

}
, (4)

x2 = s = 1

2(3π2)1/3

|∇n|
n4/3

, (5)

x3 = α = τ − τW

τ unif
, (6)

where τW = |∇n|2/8n, τ unif = (3/10)(3π2)2/3n5/3, and ζ

corresponds to the spin polarization.
As neural networks struggle with handling features that

range over multiple orders of magnitude, we further transform
our input features x0–3 by applying logarithmic transforma-
tions

x̃0 = log(x0 + εlog), (7)

x̃1 = log(x1 + εlog), (8)

x̃2 = {
1 − exp

( − x2
2

)}
log(x2 + 1), (9)

x̃3 = log{(x3 + 1)/2} (10)

with εlog = 10−5. x̃2 is designed so that its first derivative
vanishes at x2 = 0. This poses a soft constraint on the en-
hancement factors Fx/c to have the same property. We have
found that doing so greatly improves convergence, especially
for periodic systems. Similar reasoning was applied to x̃3

where the employed transformation led to better behaved
functionals than the more obvious choice log(x3 + εlog).

Both Fx and Fc were parametrized by a fully connected
neural network with three hidden layers with 16 nodes each.
As activation function, we have used the Gaussian error linear
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unit [22]. We will denote the mapping induced by this neural
network as F (·).

We modify our neural network models to fulfill certain
constraints and scaling laws that are known about the exact
functional. To make Ex behave correctly under uniform scal-
ing of the electron density and obey the spin-scaling relation,
we drop the variables x0 and x1 in Fx. We further introduce a
transformation Ia(x) that maps its input x to a finite interval
[−1, a − 1]:

Ia(x) = a

1 + (a − 1) exp(−x)
− 1 (11)

while maintaining Ia(0) = 0. In the case of Fx, I1.174(x) is used
to strictly enforce a rigorous conjectured local LOB [16,17]
a = 1.174, following the spirit of SCAN, whereas for Fc we
use I2(x) to ensure non-negativity of the enhancement factor.
Collecting all input features into a vector x̃, the models can be
written as

Fx(x̃2, x̃3) = 1 + I1.174
[
(x̃2 + tanh2 x̃3)F (x̃2, x̃3,ωx )

]
, (12)

Fc(x̃) = 1 + I2
[
(x̃2 + tanh2 x̃3)F (x̃,ωc)

]
. (13)

The factor (x̃2 + tanh2 x̃3) ensures that the UEG limit is recov-
ered for s = x2 = 0 (x̃2 = 0) and α = x3 = 1 (x̃3 = 0).

The datasets used in this work for training and validation
consist of 21 atomization energies taken from the G2/97 set
[23], three barrier heights taken from BH76 by Zhao et al.
[24], and two reference ionization potentials from IP13 pro-
vided in [25]. For the G2/97 dataset, we use atomization
energies that were recalculated by Haunshild and Klopper
[26] and are considered more reliable than the enthalpies of
formation given in the original version of the dataset.

We augmented the G2/97 dataset with ground-state elec-
tron densities that we computed at the CCSD(T) level using
the 6-311 + +G(3df,2pd) basis set, the same basis used for
training the functionals. Total atomic energies were taken
from Ref. [27] and included in the training set as well. Atomic
electron densities were calculated and included for H and
Li. For model validation, during training, we used a disjoint
subset of the data listed above, consisting of eight atomization
energies and densities from G2/97, and two reference barrier
heights from BH76. A detailed list of the structures used
for training and validation can be found in the Supplemental
Material (SM) [41].

Models were pretrained to match SCAN [5] on the 21
molecules contained in the training set by randomly sam-
pling the exchange enhancement factor on molecular grids
and fitting to it. The functional parameters are then trained
to optimize a compound loss, combining errors in total ener-
gies E (i)

j;tot and reaction energies (which includes atomization

energies and barrier heights) E (i)
j;RE at SCF iteration j, as well

as electron densities n(i).

L = λELE + λRELRE + λnLn, (14)

LE = E

[
25∑

j=10

{
w j

(
E (i)

j;tot,ref − E (i)
j;tot

)}2

]
, (15)

LRE = E

[
25∑

j=10

{
w jbig(E (i)

j;RE ,ref − E (i)
j;RE

)}2

]
, (16)

Ln = E
[
l (i)
n

]
, (17)

l (i)
n = 1

N2
e

∫
r

[
n(i)(r) − n(i)

ref(r)
]2

(18)

with flexible weights λE , λRE , λn and expectation values taken
over the training set. We set the weights to λRE = 1, λn = 20,
and λE = 0.01. Rather than including only converged energies
in our loss function, we follow the approach by Li et al. [11],
employing w j = ( j−10

15 )2 that penalize solutions which lead to
slowly converging SCF calculations.

The functional parameters are optimized using Adam with
an initial learning rate 10−4 which is decayed by a factor of
0.1 after every ten consecutive epochs without a decrease in
training loss. We employ an l2 regularization of 10−6 and a
batch size of one reaction.

We tested our functional on 140 atomization energies con-
tained in the W4-11 [29] dataset, 76 barrier heights from
BH76, and 43 decomposition energies of artificial molecules
contained in the MB16-43 [28] dataset. To achieve a wider
assessment of our functional we further tested it on the di-
verse diet-GMTKN55 dataset [30]. GMTKN55 consists of
55 subsets that each probe different properties of a given
functional. The subsets can be divided into categories by
interaction type. These categories comprise reaction ener-
gies for small systems, reaction energies for large systems,
and isomerization reactions, barrier heights, intermolecu-
lar noncovalent interactions, and intramolecular noncovalent
interactions. Diet-GMTKN55 provides representative sub-
samples of GMTKN55 that have been shown to lead to the
same ranking of density functionals (DFs) as the full dataset,
at a significantly reduced computational cost.

We choose to evaluate our functional on the proposed 150
samples, the largest “diet” dataset, using a weighted mean
of mean absolute deviations (MAD) across the subsets. The
weights are chosen by Gould to reproduce the WTMAD-2
weighted mean of means proposed by Goerig et al. [28],
which scales the mean absolute energy deviations MADi of
a subset i containing Ni reactions by the inverse energy range
of a given subset |�E |i

WTMAD-2 = N−1
55∑
i

Ni
56.84 kcal mol−1

|�E |i
MADi, (19)

with N = ∑55
i Ni. The goal is to give more weight to datasets

with little variation in the energy and to scale down systems
with large variations.

We conducted all necessary single-point calculations with
PYSCF using our in-house code LIBNXC [31,32] as a plug-in
to allow for the use of PyTorch XC models. LIBNXC is freely
available on Github under the MPL-2.0 license and provides
a straightforward way to users to employ our functional in
electronic structure calculations. Instructions on how to do so
are provided in the documentation accompanying the code.
We employed the def2-QZVP basis set and augmented it with
diffuse functions for the subsets recommended in Ref. [28].
A PYSCF grid level of 3 together with an energy convergence
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(b)(a) (c)

FIG. 1. Exchange-correlation enhancement factors FXC for rs = 1, ζ = 0, and (a) α = 1, (b) α = 0, and (c) α = 10.

tolerance of 10−8Eh was chosen. To ensure the correct treat-
ment of noncovalent interactions, all results reported include
the DFT-D3 dispersion correction with Becke-Johnson damp-
ing [39,40]. Parameters for our functional were optimized
following the procedure outlined in Ref. [28] and are sum-
marized in the SM.

Figure 1 shows a comparison of XC enhancement factors
FXC = εXC/εUEG

x for a set of density functionals. Despite the
small regularization employed, the obtained neural network–
based functional is smooth and no problems regarding
convergence during SCF calculations were encountered. We
accredit this to the optimization procedure and the weighted
loss which penalized parametrizations that would lead to
slowly converging calculations. We also show in the Supple-
mental Material [41], Sec. IX (see also Refs. [42–45] therein)
that the convergence of our functional with respect to the
real-space grid size is as good if not better than that obtained
with SCAN.

Comparing the weighted means WTMAD-2 shown in
Fig. 2 and Table I, we see that xc-diff outperforms SCAN,
(rev)TPSS [46], and the empirically fitted Minnesota func-
tionals M06L, M11L [47], and MN12L [48]. It should be
pointed out that the training sets used to optimize the Min-
nesota functionals were about one order of magnitude larger
than the one used in this work.

FIG. 2. Weighted mean absolute deviations (WTMAD-2) (top),
density errors (center), and energy-density error (bottom) for several
functionals including our model, xc-diff [28].

The datasets W4-11, BH76, and MB16-43 illuminate the
strengths and weaknesses of the respective functionals. For
atomization energies of small systems, xc-diff outperforms
SCAN by 0.6 kcal mol−1 and is comparable to the global
hybrids B3LYP [49] and PBE0 [50]. Being susceptible to
delocalization errors, barrier heights pose a challenge to
semilocal functionals. Here, xc-diff outperforms SCAN by
more than 1 kcal mol−1 but is outperformed by about the same
amount by PBE0 and B3LYP. Not fully shown in Table I due
to their large WTMAD-2, the Minnesota functionals provide
an excellent treatment of this dataset with MAEs ranging
from 3.9 to 1.7 kcal mol−1. However, it is worth noting that
barrier heights played a major role in the training sets used to
optimize all Minnesota functionals, so their accuracy comes
as no surprise. MB14-36 plays a special role as it contains
artificial, randomly generated molecules and has proven chal-
lenging especially to empirical functionals. Here, xc-diff is
less accurate than SCAN but shows reasonable performance
compared to all other functionals considered here. Beyond
tests in general data, we have also tested xc-diff on a specific
dataset

Beyond comparing energies, we used the previously cal-
culated CCSD(T) electron densities across the G2/97 dataset
to assess the accuracy of our functional regarding densities.

TABLE I. Mean absolute errors in kcal mol−1 for atomization
energies (AE) over the W4-11 dataset, barrier heights (BH) in BH76,
and decomposition energies (DE) for MB16-43. Weighted means
WTMAD-2 and � are also given in kcal mol−1. Mean density error
εn is unitless. A complete list of functionals is provided in the SM.
All models include DFT-D3 dispersion corrections. Energy errors for
all functionals except xc-diff were taken from Ref. [28].

AE BH DE WTMAD-2 ε|n| × 103 ED|n|

RPBE [33] 8.3 9.0 50.8 10.5 8.8 10.0
B97 [34] 4.7 7.3 36.1 8.6 7.0 8.0
OLYP [35] 9.9 8.5 29.0 8.5 10.1 9.6
revPBE [36] 7.6 8.3 27.1 8.4 9.4 9.2
M06L 4.4 3.9 63.3 8.6 9.4 9.3
revTPSS 5.7 8.9 36.7 8.4 7.9 8.5
SCAN 4.1 7.8 17.8 8.0 6.2 7.3
xc-diff 3.5 6.5 22.7 7.3 5.2 6.4
PBE0 3.7 5.0 15.9 6.4 5.7 6.3
B3LYP 3.4 5.7 24.8 6.5 8.3 7.5
M05-2X [37] 4.0 1.7 26.3 4.6 7.5 5.8
ωB97X-V [38] 2.8 1.8 32.5 4.1 5.0 4.7
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FIG. 3. Correlation plot for density error and total WTMAD-2.
Dotted line indicates best linear fit to nonempirical DFs.

Mean errors across the dataset were computed using the met-
ric

ε|n| = E

[
1

Ne

∫
r
|n(i)(r) − n(i)

ref(r)|
]
. (20)

The methods were identical to those used for the diet-
GMTKN55 dataset except for the basis set, which was
chosen as 6-311 + +G(3df,2pd) for easier comparison with
our coupled-cluster reference densities.

Figure 2 shows that xc-diff outperforms all other tested
meta-GGA functionals by a clear margin. We further included
data obtained with global hybrids and GGAs. While most hy-
brids improve upon traditional meta-GGA functionals, xc-diff
is still 9% more accurate regarding the density than PBE0.

We believe that a functional should be judged by both its
accuracy regarding energies as well as densities. A metric
combining both energy and density errors would therefore be
useful to score and rank functionals; however, finding such a
metric is no straightforward task.

An important clue might be provided by the high linear cor-
relation (R2 = 0.87) between WTMAD-2 and density errors
for nonempirical DFs (PW91[2], PBE[3], TPSS[4], revTPSS
[46], SCAN, PBE0 [50]). The best fit of a linear regression
model (with zero intercept) is shown in Fig. 3 by a dotted
line. Remarkably, regardless of the level of approximation,
nonempirical functionals closely follow this trend line, while
many empirically fitted DFs seem to deviate significantly from
it. We have been able to confirm that this trend persists for
other definitions of the density error, such as one based on
the Kullback-Leibler divergence (see SM for details). Our
functional, xc-diff, shows a density error that is lower than
expected from this trend.

Inspired by this finding, we propose a metric ED that
allows us to combine density with energy errors:

ED|n| = 2

(
1

WTMAD-2
+ 1

fE (ε|n|)

)−1

. (21)

fE (ε|n|) = γ ε|n| with γ = 1084.87 kcal mol−1 corresponds
to the linear regression model used in Fig. 3, and can
be interpreted as the energy error (WTMAD-2), a fictional

nonempirical functional with density error εn would exhibit
according to our model. Figure 2 shows ED|n| across den-
sity functionals. We see that within meta-GGAs, the order of
functionals remains largely unchanged but due to xc-diff’s ac-
curacy for densities, it now outperforms B3LYP and matches
the accuracy range of other popular hybrids such as PBE0.
It is out of the scope of this Letter to study how xc-diff
performs for systems and problems that SCAN has difficulty
with such as the self-interaction error in water clusters [51,52].
We expect such study to provide results similar to SCAN.
Here, we have computed the optimized geometry of the water
molecule (Supplemental Material [41], Sec. VII). xc-diff im-
proves the ̂HOHxc-diff = 104.5◦ (same as experimental [51])
over SCAN (104.3◦ [51]), while for the OH-bond length we
obtain rxc-diff

OH = 0.964 Å, as compared to rexpt.
OH = 0.958 Å, and

rSCAN
OH = 0.960 Å. Additional results, showing the similarity to

SCAN regarding the self-interaction error in the ionized water
dimer [52], are provided in Supplemental Material [41], Sec.
VIII.

Using an end-to-end differentiable implementation of the
Kohn-Sham equations we have successfully optimized an ac-
curate meta-GGA XC functional. Our results indicate that a
highly constrained functional like SCAN has already almost
exhausted the accuracy limit that a meta-GGA functional
can achieve. Nevertheless, within this narrow window, our
method was able to improve upon SCAN regarding both a
diverse set of reaction energies and electron densities. It has
been argued that such improvement should be achieved in a
nonempirical approach imposing physically motivated exact
constraints with a minimal number of free parameters [53].
We have shown that a data-driven search using machine learn-
ing combined with an adherence to constraints can provide an
equally valid path. A crucial ingredient of our method is given
by automatic differentiation, which allows the optimization
algorithm to make use of valuable information contained in
the electron density, effectively enlarging the training set size.
It remains to be tested how a thus optimized functional per-
forms for solid systems; work that will be the subject of future
research. While we believe that our functional could be further
improved by fitting to larger training sets, its accuracy is inher-
ently limited by the functional form of meta-GGAs. This issue
particularly emerges when trying to address systems for which
self-interaction errors play a significant role. We predict that
advances in hardware development along with more efficient
implementations of our code will soon allow us to apply our
method to much larger training sets and higher rungs of DFT’s
Jacob’s ladder [53], opening the path towards functionals of
optimal accuracy, within their rungs of approximation.
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Grant No. 1531492.

L161109-5



SEBASTIAN DICK AND MARIVI FERNANDEZ-SERRA PHYSICAL REVIEW B 104, L161109 (2021)

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992).

[3] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[4] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys.
Rev. Lett. 91, 146401 (2003).

[5] J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115,
036402 (2015).

[6] A. D. Becke, Phys. Rev. A 38, 3098 (1988).
[7] M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and

K. A. Lyssenko, Science 355, 49 (2017).
[8] D. Hait, Y. H. Liang, and M. Head-Gordon, J. Chem. Phys. 154,

074109 (2021).
[9] R. Nagai, R. Akashi, and O. Sugino, npj Comput. Mater. 6, 1

(2020).
[10] Y. Chen, L. Zhang, H. Wang, and E. Weinan, J. Chem. Theory

Comput. 17, 170 (2021).
[11] L. Li, S. Hoyer, R. Pederson, R. Sun, E. D. Cubuk, P. Riley, and

K. Burke, Phys. Rev. Lett. 126, 036401 (2021).
[12] T. Tamayo-Mendoza, C. Kreisbeck, R. Lindh, and A. Aspuru-

Guzik, ACS Central Sci. 4, 559 (2018).
[13] S. Dick and M. Fernandez-Serra, J. Chem. Phys. 151, 144102

(2019).
[14] S. Dick and M. Fernandez-Serra, Nat. Commun. 11, 3509

(2020).
[15] E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427

(1981).
[16] J. P. Perdew, A. Ruzsinszky, J. Sun, and K. Burke, J. Chem.

Phys. 140, 18A533 (2014).
[17] J. Sun, J. P. Perdew, and A. Ruzsinszky, Proc. Natl. Acad. Sci.

U.S.A. 112, 685 (2015).
[18] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z.

Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma et al.,
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1340 (2018).

[19] Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt,
N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui et al., J. Chem.
Phys. 153, 024109 (2020).

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al.,
arXiv:1912.01703.

[21] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[22] D. Hendrycks and K. Gimpel, arXiv:1606.08415.
[23] L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople,

J. Chem. Phys. 106, 1063 (1997).
[24] Y. Zhao, N. González-García, and D. G. Truhlar, J. Phys. Chem.

A 109, 2012 (2005).
[25] B. J. Lynch, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. A 107,

1384 (2003).
[26] R. Haunschild and W. Klopper, J. Chem. Phys. 136, 164102

(2012).

[27] S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia,
and C. F. Fischer, Phys. Rev. A 47, 3649 (1993).

[28] L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, and S.
Grimme, Phys. Chem. Chem. Phys. 19, 32184 (2017).

[29] A. Karton, S. Daon, and J. M. Martin, Chem. Phys. Lett. 510,
165 (2011).

[30] T. Gould, Phys. Chem. Chem. Phys. 20, 27735 (2018).
[31] S. Dick, LIBNXC, https://github.com/semodi/libnxc, 2021.
[32] M. Fernandez-Serra and S. Dick, https://doi.org/10.5281/

zenodo.5516522, 2021.
[33] B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59,

7413 (1999).
[34] A. D. Becke, J. Chem. Phys. 107, 8554 (1997).
[35] N. C. Handy and A. J. Cohen, Mol. Phys. 99, 403 (2001).
[36] Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
[37] Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory

Comput. 2, 364 (2006).
[38] N. Mardirossian and M. Head-Gordon, Phys. Chem. Chem.

Phys. 16, 9904 (2014).
[39] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys.

132, 154104 (2010).
[40] S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32,

1456 (2011).
[41] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.104.L161109 for additional results and de-
tailed information of the implementation of the method Refs.
[54,55].

[42] S. Kullback and R. A. Leibler, Ann. Math Stat. 22, 79 (1951).
[43] J. G. Brandenburg, J. E. Bates, J. Sun, and J. P. Perdew, Phys.

Rev. B 94, 115144 (2016).
[44] A. P. Bartók and J. R. Yates, J. Chem. Phys. 150, 161101 (2019).
[45] D. Mejía-Rodríguez and S. B. Trickey, J. Chem. Phys. 151,

207101 (2019).
[46] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and

J. Sun, Phys. Rev. Lett. 103, 026403 (2009).
[47] R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 3, 117

(2012).
[48] R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14,

13171 (2012).
[49] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch,

J. Phys. Chem. 98, 11623 (1994).
[50] C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
[51] K. Sharkas, K. Wagle, B. Santra, S. Akter, R. R. Zope, T.

Baruah, K. A. Jackson, J. P. Perdew, and J. E. Peralta, Proc.
Natl. Acad. Sci. U.S.A. 117, 11283 (2020).

[52] V. Sharma and M. Fernández-Serra, Phys. Rev. Research 2,
043082 (2020).

[53] J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E.
Scuseria, and G. I. Csonka, J. Chem. Phys. 123, 062201 (2005).

[54] Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).
[55] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria,

J. Chem. Phys. 125, 224106 (2006).

L161109-6

https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.91.146401
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1103/PhysRevA.38.3098
https://doi.org/10.1126/science.aah5975
https://doi.org/10.1063/5.0038694
https://doi.org/10.1038/s41524-020-0310-0
https://doi.org/10.1021/acs.jctc.0c00872
https://doi.org/10.1103/PhysRevLett.126.036401
https://doi.org/10.1021/acscentsci.7b00586
https://doi.org/10.1063/1.5114618
https://doi.org/10.1038/s41467-020-17265-7
https://doi.org/10.1002/qua.560190306
https://doi.org/10.1063/1.4870763
https://doi.org/10.1073/pnas.1423145112
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1063/5.0006074
http://arxiv.org/abs/arXiv:1912.01703
https://doi.org/10.1103/PhysRevB.45.13244
http://arxiv.org/abs/arXiv:1606.08415
https://doi.org/10.1063/1.473182
https://doi.org/10.1021/jp045141s
https://doi.org/10.1021/jp021590l
https://doi.org/10.1063/1.4704796
https://doi.org/10.1103/PhysRevA.47.3649
https://doi.org/10.1039/C7CP04913G
https://doi.org/10.1016/j.cplett.2011.05.007
https://doi.org/10.1039/C8CP05554H
https://github.com/semodi/libnxc
https://doi.org/10.5281/zenodo.5516522
https://doi.org/10.1103/PhysRevB.59.7413
https://doi.org/10.1063/1.475007
https://doi.org/10.1080/00268970010018431
https://doi.org/10.1103/PhysRevLett.80.890
https://doi.org/10.1021/ct0502763
https://doi.org/10.1039/c3cp54374a
https://doi.org/10.1063/1.3382344
https://doi.org/10.1002/jcc.21759
http://link.aps.org/supplemental/10.1103/PhysRevB.104.L161109
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1103/PhysRevB.94.115144
https://doi.org/10.1063/1.5094646
https://doi.org/10.1063/1.5120408
https://doi.org/10.1103/PhysRevLett.103.026403
https://doi.org/10.1021/jz201525m
https://doi.org/10.1039/c2cp42025b
https://doi.org/10.1021/j100096a001
https://doi.org/10.1063/1.478522
https://doi.org/10.1073/pnas.1921258117
https://doi.org/10.1103/PhysRevResearch.2.043082
https://doi.org/10.1063/1.1904565
https://doi.org/10.1063/1.2370993
https://doi.org/10.1063/1.2404663

