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We show that a class of P77 symmetric non-Hermitian Hamiltonians realizing the Yang-Lee edge singularity
exhibits an entanglement transition in the long-time steady state evolved under the Hamiltonian. Such a transition
is induced by a level crossing triggered by the critical point associated with the Yang-Lee singularity and hence is
first order in nature. At the transition, the entanglement entropy of the steady state jumps discontinuously from
a volume-law to an area-law scaling. We exemplify this mechanism using a one-dimensional transverse field
Ising model with additional imaginary fields, as well as the spin-1 Blume-Capel model and the three-state Potts
model. We further make a connection to the forced-measurement induced entanglement transition in a Floquet
nonunitary circuit subject to continuous measurements followed by post-selections. Our results demonstrate a
new mechanism for entanglement transitions in non-Hermitian systems harboring a critical point.
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Introduction. The dynamics of entanglement provides
a quantum information perspective on the nonequilibrium
dynamics of many-body systems. For chaotic systems—
Hamiltonians or random unitary circuits—the entanglement
entropy under time evolution typically saturates to a volume-
law scaling with the subsystem size, indicating thermalization
at late times [1-5]. However, this scenario is altered once the
system is coupled to the environment and one tracks an in-
dividual quantum trajectory at a time. A minimally structured
setup capturing the latter scenario consists of a random unitary
circuit interspersed with weak measurements, and a particular
sequence of measurement outcome is recorded. Remarkably,
such hybrid random unitary circuits feature an entanglement
phase transition from a volume-law phase to an area-law
phase, as the measurement rate is varied [6—18]. In (1+41)
dimensions, this entanglement transition in hybrid random
unitary circuits is generically a continuous one exhibiting
similar properties vis-a-vis certain nonunitary conformal field
theory (CFT) upon mapping to a statistical-mechanics model
[7,9,12,19-22].

One expects that the existence of temporal randomness
(randomness in gate compositions, measurement locations,
and measurement outcomes) is crucial for the universality
class of hybrid random unitary circuits, as randomness is
typically relevant in lower dimensions [23]. It is thus of
great interest to ask whether there can be new possibilities or
mechanisms for entanglement transitions in systems where all
randomness is removed. One such example is a system subject
to continuous weak measurements, and one post-selects a
trajectory with a specified outcome. The time evolution in
this case can be generated by a non-Hermitian nonrandom
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Hamiltonian with an imaginary field, for which one may infer
the long-time steady state [24] solely from the eigenvalues
and eigenstates. Recent works have identified entanglement
transitions in non-Hermitian systems of free fermions [25],
chaotic spin chains [26], and the Sachdev-Ye-Kitaev chain in
the large N limit [27]. Nonetheless, the existence and nature
of entanglement transitions in non-Hermitian systems remain
to be better understood.

In this work, we demonstrate a new mechanism leading to a
first-order entanglement transition in a class of P77 symmetric
non-Hermitian Hamiltonians, whose ground state (hereafter
referring to the state with the smallest real eigenvalue) under-
goes a continuous phase transition belonging to the Yang-Lee
universality class [28—32]. The Hamiltonian we consider takes
the form

H =H, +iH,, ey

where H; is a Hermitian interacting Hamiltonian and H, de-
notes an imaginary field. If the ground state of H; is in the
paramagnetic phase, due to P77 symmetry, as the imaginary
field increases, the ground state and first excited state energies
remain real until the gap closes at the Yang-Lee critical point,
after which they start splitting in pairs along the imaginary
axis. The development of magnetic ordering in the ground
state past the critical point continues driving the growth of
its imaginary eigenenergy, which eventually leads to a level
crossing along the imaginary axis with some (typically) highly
excited state. See Fig. 1(a) for an illustration [33]. Since the
long-time steady state under time evolution is governed by
the right eigenstate with the largest imaginary eigenenergy,
this level crossing signals a discontinuous jump in the steady
state entanglement from a volume-law to an area-law scal-
ing, because the ground state of H; has an area-law scaling
entanglement whereas a typical excited state of H; has a
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FIG. 1. (a) A schematic of the coalescing-splitting process be-
tween the ground state (state with the smallest real eigenvalue) and
the first excited state (blue dots). The grey region denotes the (com-
plex) eigenvalues of the rest of the eigenstates. (b), (c) The imaginary
part of the eigenenergy (b) and the half-chain entanglement entropy
(c) of the ground state (blue) and state with the maximal Im(E) (red)
as a function of h,. We choose / = 0.4,J, =0.1,T' =1, h, = 0, and
system size L = 10 with periodic boundary condition.

volume-law scaling entanglement. In contrast, if the ground
state of H; is in the ordered phase, the steady state is area-law
entangled immediately as we introduce H,, and hence there is
no entanglement transition. We exemplify the above scenario
using various one-dimensional quantum spin models with ad-
ditional imaginary fields, and further make a connection to the
forced-measurement induced entanglement transition.

Yang-Lee edge singularity. The ferromagnetic phase transi-
tion of the classical Ising model in an external magnetic field
h can be understood from the zeros of the partition function on
the complex & plane. Above the critical temperature T > T,
all zeros are distributed along the imaginary axis |Im(h)| >
hyp(T), with hy;(T) vanishing as T approaches T, [28,29].
The Yang-Lee edge singularity hy; in fact can be regarded
as a conventional critical point described by a ¢? field theory
with imaginary couplings [30,34] (see Supplemental Material
for a brief review [35]). As such, the Yang-Lee singularity
can be alternatively realized as a quantum phase transition
in a (141)-dimensional non-Hermitian quantum Hamiltonian
[36], where the energy gap between the two states with lowest
real eigenenergies closes on the real axis and reopens on the
imaginary axis in a universal manner across the transition
[see Fig. 1(a)]. By tracking the evolution of the eigenenergy
levels on the complex plane across the Yang-Lee critical point,
we will show that there must be a first-order entanglement
transition induced by a level crossing along the imaginary axis
of the eigenenergy spectrum.

Consider a one-dimensional (1D) transverse field Ising
model with next-nearest-neighbor couplings and in the pres-
ence of imaginary fields

L

H =~ (Joiof, +10{0f,, + o} +ihof + ihyo)),
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FIG. 2. The phase diagram of Hamiltonian (2) obtained from
exact diagonalization of a chain of L = 10 with periodic boundary
condition. The solid line denotes the second-order Yang-Lee critical
line, and the dashed line is the first-order entanglement transition. We
choose J =0.4,J, =0.1,and " = 1.

where 0% denotes Pauli matrices, and J, J,, T, h;, hy > 0
are real parameters. We have included a J, term such that
Hamiltonian (2) is nonintegrable in the absence of imagi-
nary fields; nevertheless, both the Yang-Lee singularity and
the entanglement transition persist when J, = 0. This model,
despite being non-Hermitian, has a generalized P77 symmetry
which we define below. Therefore, the eigenvalues of Hamil-
tonian (2) must either be real or come in complex-conjugate
pairs. A single eigenenergy cannot leave the real axis without
coalescing with a partner and then splitting in pairs. In partic-
ular, this is also the case for the ground state of Hamiltonian
(2). In spite of the similarity between Hamiltonian (2) and
the models studied in Refs. [25,26], we point out that those
models do not have a Yang-Lee singularity, and hence the
mechanisms for the entanglement transition therein are com-
pletely different from Hamiltonian (2).

When h, = 0, Hamiltonian (2) belongs to the same univer-
sality class as the 2D classical Ising model, and the Yang-Lee
singularity is realized at s, # 0 in the paramagnetic phase
with T" > J [36]. Since the ground state of Hamiltonian (2) is
nondegenerate in the paramagnetic phase, its energy remains
real upon increasing h, until the gap to the first excited state
closes at the critical point, as shown in Fig. 1(a). When the gap
reopens past the critical point, the doubly degenerate ground
states split in pairs along the imaginary axis and acquire a
magnetic order. When £, # 0, it turns out that Hamiltonian
(2) can be brought to the same form as when A, =0 via a
similarity transformation [37]

H = — Z (Jafoii_l +Jrotof,, + ’I:O'ix + ihzoiz), 3)
where H and H’ are connected by an operator p, i.e.,
H' = pHp~!, and r=/r2— hg, provided that |hy| < |T].
Since Hamiltonian (3) has a T symmetry P7 = [+, o7k,
Hamiltonian (2) also has a generalized P77 symmetry: P7T =
P ]_[iL=1 07 KC, where K denotes complex conjugation. Thus,
a nonzero h, simply attenuates the effective strength of the
transverse field I', and the Yang-Lee singularity persists for a
range of nonzero h,. The phase diagram of Hamiltonian (2)

is shown in Fig. 2. Qualitatively, this phase diagram can be
obtained using a mean-field theory of Hamiltonian (2) [35].
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FIG. 3. (a) Scaling of the entanglement entropy as a function of
subsystem sizes before and after the level crossing. (b) Data collapse
of m as a function of (h, — hy;) for different system sizes. The
choices of parameters are the same as in Fig. 1.

Since there is only one relevant direction for the Yang-Lee
critical point, we shall hereafter fix 1, = 0 and vary h,.

Entanglement transition. We are interested in the entangle-
ment properties of the long-time steady state evolved under
Hamiltonian (2)

e )
lle=H1 [yo) 1

for ¢t > 1, where |¥) is an unentangled initial state. In the
long-time limit, |y (¢)) is dominated by the eigenstate of H
whose imaginary part of the eigenenergy Im(F) is the largest.
It is thus possible to infer the entanglement property of the
long-time steady state from a single eigenstate with the largest
Im(E). In Fig. 1(b), we plot Im(E) for the ground state and
the eigenstate with the largest Im(E) as &, increases. Re-
markably, we find a level crossing in Im(E) shortly after the
Yang-Lee edge singularity, when the ground state takes over
to be the one with the largest Im(E). Due to P7T symme-
try, two eigenvalues must coalesce before wandering off the
real axis in pairs. One thus expects that, prior to this level
crossing, eigenstates that are most likely to develop a large
Im(E) and hence control the steady state are those located
near the middle of the spectrum, where level spacings are
the smallest and scale as 27L. Since these eigenstates are
inherited from the excited states of the chaotic Hermitian
Hamiltonian H;, we expect them to continue exhibiting a
volume-law entanglement entropy upon turning on H,, as long
as the non-Hermitian part is not too large. The volume-law en-
tanglement scaling of such eigenstates in the presence of H, is
numerically demonstrated in Figs. 3(a) and 4(b) (see below).
On the other hand, the ground state is close to a product state
with low entanglement obeying an area-law scaling with the
subsystem size. Therefore, such a level crossing gives rise to
a first-order entanglement transition in the long-time steady
state, across which the entanglement jumps discontinuously
from a volume-law to an area-law scaling. In Fig. 1(c), we
show that the half-chain entanglement entropy of the maximal
Im(E) eigenstate indeed exhibits a discontinuous jump at
the level crossing. The scaling of the entanglement entropy
before and after the jump with subsystem sizes shown in
Fig. 3(a) also confirms the volume-to-area-law nature of the
transition [38].

This first-order entanglement transition, although seem-
ingly coincidental, is in fact guaranteed by the Yang-Lee
singularity. First of all, the ground state energy can acquire
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FIG. 4. (a) Entanglement entropy of the steady state under the
hybrid circuit evolution (8) as a function of y for L = 16. (b) Scaling
of the steady state entanglement entropy at measurement rates y <
yee and y > ygg, respectively, for L = 20. We choose J = 0.4, J, =
0.1, ' =1, T = 0.1, and periodic boundary condition.

a nonzero imaginary part solely due to the existence of a
critical point where the ground state becomes degenerate,
as required by P7T symmetry. Secondly, the development of
ferromagnetic ordering in the ground state past the Yang-Lee
singularity guarantees that the ground state will eventually
have the largest Im(E). An observation of Hamiltonian (2)
yields Im(E) o L for an eigenstate, where i1 = 1 Y,(07)
is the average magnetization of this eigenstate [39]. One thus
expects that the ferromagnetically ordered ground state has
the largest magnetization and hence its Im(E£) must dominate
over states near the middle of the spectrum in the thermody-
namic limit. Therefore, although the long-time steady state by
itself is blind to the critical point, the very existence of which
in fact triggers a subsequent level crossing, when the steady
state switches character from a highly entangled state in the
middle of the spectrum to an ordered ground state with low
entanglement.

To further show that the first-order entanglement transition
happens at a finite distance past the critical point in the ther-
modynamic limit, we employ a finite-size scaling analysis of
the onset of Im(F) in the vicinity of the critical point. Since
the Yang-Lee critical point has a dynamical critical exponent
z = 1, it is natural to expect that the (imaginary) energy den-
sity m o« Im(E)/L should satisfy the following scaling form:

d+2-n

f?l = L_zf;‘n((hz — hYL)L 2 )a hz > hYL9 (5)

where f7 is a universal scaling function with f;(0) = 0, and
n is the anomalous dimension. In order to have a sensible
scaling form in the thermodynamic limit, the scaling func-

tion must satisfy fz(x) ~ XTT as x — 00, yielding m ~
(h, — hYL)#f" in the thermodynamic limit. For the (1+1)D
Yang-Lee singularity that we focus on here, d = 2, and the
corresponding nonunitary CFT data give n = —4/5 [31,35].
The scaling form thus becomes mL? = f5((h, — hyy)L'?/3).
This relation is demonstrated perfectly in Fig. 3(b). We thus
obtain the following universal scaling form of 7 of the ground
state near the Yang-Lee singularity in the thermodynamic
limit (with A > 0):

i~ AMh, — hyr)'®, by > hyp. ©6)

Equaiton (6) implies that m continuously increases from zero
in the thermodynamic limit, and hence the first-order entan-
glement transition must happen at a finite distance past the
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critical point when 1 of the ground state supersedes that of the
previously dominating eigenstate. If one instead starts from
the ferromagnetic phase of Hamiltonian (2), this entanglement
transition is absent. Since the ground state is twofold degen-
erate to begin with, an infinitesimal 4, will immediately drive
the steady state to an area-law phase.

We remark that the mechanism underlying the entan-
glement transition as being triggered by a critical point is
different from that in recently studied non-Hermitian systems
where a critical point is absent [26]. In the Supplemental
Material, we show that the ground state of the model studied
therein remains nondegenerate with real energy at all times,
due to the absence of a quantum phase transition [35]. There-
fore, a level crossing is not guaranteed, and the entanglement
entropy of the steady state evolves continuously once the
spectrum becomes complex.

Forced-measurement induced entanglement transition. It is
useful to connect the time evolution under the non-Hermitian
Hamiltonian (2) to a system undergoing repeated weak mea-
surements and post-selections. Consider the following circuit.
In each time step of duration t, the circuit consists of a uni-
tary time evolution U = e~ "7 with Hy = — Z,'L=1 (Jofoi,, +
Jrofof, +To}), followed by weak measurements corre-

i+
sponding to the following set of Kraus operators:

MP=1-(1-/1-yDI, MY =y, )
where I1; = %(Uf + 1) is a projector to the spin-up state at
site i. If the post-selection is conditioned on Méi), the time
evolution with My = ®I.L=1Mé’),

(MoU)N %)
(MUY 0} 1|

in the limit yt « 1, is then precisely generated by the non-
Hermitian Hamiltonian (2) with h, =y /4 and h, = 0. In
general, one can rotate the spin polarization direction in
the y-z plane along which measurements are performed so
as to realize Hamiltonian (2) with arbitrary &, and h.. The
entanglement transition in this context is also known as a
forced-measurement-induced phase transition [40]. Namely,
when the measurement rate is finite but smaller than a
threshold y < ygg, the hybrid circuit is able to evolve an
unentangled initial state to a final state with volume-law
entanglement; whereas when the measurement rate is large
Yy > YeE, the time-evolved state remains area-law entangled.
We simulate the time evolution (8) for system size up to
L = 20 using Krylov space time evolution method [41], and
compute the entanglement entropy for different measurement
rates, as shown in Fig. 4. We indeed find a similar entan-
glement transition in the steady state from a volume-law to
an area-law scaling, as the measurement rate increases [35].
Such a forced-measurement-induced entanglement transition
can now be elegantly accounted for by a Yang-Lee edge
singularity triggered level crossing in the eigenspectrum of
the corresponding non-Hermitian Hamiltonian [35]. Since this
transition is first order, it is distinct from the continuous tran-
sitions driven by weak measurements where there is intrinsic
randomness in the outcomes [7].

Spin-1 Blume-Capel model. To demonstrate that this mech-
anism for entanglement transition extends beyond the simple
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FIG. 5. (a) Imaginary part of the eigenvalues for the ground state
and eigenstate with the largest Im(E') of Hamiltonian (9). (b) En-
tanglement entropy of the same sets of states as in (a). We choose
o =0.2, B = 1.8, and system size L = 6 with periodic boundary
condition.

Hamiltonian (2), we now show another quantum spin chain
realization of the Yang-Lee edge singularity, where the crit-
ical point also triggers a subsequent entanglement transition.
Consider the quantum spin-1 Blume-Capel model described
by the Hamiltonian

H = Z [(S7)° + BS} — 8257, — ihS?], 9)

where §7 are 3 x 3 spin-1 matrices. This model has a rich

phase diagram, as shown in Ref. [42]. In the absence of an
imaginary field # = 0, Hamiltonian (9) has an ordered phase
with broken Z, symmetry and a disordered phase separated
by a single critical curve starting at « = 1 and 8 =0, and
moving towards smaller values of « upon increasing §. In
the disordered phase, further turning on the imaginary field A
drives a continuous transition with ¢ = —22/5 corresponding
to the Yang-Lee universality class.

In Fig. 5(a), we plot the imaginary part of the eigenvalues
for the ground state and eigenstate with the largest Im(E)
of Hamiltonian (9) as a function of A. Similar to Hamilto-
nian (2), here we also find a level crossing slightly past the
Yang-Lee singularity, after which the ground state becomes
the one with the largest Im(E'). We thus expect that the steady
state entanglement entropy will also exhibit a discontinuous
jump from a volume-law scaling to an area-law scaling, as
is confirmed numerically in Fig. 5(b). Since the ground state
develops a large magnetization (S*) after transitioning to the
ordered phase, we argue that the imaginary part of the ground
state energy, which is proportional to (S*)L, must dominate
over all other eigenstates. Therefore, this level crossing, and
hence the first-order entanglement transition, persists in the
thermodynamic limit.

So far, we have been focusing on non-Hermitian Hamil-
tonians with P77 symmetry as a cleanest exemplification of
our general idea. However, we remark that P77 symmetry is
not a necessary condition for the entanglement transition to
happen, as long as the system harbors a critical point. In the
Supplemental Material, we give an example of the quantum
three-state Potts model with an imaginary field, which does
not have P77 symmetry but nevertheless possesses the Yang-
Lee edge singularity [35]. We find that the same story holds
in this case as well.

Concluding remarks. In this work, we demonstrate a new
mechanism where a class of non-Hermitian Hamiltonians
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realizing the Yang-Lee edge singularity further triggers a first-
order entanglement transition in the long-time steady state.
This entanglement phase transition can also be understood in
terms of the purification dynamics [10,11,35]. Notice that the
purification rate is determined by the gap between the largest
and second largest Im(E). In the area-law phase, the entropy
of an initially mixed density matrix decays at a finite constant
rate and the purification time scales as log L. In contrast, in the
volume-law phase, the purification time is much longer, pre-
sumably exponential in the system size. The mechanism for
entanglement transitions uncovered in this work also provides
new insight on nonunitary dynamics from the perspective of
quantum trajectories. If post-selections are removed or some
randomness is introduced in our model, we expect that this
first-order transition will be rounded to a continuous one
[43,44]. We leave a detailed study on this for future work.
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