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Unconventional superconductivity mediated solely by isotropic electron-phonon interaction
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Unconventional superconductivity is commonly linked to electronic pairing mechanisms, since it is believed
that the conventional electron-phonon interaction (EPI) cannot cause sign-changing superconducting gap sym-
metries. Here, we show that this common understanding needs to be revised when one considers a more elaborate
theory of electron-phonon superconductivity beyond standard approximations. We self-consistently solve the
full-bandwidth, anisotropic Eliashberg equations including vertex corrections beyond Migdal’s approximation
assuming the usual isotropic EPI for cuprate, Fe-based, and heavy-fermion superconductors with nested Fermi
surfaces. In the case of the high-Tc cuprates we find a d-wave order parameter, as well as a nematic state upon
increased doping. For Fe-based superconductors, we obtain s± gap symmetry, while for heavy-fermion CeCoIn5

we find unconventional d-wave pairing. These results provide a proof of concept that EPI cannot be excluded as
a mediator of unconventional and of high-Tc superconductivity.
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Superconductors with unconventional—that is, non-s-
wave—gap symmetries continue to attract great interest,
because of their unique properties [1,2] and because they
are closely linked to the as yet unexplained phenomenon of
high-Tc superconductivity [3,4]. Prominent material examples
are the high-Tc cuprates with d-wave and the iron-based su-
perconductors with predominantly s± gap symmetry [5,6].
Members of these families share several common fea-
tures such as, e.g., quasi-two-dimensional (2D) electronic
band structures with good nesting properties, proximity to
magnetic ordering, and strongly coupled superconductivity
beyond the Bardeen-Cooper-Schrieffer (BCS) picture [7].
Resonances observed in inelastic neutron scattering experi-
ments suggest the presence of spin fluctuations in the pairing
mechanism [5,8,9] but large isotope effects pointing at the
involvement of phonons have also been measured [10–13].
These phonons have characteristic energies of a similar order
of magnitude as those of the relevant spin fluctuations [14].
In this setting, the key for pinpointing the driving pairing
mechanism has been the symmetry of the superconducting
gap itself [5,9].

An unconventional gap is commonly considered as the
signature of a repulsive, solely electronic mechanism that can
be pairing if the electrons allow a sign change in their wave
function. The most prominent example is the antiferromag-
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netic spin-fluctuation mechanism where the wave vector of
the dominant magnon excitations, which is associated with the
nesting properties of the underlying electronic band structure
of the material, matches the sign change of the supercon-
ducting gap [15]. Many superconductors comply with this
picture, including cuprate, iron-based, and heavy-fermion ma-
terials [9].

Conversely, in the original theory of BCS [16] and its
refinement by Eliashberg to include retardation effects [17],
phonons mediate an effective attractive interaction between
electrons which gives rise to a sign-preserving s-wave gap.
Attempts to reconcile the phonon mechanism with uncon-
ventional gap symmetries do exist. For example, it has been
demonstrated that a small-q-peaked electron-phonon inter-
action (EPI) can give rise to the unconventional gap of
the cuprates and the Fe pnictides in the presence of en-
hanced Coulomb repulsion between electrons [18,19]. Despite
recent observations of such a small-q EPI in monolayer
FeSe/SrTiO3 [20], its existence in bulk superconductors is yet
to be confirmed.

Notably, Eliashberg’s theory for boson-mediated supercon-
ductivity rests on the premise of adiabaticity, i.e., the energy
scale of electrons εF is much larger than that of the relevant
bosons �. In the case of phonons, Migdal showed that when
the so-called nonadiabatic ratio α = �/εF is small (∼10−2),
vertex corrections to the electron self-energy due to the
EPI are negligible [21]. However, for many unconventional
superconductors α ∼ 0.1–0.3 [7,22] and thus vertex correc-
tions cannot be safely neglected. Including these requires
solving the self-consistent Nambu-Dyson equation with cross-
ing self-energy diagrams while retaining full frequency and
momentum dependence, a task that has only recently been
achieved [23]. Due to the numerical complexity of this prob-
lem, prior attempts adopted serious simplifications [24–27].

Here, we address the long-standing issue of phonon-
mediated unconventional superconductivity by performing
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direct numerical solutions of the full-bandwidth anisotropic
Eliashberg equations including the first vertex corrections
to the self-energy beyond Migdal’s approximation using
material specific input for three archetypal unconventional
superconducting systems, cuprates, iron pnictides, and heavy-
fermion CeCoIn5, that are known to exhibit quasi-two-
dimensional electronic structures as well as nested Fermi
surfaces (FSs). In all our calculations, we assume an optical
phonon mode that couples to electrons via a purely isotropic
EPI which is the only interaction in the system.

We start with describing our model where electrons
forming n energy bands with dispersions ξk,n couple to
Einstein phonons of frequency � via an isotropic and band-
independent EPI with coupling strength gq = g0, where q =
k − k′. We consider the following Nambu form of the vertex-
corrected electron self-energy for such a system,

�̂k,m = T
∑

k′,n,m′
g2

0Dm−m′ ρ̂3Ĝk′,n,m′ ρ̂3 �̂q,m,m′ , (1)

with Matsubara frequencies ωm = πT (2m + 1), m ∈ Z, at
temperature T . For brevity we employ here the notation
f (k, iωm) = fk,m for any function f . The vertex renormaliza-
tion function (hereafter denoted just the vertex function) is
given by

�̂q,m,m′ = 1 + T
∑

m′′
g2

0Dm′−m′′�̂q,m′′,m′′−m′+m, (2)

with

�̂q,m′′,m′′+l =
∑

k′′,n′,n′′
Ĝk′′,n′,m′′ ρ̂3Ĝk′′+q,n′′,m′′+l ρ̂3 (3)

and l = m − m′. Equation (1) includes an infinite series of
Feynman diagrams that constitute the lowest-order Migdal
self-energy and an infinite series of crossing diagrams that
constitute the first vertex correction beyond Migdal’s ap-
proximation [23,25]. Further details can be found in the
Supplemental Material (SM) [28]. In the above, Dm−m′ is the
phonon propagator, while the electron Green’s function in
Nambu space with a Pauli basis ρ̂i is given by

Ĝ−1
k,n,m =iωmZk,mρ̂0 − φk,mρ̂1 − [ξk,n + ζk,m]ρ̂3. (4)

Here, Zk,m, ζk,m, and φk,m describe, respectively, the mass
and chemical potential renormalization, and the supercon-
ducting order parameter. From Eqs. (1)–(4) we derive
a set of vertex-corrected, anisotropic, full-bandwidth, and
multiband Eliashberg equations for these three functions,
which are solved self-consistently without further approxima-
tion [23,28,29]. From the results we obtain the gap function
via �k,m = φk,m/Zk,m, and the gap edge �(k) ≈ �k,m=0.

We model the electron band structure of cuprate supercon-
ductors with the commonly employed tight-binding model,
ξk = βk − δk − μ, that includes nearest- and next-nearest-
neighbor hopping terms βk = t[cos kx + cos ky] and δk = C −
t ′ cos kx cos ky, respectively. Unless noted otherwise we set
the hopping energies t, t ′, parameter C, and chemical poten-
tial μ to (C, t, t ′, μ) = (0,−0.25, 0.1,−0.07) eV. We further
adopt g0 = 148 meV and choose a phonon frequency � =
50 meV that is motivated from angle-resolved photoemission
spectroscopy (ARPES) measurements on different cuprate

systems [14]. For Fe-based materials the scattering strength
and characteristic phonon frequency are chosen as g0 =
130 meV and � = 17 meV [30–32]. The respective electronic
energies are described by a two-band model with ξ

(±)
k = βk ±

δk − μ and parameters (C, t, t ′, μ) = (1/3, 1/6, 1/12, 0) eV.
In the case of CeCoIn5 we use the two-band tight-binding
model of Ref. [33] (which neglects several small FS pockets)
and choose � = 5 meV [34] and g0 = 4 meV. Qualitatively
similar results as presented here are also found for larger
frequencies and different g0 values (see SM [28]).

The resulting Fermi surfaces for our cuprate, Fe-based, and
CeCoIn5 systems are drawn with white lines in Figs. 1(a), 1(e)
and 1(i), respectively. The corresponding calculated noninter-
acting charge susceptibilities,

X (0)
q,0 =

∑

k,n,n′

nF (ξk,n) − nF (ξk+q,n′ )

ξk,n − ξk+q,n′
, (5)

with Fermi-Dirac functions nF (·), are shown in
Figs. 1(d), 1(h) and 1(l). As expected, these exhibit
pronounced peaks at wave vectors Q = (π, π ) for cuprate and
Fe-based systems, and Q ≈ (π/2, π/2) for CeCoIn5. These
pronounced peaks evidence directly the well-known good
nesting properties of these three quasi-2D systems. Note that
for CeCoIn5 there are several FS parts involved which causes
a broadening of the (π/2, π/2) peaks. In spin-fluctuation
theories for these systems, such susceptibilities provide the
necessary momentum-dependent repulsive interaction that
gives rise to unconventional �(k) symmetries (see Ref. [9]).
Here, we solve numerically the Eliashberg equations derived
from Eqs. (1)–(3) to determine the gap symmetry.

The main results of this Letter are shown in Figs. 1(a), 1(e)
and 1(i) where we plot our self-consistently calculated mo-
mentum dependence of the superconducting gap for each
of the three systems that we consider. Remarkably, as
shown in Fig. 1(a), for the cuprate case we find a clear
dx2−y2 gap with a Brillouin-zone (BZ) modulation that is
roughly proportional to cos kx − cos ky and a realistic am-
plitude maxk �(k) � 5.4 meV at T = 30 K. We note that
previously it was found that a dx2−y2 symmetry is possible
for a pure phononic Holstein model using a cluster dynam-
ical mean-field theory approximation [35]. For the Fe-based
system, shown in Fig. 1(e), we find the s± unconventional
gap with �(k) ∝ cos kx + cos ky and a realistic amplitude
maxk �(k) � 4.2 meV at T = 15 K. Lastly, for CeCoIn5,
shown in Fig. 1(i), we find a higher-harmonic dx2−y2 -gap
symmetry with �(k) ∝ cos 2kx − cos 2ky and maxk �(k) �
0.87 meV at T = 2 K which is also in reasonable agreement
with experiment [36].

Our calculations reveal that the strongly momentum-
dependent gap symmetries in these superconductors can be
obtained solely via isotropic EPI provided that vertex cor-
rections to the electron self-energy are taken into account.
Without vertex corrections, we obtain s-wave symmetry, com-
monly associated with isotropic EPI. A crucial ingredient for
this result is the fact that the vertex correction in Eq. (2)
is inherently momentum dependent regardless of the bare
EPI being momentum independent. To better understand this
point, we calculate the static vertex by plugging our self-
consistent results back into Eq. (2) and taking m = m′ = 0.
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FIG. 1. Self-consistently calculated unconventional superconductivity. (a), (e), (i) The unconventional superconducting gap calculated
by direct solution of the vertex-corrected Eliashberg equations. The Fermi surface is in each case drawn with white lines in the Brillouin
zone. Fermi-surface nesting is indicated by the red vector Q. (b), (f), (j) The self-consistently calculated vertex function, and (c), (g), (k),
the calculated bare vertex function for T > Tc. (d), (h), (l) The calculated bare charge susceptibility. The first row corresponds to results for
cuprates, where a dx2−y2 gap symmetry is obtained. The second row corresponds to Fe-based materials where an s± symmetry is found. The
third row corresponds to CeCoIn5 where we obtain a higher-harmonic dx2−y2 gap symmetry. The used phonon frequency �, nonadiabaticity
ratio α, and temperature T are given in the legend.

In the static case all channels share the same vertex which is
then a scalar given by

�q,0 = 1 + g2
0T

∑

m′′
Dm′′

1

2
Tr{�̂q,m′′ }. (6)

The calculated static vertices, shown in Figs. 1(b), 1(f)
and 1(j), have momentum structures that share similar charac-
teristics. �q,0 is strongly peaked and negative, i.e., repulsive,
for wave vectors that almost or perfectly coincide with the
nesting wave vectors that correspond to the susceptibility
peaks of Figs. 1(d), 1(h) and 1(l) and positive otherwise.
These large repulsive peaks allow pairing with a sign change
across the BZ, thus providing a mechanism for unconventional
superconductivity in a manner similar to spin fluctuations.
However, in contrast to the latter, where the small wave-vector
part of the repulsive interaction can interfere destructively
to pairing [37–39], in our case the EPI remains attractive
at smaller wave vectors and therefore can contribute to
the unconventional pairing. We therefore conclude that the
vertex-corrected EPI in all three prototypical examples is self-
consistently optimized so as to maximize the pairing. When
we start the procedure with an initial s-wave order parame-
ter, it changes during the self-consistent calculations to the
here-presented unconventional order parameters. Mathemat-

ically, this is possible because the self-consistent procedure
corresponds to minimizing the system’s free energy, and the
superconducting gap and vertex functions are allowed to mu-
tually influence each other during the self-consistent cycle.
Physically, this can be understood as the result of the formed
Cooper pairs dynamically renormalizing the EPI and vice
versa.

To take our analysis further, we draw a much more sim-
plified picture where we make a one-loop approximation to
Eq. (6) by using noninteracting Green’s functions, Ĝ(0)

k,n,m =
[iωm − ξk,nρ̂3]−1. The resulting bare static vertices �

(0)
q,0 calcu-

lated for our three cases are shown in Figs. 1(c), 1(g) and 1(k).
For cuprate and Fe-based systems, these are roughly similar to
their respective interacting vertices [see Figs. 1(b) and 1(f)].
However, for CeCoIn5, that has a more complex FS, the bare
vertex shown in Fig. 1(k) is positive everywhere in the BZ in
contrast to the respective self-consistent interacting vertex of
Fig. 1(j). This case presents a clear example where inclusion
of the back-reaction of the superconducting gap to the vertex
function is essential for finding the correct gap symmetry and
therefore for the occurrence of unconventional pairing. This
also implies that although the much-easier-to-calculate bare
vertex function may serve as an indicator of possible uncon-
ventional superconductivity due to the vertex-corrected EPI,
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FIG. 2. Self-consistently calculated nematic superconductivity.
(a) The calculated nematic superconducting gap �k,0 for a cuprate
Fermi surface (white dashed line) in the slightly hole-doped regime,
(C, t, t ′, μ) = (0,−1/4, 1/10, −0.11) eV. (b) The computed zero-
energy chemical potential renormalization, ζk,m=0.

it may nevertheless miss cases with more complex FSs, and
therefore, full self-consistent calculations are indispensable
for accurate predictions.

As can be seen in Fig. 1, apart from possible different signs,
the bare vertices are very similar to the respective bare suscep-
tibilities for each system. The results shown in Figs. 1(d), 1(h)
and 1(l) correspond to the noninteracting case X (0)

q,0. One can
observe that the second term on the right-hand side of Eq. (6)
is proportional to the charge susceptibility weightened by the
phonon propagator Dm. Since in our simple Einstein phonon
picture this weightening takes place only in frequency space,
it is responsible for making parts of the EPI repulsive and parts
of it attractive, while the overall momentum structure follows
that of the charge susceptibility.

To strengthen this argument further, we have also
computed the renormalized charge susceptibilities below
Tc. These can be calculated from Eq. (3) as Xq,0 =
(1/2)T

∑
m′′ Tr{�̂q,m′′ } and are given in the SM [28]. They

are very similar to the interacting vertex functions shown in
Fig. 1. Importantly, the renormalized charge susceptibilities
Xq,0 do not diverge and therefore an instability to a charge
density wave is not expected here.

Another interesting outcome of our theory for the cuprates
is the possibility to obtain self-consistently nematic supercon-
ductivity. The so-called nematic state, in which C4 rotational
symmetry is reduced to a C2 orthorhombic structure, occupies
a well-established region in the temperature-doping phase
diagrams of cuprate superconductors [40]. For convenience
of the calculations, we here use g0 = 170 meV, giving Tc ≈
140 K [41]. We also shift the dispersion towards hole dop-
ing by setting μ = −0.11 eV. The resulting FS is drawn in
Fig. 2 (white-dashed lines). The rest of the parameters are
unchanged. Solving the vertex-corrected Eliashberg equations
we observe a spontaneous change from C4 to C2 BZ symmetry
in all three functions �k,m=0, ζk,m=0, and Zk,m=0. The first two
are shown in Figs. 2(a) and 2(b), respectively.

The superconducting gap of Fig. 2(a) is an admixture of
dx2−y2 + s symmetries that lowers C4 symmetry to C2 and is
therefore nematic. Inspection of the chemical potential renor-
malization in Fig. 2(b) similarly reveals a twofold symmetric
energy band renormalization which we can identify as an
induced Pomeranchuk order parameter [42]. Nematicity ap-
pears only at low energies, so we always obtain anisotropic
s-wave symmetry solutions for m � 1. It disappears for

T > Tc where we find a restored C4 symmetry in ζk,0 and Zk,0.
These results indicate that the vertex-corrected renormalized
EPI may very well be simultaneously pairing even in seem-
ingly competing pairing channels, such as those of s-wave and
higher angular momentum, which, depending on the under-
lying band structure, may lead to nematic superconductivity
being the energetically favored solution.

Apart from the unconventional gap symmetry, another
frequent argument against the relevance of the EPI in un-
conventional high-Tc superconductors is a seemingly small
coupling constant [43]. However, full-bandwidth Eliashberg
theory generally includes Cooper pairing of states away
from the Fermi level which may contribute to the gap size
and Tc [44]. A similar behavior can be expected in vertex-
corrected full-bandwidth theory [23]. Focusing on the cuprate
case, we carried out the computationally heavy task of solv-
ing for the complete self-consistent temperature dependence
of our vertex-corrected Eliashberg equations. Within our
chosen parameter set, we find a realistic Tc ≈ 52 K. We
furthermore estimated that for T > Tc, the effective electron-
phonon coupling is λm ≈ 0.34 (see SM [28]). Therefore,
seemingly weak-coupling values are nonetheless compatible
with phonon-mediated high-Tc unconventional superconduc-
tivity.

We note that our findings do not exclude that spin fluctua-
tions play a role. They can, e.g., be important for the formation
of a quantum critical point [9]. They can also contribute
to Cooper pairing, since both EPI and spin fluctuations can
lead to a pairing symmetry derived from the FS nesting, and
hence, both mechanisms can act cooperatively. To establish
unambiguously the relative size of their contributions, self-
consistent simulations within multichannel vertex-corrected
Eliashberg theory will be required to treat both bosonic me-
diators on equal footing. We further comment that, with α ≈
0.1–0.2, we are in the weakly nonadiabatic regime. There-
fore, we do not expect that higher-order vertex corrections
will influence our result much. Lastly, we mention that we
have neglected the influence of the Coulomb repulsion, which
does not affect our results, as the direct electron-electron
Coulomb repulsion cancels out for an unconventional order
parameter.

Our vertex-corrected Eliashberg-theory calculations pro-
vide a proof of principle that isotropic EPI can give rise
to unconventional superconductivity. This phonon-mediated
unconventional superconductivity relies on Fermi-surface
nesting and moderate nonadiabaticity that are present in many
unconventional superconductors [7,9]. The latter gives rise to
a repulsive EPI which is antipairing in the s-wave channel [23]
while the former makes this interaction peak near the nesting
wave vector(s) and thus favorable for unconventional pairing
in a similar fashion as purely electronic mechanisms such as
spin fluctuations. Our results show that the conventional EPI
can mediate unconventional superconductivity and highlight
the possibility that electron-phonon coupling plays a sub-
stantial role in any superconductor with unconventional gap
symmetry including the high-Tcs.
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