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Interaction effects in graphene in a weak magnetic field
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A weak perpendicular magnetic field, B, breaks the chiral symmetry of each valley in the electron spectrum
of graphene, preserving the overall chiral symmetry in the Brillouin zone. We explore the consequences of
this symmetry breaking for the interaction effects in graphene. In particular, we demonstrate that the electron-
electron interaction lifetime acquires an anomalous B dependence. Also, the ballistic zero-bias anomaly, δν(ω),
where ω is the energy measured from the Fermi level, emerges at a weak B and has the form δν(B) ∼ B2/ω2.
Temperature dependence of the magnetic-field corrections to the thermodynamic characteristics of graphene is
also anomalous. We discuss experimental manifestations of the effects predicted. The microscopic origin of the
B-field sensitivity is an extra phase acquired by the electron wave function resulting from the chirality-induced
pseudospin precession.
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Introduction. Electron spectrum in graphene possesses a
chiral (pseudospin) structure [1,2]. Two pseudospin projec-
tions are identified with two points, K and K ′, of the Brillouin
zone near which the spectrum is characterized by a massless
Dirac dispersion. Numerous consequences of the Dirac spec-
trum of graphene for the disorder and interaction effects were
established (see, e.g., Refs. [3–20]).

One distinctive feature of the graphene band structure is the
absence of backscattering from the impurities. This feature is
a consequence of orthogonality of the spinors corresponding
to the wave vectors k and −k. In turn, the absence of backscat-
tering leads to the suppression of the oscillations of electron
density (Friedel oscillations [21]) created by an impurity in
graphene [22,23]. In the ballistic regime [24–27], electron
scattering from individual impurities dressed by the Friedel
oscillations is responsible for a zero-bias anomaly ∝ ln ω in
conventional two-dimensional (2D) electron gas. Here ω is
the energy measured from the Fermi level and the condition
ωτ � 1, where τ is the elastic scattering time, is implied.
Fast decay of the Friedel oscillations suggests that zero-bias
anomaly in graphene is absent [23,28]. A more detailed study
[29] indicated that it is the Hartree correction which is absent
in graphene, while the Fock correction, originating from the
forward scattering, is still present.

In the absence of impurities, electron-electron interactions
in 2D electron gas cause nonanalytic corrections [30–33]
to the self-energy, �(ω). At low temperatures, T � ω,
the imaginary part of self-energy has the form τee(ω)−1 ∼
(ω2/EF ) ln(EF /ω), where EF is the Fermi energy. Corre-
spondingly, the real part of self-energy behaves as Re�(ω) ∼
ω2sgn(ω). At finite T , interactions cause a correction to the
specific heat [34,35] δC(T ) ∝ T 2. Microscopically, the above

*kewang@umass.edu
†tsedrakyan@umass.edu

corrections emerge in the random-phase approximation. Their
derivation is so general that it is natural to expect that, in
doped graphene, the interaction corrections have the same
Fermi-liquid form [36].

In the present Letter, we identify the interaction effects
specific to graphene. These effects emerge in the presence of
a weak magnetic field. Their origin is the field-induced lifting
of chiral symmetry in K and K ′ valleys of graphene while
preserving the overall symmetry. To capture these effects, one
should go beyond the random-phase approximation.

With regard to ballistic zero-bias anomaly, lifting of the
chiral symmetry in the field, B, gives rise to the contribution
∝B2/ω2, which can be even stronger than the zero-field con-
tribution [29]. A formal difference between the calculations of
the ballistic zero-bias anomaly in electron gas with parabolic
spectrum and in graphene is that the Green’s functions, which
enter into the calculation, have a matrix structure in graphene.
Without this matrix structure, the B-sensitive contributions to
the tunnel conductance cancel out.

A natural energy scale imposed by the field, B, in graphene
is ω0 = vF /RL, where RL ∝ B−1 is the Larmor radius. Quan-
tization of the energy levels can be neglected for ω � ω0. We
show that the B-dependent correction to the thermodynamic
characteristics of the clean graphene can be conveniently
expressed in terms of ω0. Namely, the corrections to the imag-
inary and real parts of self-energy behave as Im[�(ω, B) −
�(ω, 0)] ∼ ω2

0E−1
F ln(ω/T ) and Re[�(ω, B) − �(ω, 0)] ∼

ω2
0E−1

F sgn(ω), respectively. On the basis of these results we
draw the consequences for observables. Namely, we show that
the B-dependent correction to the specific heat is temperature
independent in a wide temperature interval.

Electrons in a weak magnetic field. The Hamiltonian of
monolayer graphene which incorporates the B field in the
Landau gauge reads

ĤB = vF [(px − eBy)�̂x + py�̂y]. (1)
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Here vF is the Fermi velocity. Here r̂ = r/r, � = (�x, �y)
and �x = τ̂z ⊗ σ̂x, �y = τ̂z ⊗ σ̂y. The Pauli matrices σ̂i act in
the space of A and B sublattices of the honeycomb lattice and
τ̂ is the Pauli matrix distinguishing between two Dirac points
in graphene. Diagonalizing the Hamiltonian, one finds that
the linear spectrum is transformed into a nonuniform ladder
of spectrum,

√
2nvF /l . Here n � 0 and l = √

h̄/eB is the
magnetic length. Under a weak field, the spectrum around the
Fermi level, EF , can be linearized as

√
2nvF /l 	 EF + (n −

NF )vF (kF l2)−1, where NF = (kF l )2/2. This yields the expres-
sion for the effective cyclotron frequency ω0 = vF (kF l2)−1.

The Feynman propagator of free Dirac electrons is known
to possess a nontrivial matrix structure. Namely, in the ab-
sence of magnetic field, the propagator in the real space is
given by [29]

Gω(r) = kF

2vF

√
1

2kF r
ei sgn(ω)�0(r)M0, (2)

where the phase �0(r) = kF r + ωr/vF + π/4 and the ma-
trix M0 is given by M0 = [sgn(ω) + i(2kF r)−1]r̂ · � + Î . Here
r̂ = r/r, � = (�x, �y), and Î is the identity matrix. This
matrix structure reflects the chiral symmetry of electrons: fast
decay of the Friedel oscillations [23] and the absence of a
zero-bias anomaly [29] are the consequences of this matrix
form.

The presence of magnetic field modifies the gauge-
invariant part of the electron propagator by breaking the chiral
symmetry of the electrons in the vicinity of the Dirac point.

Field-induced modification of Eq. (2) amounts to the
changes of �0(r) and M0(r). The phase �0 becomes � =
�0 − r3/(24kF l4), which is due to the curving of the semi-
classical trajectory [37–39] in a weak field. In graphene,
due to the matrix structure of the Hamiltonian, the identity
matrix Î in M0 transforms into a new four-dimensional field-
dependent matrix. This matrix contains �̂z, and thus, does not
commute with M0. This is because M0 contains the matrices
�̂x,y. Here �̂z = σ̂z ⊗ τ̂0, where τ0 is a 2 × 2 unit matrix.

Specific form of the matrix, M, is the following:

M[r, sgn(ω)] 	 M0 − i sgn(ω)ϕ(r)�̂z − ϕ(r)2

2
Î, (3)

where ϕ(r) = ω0r/(2vF ) is half of the angle corresponding to
the arc of the Larmor circle with length r. Equation (3) applies
in the domain k−1

F < r < kF l2 = RL.
The pseudospin structure of the term ∼ϕ(r)�̂z in the prop-

agator, while preserving the chiral symmetry of the system
[1,40], reflects the field-induced breaking thereof around a
single Dirac cone (see Fig. 1 for a graphical representation
of this effect).

In general, the ballistic correction to the density of states
is given by two diagrams shown in Figs. 2(a) and 2(b),
which provide comparable contributions. However, as shown
in Ref. [29], in graphene the Fock diagram dominates over
the Hartree diagram in the absence of magnetic field. This
is a consequence of the suppressed backscattering. We show
[42] that the weak magnetic field does not change the picture,
namely, the Fock diagram is still dominating. We will thus fo-
cus on the sensitivity of the Fock diagram to a weak magnetic
field.

Dirac cones

KK’

Chiral transf.

FIG. 1. The left panel depicts the Brillouin zone of graphene.
Around the K and K ′ valleys, the spectrum is Dirac-like, supporting
low-energy Hamiltonians ĤK and ĤK ′ that are connected via a chiral
transformation, HK = σ̂zHK ′ σ̂z. The right panel depicts the vector
field vK (r) (for definition, see Ref. [41]), at K valley. The dark
(black) vectors field represents the vK (r) at zero magnetic field. The
gray (red) vector field is the vK (r) at a weak but nonzero magnetic
field. Here we take ω0/(2EF ) = 0.07. The figure shows the chiral
symmetry of the state at B = 0. At finite B, the chiral symmetry in
one valley is broken. In the leading approximation, the angle between
two vector fields is proportional to ϕ(r). Importantly, the chiral
transformation leads to the relation vK ′ (r) = vK (−r), manifesting
the chiral symmetry of the whole system.

We start with a matrix generalization of the analytical ex-
pressions for the Fock diagram, Fig. 2(a). For this purpose, we
consider a nonmagnetic impurity causing a perturbation ûδ(r)
and the screened interaction potential, U (r), with a radius

FIG. 2. Diagrams for the corrections to the Green’s function.
Solid lines represent the Feynman propagators. Wavy lines represent
the electron-electron interactions. (a) represents the Fock diagram
involving a single-impurity scattering. It yields a leading contribu-
tion to the B2 ballistic zero-bias anomaly. (b) represents a Hartree
diagram involving a single-impurity scattering. It is insensitive to a
weak magnetic field. (c) and (d) represent, respectively, the Fock and
Hartree diagrams for the B2 correction to the electron lifetime. Unlike
the Hartee diagram, which is the first diagram of the RPA sequence,
diagram (c) yields an anomalous temperature dependence.
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∼k−1
F . The corresponding expression reads

δGω(r, r) =
∫

dr1dr2Gω(r, r1)HF(r1, r2)Gω(r2, 0)

× ûGω(0, r) + (û ↔ HF). (4)

Here Gω is the free Feynman propagator of the Dirac electrons
between the position of impurity r = 0 and the point r, while
HF stands for nonlocal Fock potential

HF = i

2π

∫
d� Gω+�(r1, 0)ûGω+�(0, r2)U (r1 − r2). (5)

The interaction correction to the local density of states,
δνω(r), is related to the retarded Green’s function as δνω(r) =
− 2

π
Tr Im δGω(r, r).

The structure of Eqs. (4) and (5) suggests that δνω(r)
contains the product of 4 × 4 matrices. In the semiclassical
limit, all trajectories r → r1 → r2 → 0 → r contributing to
δG are close to a straight line. With screened Coulomb poten-
tial being pointlike, the Fock diagram involves the following
product of the M matrices:

F ≡ tr[ûM(r,+)M(−r,−)ûM(r,−)M(−r,+)]. (6)

For a qualitative discussion, let us choose û in the form of a
scalar, u0 Î . Then the leading field-dependent term emerges as
a coefficient in front of the product of the projection operators
tr[�̂z�̂x/y�̂z�̂x/y]. Since the term �̂z appears in the matrix M
in combination with ϕ(r), we have F ∝ ϕ2(r). With the help
of the commutation relations for �̂x, �̂y, and �̂z, it is easy to
check that tr[�̂z�̂x/y�̂z�̂x/y] = −tr[I], i.e., it is nonzero. An
estimate for F is ∼u2

0ϕ
2(r) ∼ u2

0ω
2
0r2/v2

F . With characteristic
r being vF /ω, this estimate translates into u2

0ω
2
0/ω

2. Below we
examine a number of observables having the structure similar
to Eq. (4).

Emerging zero-bias anomaly. For the scalar impurity scat-
tering, û = u0 Î , there is no zero-bias anomaly in graphene
[29]. To convert the above estimate for F into the B-dependent
correction to the density of states, we perform the spatial aver-
aging of Eq. (4), which generates the impurity concentration,
ni. Final result reads

δνω(B) − δνω(0)

νF
	 λ0niu2

0

8πv2
F

ω2
0

ω2
, (7)

where λ0 = kFU0/(2πvF ) stands for dimensionless interac-
tion parameter, U0 is the interaction potential with zero
momentum transfer, and νF = kF /(πvF ). The zero-bias
anomaly is shown in Fig. 3 for various field strengths.

The most general form of the pointlike perturbation,
û, consistent with time-reversal symmetry is û = u0 Î +∑

s,l=x,y,z usl�sl . Here x,y = τ̂x,y ⊗ σ̂z, z = τ̂z ⊗ σ̂0. The
remaining nine types of the disorder can be incorporated into
Eq. (7) by replacing u2

0 by t = u2
0 − ∑

l u2
zl .

The result Eq. (7) was obtained under the assumptions
ωτ � 1 and ω � ω0 which ensure the ballistic regime and
the irrelevance of the Landau quantization, respectively.

Emergence of a zero-bias anomaly in graphene in the pres-
ence of magnetic field manifests itself in the local density of
states (DOS), δνω(r, B) = −2π−1tr[Im GR(r, r, ω)]. Evalua-

FIG. 3. Plot (a) and the inset illustrate the energy dependence
of the interaction correction to the density of states. Three curves
correspond to the three values of the dimensionless magnetic
field α = (kF l )−2. Plot (a) is for the scalar impurity with mag-
nitude û = u0 Î . The correction, δν, is measured in units of G =
νF ni(u0/2vF )2λ0/2π . Note that for α = 0 the zero-bias anomaly
is absent, so that δν is a smooth function of energy, ω, mea-
sured from the Fermi level. In the low-energy regime, ω/EF <

√
α,

the B-dependent anomalous term in δν dominates and behaves as
∼α2E 2

F /ω2. The inset of plot (a) is for the impurity-induced pertur-
bation. For this perturbation, zero-bias anomaly exists even in the
absence of magnetic field. The magnetic contribution yields only a
small correction to the logarithmic δν.

tion of Eq. (4) yields

δνω(r, B) − δνω(r, 0)

νF
	 λ0tω2

0(
2πv2

F

)2 cos
ωr

vF
. (8)

Note that, unlike the B = 0 case [29], the interaction cor-
rection Eq. (8) is isotropic. The most dramatic difference
between Eq. (8) and the B = 0 result is that the zero-field
correction falls off as 1/r2, while the amplitude of oscillations
in Eq. (8) does not depend on r. Naturally, the falloff starts
from the distances r � RL = vF /ω0, where Eq. (8) does not
apply. Technically, the extra factor r2 comes from ϕ2(r) in the
factor F . In relation to the local DOS, we would like to point
out that it can be measured experimentally using the scanning
tunneling microscopy [43,44].

Quasiparticle lifetime. Energy dependence of electron-
electron scattering rate, τ−1

ee , in doped graphene is
ω2 ln(EF /ω), as in a regular Fermi liquid [36]. This
dependence emerges already in the lowest order of the
perturbation theory. A corresponding diagram is illustrated in
Fig. 2. Subsequent summation of the higher-order diagrams
within the random-phase approximation (RPA) modifies
the prefactor in τ−1

ee . Equally, the calculations leading to
nonanalytic interaction corrections [33] apply to the doped
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graphene. With regard to the magnetic field dependence of
τ−1

ee , it appears that, similarly to the zero-bias anomaly, the
leading B dependence originates from the Fock diagram on
Fig. 2(c), which is beyond the RPA.

The result for the correction, δτ−1
ee (B), depends on the ratio

ω/T . In the low-T limit, ω � T , this correction reads

δτ−1
ee (B) 	 λ0λ2kF ω2

0

2πEF
ln

( |ω|
�

)
, |ω| � T, (9)

where λ2kF = kFU2kF /(2πvF ), � = max{T, τ−1
ee }. The rela-

tive magnitude of the correction is essentially (ω0/ω)2 and,
similarly to the zero-bias anomaly, it originates from the mag-
netic phase �̂zϕ(r) of the propagator in Feynman diagrams.

In the high-temperature limit, T � ω, evaluation of the B-
dependent correction to the diagram Fig. 2(c) yields

δτ−1
ee (B) 	 − ln(2)

λ0λ2kF ω2
0

2πEF
, T � |ω|. (10)

Note that the correction is T independent, but it exists on the
background of the T 2 main term.

Effective velocity and specific heat. In the doped graphene,
as in 2D electron gas, the effective velocity of quasiparticles,
v∗, and specific heat, Cv , are expected to acquire interaction
corrections [33,36,42]. These corrections scale as δv∗ ∝ T
and δCv ∝ T 2, respectively. Both anomalies originate from
the nonanalytic corrections to the quasiparticle lifetime [33].
Here we trace how the ω2

0 corrections specific for graphene
manifest themselves in v∗ and Cv . The question of interest
is the temperature dependence of these corrections. We found
that the correction to v∗ behaves as ω2

0/T , while the correction
to Cv is ∝ω2

0/v
2
F and is T independent. Both originate from ω2

0
correction to the lifetime given by Eqs. (9) and (10).

Another ingredient required to find the B-dependent cor-
rections to v∗ and Cv is the electron spectrum renormalized by
the interactions. The corresponding ω2

0 correction comes from
the Fock diagram Fig. 2(c):

Re[�(ω, B) − �(ω, 0)]

	 − λ0λ2kF ω2
0

16EF

{
sgn(ω), |ω| � T

ω/(2T ), |ω| � T .
(11)

The above correction can, in principle, be measured using
the angle-resolved photoemission spectroscopy [45] from the
analysis of the constant energy maps [46] at different values
of B.

In the limit T � ω, the renormalized spectrum Eq. (11)
leads to the following correction to the effective velocity of
quasiparticles v = vF /(1 − ∂ωRe�|ω=0) [42]:

v(B) − v(0)

vF
	 −λ0λ2kF ω2

0

32E2
F

EF

T
. (12)

Note that v(0) contains a nonmagnetic interaction correction
which is linear in T . On the contrary, the B-dependent correc-
tion is ∝T −1. This feature is illustrated in Fig. 4 for several
values of B. Since the thermodynamical potential, �, involves
the summation over energies of quasiparticles near the Fermi
level, the energy correction in Eq. (11) has nontrivial implica-
tions for thermodynamics. Here we consider the specific heat
per unit volume, Cv = V −1∂�/∂T , where V is the volume of

FIG. 4. In the plot the temperature-dependent interaction correc-
tion to the effective velocity, δT v∗ = v∗

T (B) − v∗
T =0(B), is shown. The

inset shows the B-dependent component of the effective velocity,
δT v∗(B) − δT v∗(0). This part behaves as an inverse temperature,
∼α2EF /T .

system. The result for specific heat [42] in the limit T � ω0

is the following:

δCv (B) − δCv (0) 	 −λ0λ2kF ω2
0

8πv2
F

, (13)

where δCv (B) is the interaction correction to the specific
heat. Note that δCv (0) contains the conventional T 2 term,
specific for 2D Fermi liquid. We find that the field-dependent
correction to δCv is a T independent. In the absence of
electron-phonon interactions, the field-dependent correction
exists in a parametrically large interval of temperatures, ω0 <

T < EF . Equation (13) can be verified experimentally by
measuring the specific heat of graphene in a comprehensive
Raman optothermal method [47].

Conclusion. Our main finding is that, for two-dimensional
Dirac electrons, application of a weak magnetic field en-
hances significantly the many-body effects. This is unlike
the conventional 2D electron gas. The reason for this is the
pseudospin-dependent magnetic correction in Dirac electron
propagators, ∼̂�zϕ(r). For many-body effects to unfold, the
energy, ω, measured from the Fermi level should exceed
ω0 = vF (kF l2)−1, which is the inter-Landau-level distance at
the Fermi level. We have only considered the low-temperature
properties of interacting electrons in the doped graphene, so
that the interaction with phonons [48,49] can be neglected.

Our predictions for observables given by Eqs. (9)–(13) and
by Eq. (7) all emerge as a result of evaluation of the Fock
diagrams illustrated in Figs. 2(a) and 2(c). It is nontrivial that,
while these diagrams are not leading and even do not belong to
the RPA sequence, they are responsible for the sensitivity to a
weak magnetic field. Importantly, the higher-order diagrams,
while leading to the renormalization of the interaction vertex,
do not modify the predicted ω, T dependencies.

Another origin of the B dependence of the interaction
effects is either spin via the Zeeman splitting coming from
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spin or the orbital effect via the curving of the electron
trajectories in magnetic field. We have checked [42] that
these two mechanisms lead to the B-dependent corrections
which are subleading compared to those originating from the
pseudospin-dependent phase of Dirac propagators.

Finally, we emphasize that our results apply for the
doped graphene, where the Fermi energy is far away

from the neutrality. The condition ω � ω0 in the present
Letter is automatically violated at neutrality. The question
about ν = 0 Landau level is interesting and remains open
[50,51].
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