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We theoretically describe a mechanism of low-field linear magnetoconductivity in helical magnetic metals.
Two ingredients for the mechanism in three-dimensional metals are identified to be the spin-orbit coupling
and momentum-dependent ferromagnetic exchange interaction. We propose and study a number of minimal
theoretical models which have linear magnetoconductivity and discuss their implications for recent experiments.
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Onsager’s relations [1,2] dictate that the low-field electric
conductivity of the system in the applied magnetic field must
be even under the reversal of the magnetic field when the time-
reversal symmetry is not violated in the system. However,
when the time-reversal symmetry is broken in the system by,
for example, spontaneous ferromagnetic order, the Onsager
relations allow for the low-field linear magnetoconductivity
in the system.

There is a number of recent experiments [3–5] which
observe linear magnetoconductivity in ferromagnetic metals.
Indeed, based on Onsager’s relation argument, one would ex-
pect that, when spontaneous magnetization M is present in the
system, there might be terms in the electric current which will
depend on the magnetization and result in linear magnetocon-
ductivity. Three such possible terms with a pronounced angle
dependence between the electric E and magnetic B fields and
magnetization are proportional to (E · B)M, (E · M)B, and
(M · B)E combinations, namely,

δj = α1(E · B)M + α2(E · M)B + α3(M · B)E, (1)

where α1,2,3 are material dependent coefficients. Thus, vary-
ing the direction of either magnetic field, magnetization, or
the current, one can identify the presence of each term in the
system; see Fig. 1. However, besides the knowledge of the
Onsager relation, the microscopic mechanism behind these
three terms is still not fully understood. The aim of the present
Letter is to introduce a number of theoretical models which
provide a possible mechanism of linear magnetoconductivity
in magnetic metals.

We assume that the spontaneous magnetization in the met-
als is due to the localized fermions, while the conduction
fermions are responsible for the transport in these metals. The
localized fermions interact with the conducting fermions via
the ferromagnetic exchange interaction, which is proportional
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to the magnetization. In order to couple the magnetization
with the momentum of conducting fermions we propose that
the metals are helical, meaning that there is a spin-orbit cou-
pling [6–9] which leads to the momentum-spin locking of
conducting fermions. In the case of pure linear in momentum
three-dimensional spin-orbit coupling, the ferromagnetic ex-
change interaction acting on the spin of conducting fermions
just like the regular Zeeman magnetic field cannot affect the
velocity of fermions unless there is spin-orbit coupling affect-
ing motion of the conducting fermions. Indeed, ferromagnetic
exchange interaction acting on conducting fermions can be
gauged away by simply shifting the momentum of fermions.
However, we show that the momentum-dependent ferromag-
netic exchange interaction [10,11] does affect the velocity of
conduction fermions, and leads to linear magnetoconductivity
with all terms present in Eq. (1). The effect of momentum de-
pendent ferromagnetic exchange on the magnetoconductivity
has already been theoretically recognized in [12–14]. In the
case of two-dimensional spin-orbit coupling, the Zeeman-like
ferromagnetic exchange interaction can affect the velocity of
fermions, but only when it has a component parallel to the
spin-orbit coupling vector. We discuss such a scenario in our
second example of the theoretical models. We show that the
current Eq. (1) will depend only on one particular component
of the magnetization.

The mechanism of linear magnetoconductivity proposed
in this Letter is due to the effects of Berry curvature and
orbital magnetization [15,16]. The Lorentz force in all of the
presented cases does not result in linear magnetoconductivity.

Three-dimensional spin-orbit coupling. As a model of
a three-dimensional metal with spin-orbit coupling (helical
metal) we pick the Weyl semimetal [17] with two chirali-
ties each described by a linear spectrum. We also include
three possible momentum-dependent terms to the Hamilto-
nian, which might be present due to the finite magnetization
M in the system. Our model Hamiltonian for the s = ±
chiralities is

Ĥs = sv(σ · k) + (σ · M) − μ

+ saA(M · k) + aB

∑
n

Mnk2
nσn + aC(M · k)(σ · k),

(2)
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where v is the velocity of conducting fermions, μ is the
chemical potential, σ are the Pauli matrices describing spin
of fermions, and k = (kx, ky, kz ) is the three-dimensional
momentum. The term with aA is a tilt of the Dirac cones. The
tilt breaks the time-reversal symmetry. The other two terms
in the second line of Eq. (2), with aB and aC, are momentum
dependent ferromagnetic exchange interaction, which break
the time-reversal symmetry as well. They were considered in
[10,11] in studies of fermion’s g-factor anisotropy in quantum
wells. We note that the aA,B,C terms can be understood as next
order expansion in momentum of the fermion Hamiltonian in
the vicinity of the s = ± Weyl nodes. The second term in the
first line of Eq. (2) is the regular ferromagnetic exchange
interaction, analogous to the usual Zeeman magnetic
field. This term simply splits the two chiralities s = ± in
momentum and can be shifted away from the Hamiltonian
of a given chirality. Since we are interested in effects linear
in M the shift will not affect the terms in the second line of
Eq. (2). In all of the models symmetry between the chiralities
is broken by the terms in the second line of Eq. (2).

Our three models, which we will be calling A, B, and C
in accord with aA, aB, and aC terms in Eq. (2) correspond-
ingly, are three dimensional metals with spin-orbit coupling.
This implies the presence of the Berry curvature and orbital
magnetization in the description of the fermions [15,16]. To
study the electric current, we employ the method of the kinetic
equation,

∂n(s)
k

∂t
+ k̇(s) ∂n(s)

k

∂k
+ ṙ(s) ∂n(s)

k

∂r
= Icoll

[
n(s)

k

]
, (3)

with equations of motion updated in the presence of the Berry

curvature [16], ṙ(s) = ∂ε
(s)
k

∂k + k̇(s) × �
(s)
kη

, and k̇(s) = eE +
e
c ṙ(s) × B, where �

(s)
k is the Berry curvature. The current is

given by j = ∑
s=±

∫
k eṙ(s)

k n(s)
k . In the fermion collision inte-

gral Icoll[n
(s)
k ] we consider two scattering processes described

by different lifetimes. The first one is scattering within the
chiralities denoted by τ and the other between the chiralities
denoted by τV, namely Icoll[n

(±)
k ] = (n̄(±) − n(±)

k )τ−1 +
(n̄(∓) − n(±)

k )τ−1
V , where n̄(s) = (4π )−1

∫
sin(θ )dθ dφ[1 +

e
c (B · �

(s)
k )]n(s)

k is the distribution function averaged over the
angles. To analyze the electric current we follow approxima-
tions used in [13].

In [13] the electric current for a system with aB = aC = 0
was studied, and it was shown that there is indeed linear
magnetoconductivity due to an interplay of the chiral anomaly
and the tilt of the Dirac cones. Based on the findings of [13]
(also see the Supplemental Material [18]), we here distinguish
three contributions to the current. All contributions are due
to the asymmetry of velocities of fermions of opposite chi-
ralities. The asymmetry is either due to the aA,B,C terms or
due to the Berry curvature. The first one is due to the chiral
anomaly [19]—in other words, when a difference of charges
at different chiralities builds up in the presence of electric and
magnetic fields, namely N+ − N− ∝ τV(E · B). This contri-
bution results in the ∝τV(E · B)M term in the current. The
second contribution to the current is similar in nature to the
first one, with the only difference being that a buildup of a
nonzero chiral charge in the two valleys happens for a given
absolute value of the momentum when only the electric field

is present. Namely, n̄(+)
k − n̄(−)

k ∝ τV(E · M) and recall that

Ns = ∫
k2dk
2π2 n̄(s)

k . We show that there is no chiral anomaly due
to this contribution in all the three models. This contribution
results in ∝τV(E · M)B to the current. Note that the first two
contributions are defined by interchirality relaxation processes
and are proportional to τV. The third contribution to the cur-
rent is due to the Berry curvature and orbital magnetization
corrections to the fermion velocity. This contribution is pri-
marily defined by relaxation processes within the chirality and
thus defined by time τ . All three terms present in Eq. (1) can
be derived for the electric current from the third contribution.
However, we are assuming that τV � τ , which allows us to
select from them only the unique term of the ∝τ (M · B)E
type. This assumption is legitimate given that the splitting
between the chiralities defined by M is large. Details of the
derivations are given in the Supplemental Material [18]. Here
we list calculated expressions for the linear magnetotransport
for the three models,

δjA ≈ e3aA

π2c

{
−τV

[
1

4
(E · B)M + 1

6
(E · M)B

]
+ 2τ

15
(M · B)E

}
,

(4)

δjB ≈ e3μaB

π2cv

{
−τV

15
[4(E · B)M + (E · M)B] + τ

7
(M · B)E

}
,

(5)

δjC ≈ −e3μaC

π2cv

{
τV

9
[(E · B)M + (E · M)B] + 5τ

3
(M · B)E

}
.

(6)

In all three models all terms listed in Eq. (1) are present. The
signs and numerical coefficients are model dependent. We
also find in our calculations a ∝ 1

|M|2 (E · M)(M · B)M term
in the current for the model B.

Quasi-two-dimensional systems. Here we consider a quasi-
two-dimensional system with two-dimensional Rashba spin-
orbit coupling in the x-y plane, i.e., with Rashba spin-orbit
coupling vector in z direction, and magnetization M pointing
in z direction. This is a model of a hypothetical BiTeI type ma-
terial with spontaneous magnetization pointing in z direction.
The Hamiltonian of the system is

ĤD = k2

2m
+ λ(kxσy − kyσx ) + Mzσz − μ, (7)

where k = (kx, ky, kz ) is the three-dimensional momen-
tum. The spectrum consists of two branches εk;± = k2

2m ±√
M2

z + (λk‖)2 and we assume that the chemical potential μ is
such that both branches are occupied. The Berry curvature can
only point in the z direction. Moreover, integrating the kinetic
equation over the angles, one can check that there is no chiral
anomaly in the system, meaning that the N+ − N− = 0 in
applied electric and magnetic fields. We approximate τ = τV

as the two chiralities are close to each other in momentum
and energy space. We calculate linear magnetoconductivity
following the same steps outlined above, and we get

δjD = e3λ2

2m2c
τ I1[(EzMz )B + (E · B)Mzez]

+ e3λ2

8m2c
τ (6I2 − I3)(MzBz )E, (8)
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where I1, I2, and I3 are defined in the SM. Again, all terms
listed in Eq. (1) are present in Eq. (8), but the current depends
only on Mz. In addition to Eq. (8) we also find a ∝MzBzEzez

term in the current (see the Supplemental Material [18] for
details). We cannot generalize the obtained expression Eq. (8)
to any direction of the magnetization, because Mx and My

can be shifted away from the Hamiltonian Eq. (7). One might
wonder what nonlinear time-reversal symmetry breaking due
to M = (Mx, My, Mz ) corrections to the Hamiltonian, similar
to those with aB and aC in Eq. (2), will do to the linear
magnetoconductivity. According to [20], all such possible
corrections which would enter the Hamiltonian Eq. (8) with σx

and σy Pauli matrices will not affect the Berry curvature and
orbital magnetization to linear order in magnetization M. The
result of those entering with σz in the case when Mz = 0 and
Mx �= 0 and My �= 0 can be traced from the following argu-
ment. According to [20], one can think of a system which will
have a nontrivial Berry curvature and orbital magnetization
when Mz = 0, Mx �= 0, and My �= 0 in Eq. (7). In such a case
one will then need to add the spin-orbit coupling term obey-
ing, for example, a C3v symmetry to Eq. (7). Such a spin-orbit
coupling (which can be thought of having a vector in the y
direction) reads as HSOC ∝ vDkxσz + αkx(k2

x − 3k2
y )σz, where

vD and α are coefficients. Then, even in this case, the linear
magnetoconductivity will be of the Eq. (8) form with the only
difference of Mz being replaced by My with an appropriate
coefficient.

Finally, note that the term with ∝(E · B) in Eq. (8) recalls
the chiral anomaly contribution; however, it is of different
origin. In other words, there is no difference in chemical
potentials of the two chiralities when electric and magnetic
fields are applied, and as already mentioned N+ − N− = 0.

Discussion. Typically, low-field linear magnetoconductiv-
ity has a small magnitude, and at some point it gets overshad-
owed by quadratic magnetoconductivity as the magnetic field
is increased. Despite that, linear magnetoconductivity has a
rich anistropic structure, which can be tested in the experiment
(see Fig. 1).

We think that the low-energy description of the conduction
fermions in ferromagnets, which experimentally show linear
magnetoconductivity, fall into the classes of the theoretical
models presented above. Or, it might as well be, into some
other models with the same ingredients, namely, the spin-orbit
coupling and momentum dependent ferromagnetic exchange
interaction. As a result, if either of the α1, α2, or α3 compo-
nents of the current Eq. (1) is observed in the experiment, the
other two must also be present. Based on our findings, below
we comment on the two recent experiments.

In the experiment Ref. [4] linear magnetoconductiv-
ity was observed in ferromagnetic metal SmCo5 and in
ferromagnetic domains of the Cd2Os2O7 antiferromagnet.
Terms with (E · B)M and (M · B)E in Eq. (1) were observed
in the experiment. Based on our findings, we think that a
(E · M)B component of the current was overlooked [21]. We
hope further experiments will identify this missing term, thus
confirming our theoretical models and discussed above mech-
anism of linear magnetoconductivity. Moreover, we think that
the (E · B)M term in the current observed in Ref. [4] might be
due to the chiral anomaly. However, further analysis should be
made to eliminate possible quasi-two-dimensional properties,

B
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x

y

B

M

E

z

j

j

B

M

Ej

FIG. 1. Schematics of the proposed experimental setup to
measure three unique angular dependences of the linear magnetocon-
ductivity. Dashed lines are pointing in z direction. Left: the current
is passed in x direction, the magnetic field is varied in z-y plane, and
magnetization is in x direction, while the electric field is measured in
the y direction. Hence only the (E · B)M component of the current is
active. Center: the current is passed in z direction, magnetic field is
in z direction, and magnetization is in x direction, while the electric
field is measured in the x-y plane. In this case only the (E · M)B
component of the current is active. Right: the current is passed in y
direction, magnetic field is varied in z-x plane, and magnetization is
in x direction, while the electric field is measured in the y direction.
Thus only the (M · B)E component of the current is active.

where, as is shown for model D, Eq. (8), such term is present
but is not due to the chiral anomaly.

In another experiment in Ref. [5] linear magnetoconductiv-
ity was observed in the magnetic Weyl semimetal Co3Sn2S2

[22,23]. There it was claimed that the effect might be due
to the tilt of the Weyl cones, namely due to the aA term in
Eq. (2)—a mechanism first proposed in [13]. Our findings
introduced above suggest that the mechanism due to the tilt
might not be the only one. Below we will make one more
comment on the experiment in Ref. [5].

Below are four comments on the model Hamiltonians,
Eqs. (2) and (7). First, any three-dimensional linear in mo-
mentum spin-orbit coupling will be described by the physics
of Weyl semimetals. Hence the choice of the model Hamilto-
nian Eq. (2)—Weyl semimetal with two chiralities. However,
one can reengineer the Hamiltonian, for example, by adding a
regular, ∝ k2

2m type, term. Then, in models B and C such a term
will allow us to simplify the spectrum by reducing it to only
one valley. Note that the problem of chiral anomaly would not
be faced in this case, and the overall charge will be conserved.
This is because there will still be two Fermi surfaces with
opposite chiralities. Model A, on the other hand, cannot be
reduced to only one valley.

Second, we saw that two main ingredients for the linear
magnetoconductivity are the linear in momentum spin-orbit
coupling and momentum-dependent ferromagnetic exchange
interaction. However, this is not a unique combination, and
one can achieve the same effect of momentum-dependent
exchange interaction by introducing, in addition to linear spin-
orbit coupling, next in expansion, if symmetry allows, cubic
in momentum term. Then, ferromagnetic exchange interaction
can be kept to zeroth order in momentum (just like a regular
Zeeman term). The two schemes are similar to each other and
should result in similar linear magnetoconductivity.

Third, in the realistic bulk systems the spin-orbit might not
be pure, meaning that some Pauli matrix in the Hamiltonian
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is not, or only partly, describing the spin of the electrons.
Instead, it might be describing pseudospin or some mixture of
spin and, for example, the unit cell’s degree of freedom. In this
case M in the components in the current will be anisotropic,
and, in the most severe example, the current might only de-
pend on one projection of the magnetization M. For example,
in model D, Eq. (7), we saw that it is only on Mz projection
that the linear magnetoconductivity depends. However, all
three terms in the linear magnetoconductivity are present in
the model. When model D is reduced to two dimensions, only
the MzBzE out of the three terms will survive.

Fourth, depending on the symmetries of the crystal struc-
ture of the experimental magnetic system, the magnetization
M entering the current Eq. (1) and the second line in the
Hamiltonian Eq. (2) might be replaced with its rotated di-
rection, for example, M → M × ex,y,z or even with other
configurations [for example, see Eq. (3) in Ref. [20]]. Note
that we have already discussed a possibility of such a replace-
ment after Eq. (8). Quite likely, this situation was observed
in the experiment of Ref. [5]. Namely, Ref. [5] observed
two linear magnetoconductivity terms, jx ∝ ExMzBy and jy ∝
ExMzBx. In terms of Eq. (1), the two can be understood as

δ jx = α3([Mzez × ex] · B)Ex,

δ jy = α1(E · B)[Mzez × ex]y. (9)

Therefore, we predict that the δj = α2(E · [Mzez × ex])B =
α2(EyMz )B term should also be observed in the experiment
of Ref. [5].

Essentially, the theory presented in this Letter is based
on the effect of the Berry curvature on the fermion proper-
ties. We note that there are other known scattering processes
which contribute to the anomalous velocity of fermions. These
are the skew-scattering and side-jump processes which are
known, for example, to contribute to the anomalous Hall ef-
fect [24–26]. As is discussed in [27] these processes might
contribute to the linear magnetoconductivity as well. Whether
they will result in current of the Eq. (1) type is a question for
future research.

Since the theory of the linear magnetoconductivity pre-
sented in this Letter stems from the Berry curvature of
fermions, and the anomalous Hall effect does too [28], we
think that both effects, linear magnetoconductivity and the
anomalous Hall effect, should be experimentally looked for in

the same material. For example, the model A is known [29] to
show anomalous Hall effect as a function of the tilt; here and
in [13] we concluded that it shows linear magnetoconductivity
due to the same tilt as well. The model D [28] has the same
feature. It can be checked that the remaining B and C models
have the same property.

In passing, more magnetic Weyl and topological semimet-
als have been recently experimentally identified [30–32], and
based on our findings here, we anticipate that linear mag-
netoconductivity, just like in experiments [3–5], should be
observed in these systems. Moreover, we believe that linear
magnetoconductivity should be added to a plethora of effects
and properties such as the Fermi arcs [33], chiral anomaly
driven positive longitudinal magnetoconductivity [19,34], and
symmetric in magnetic field so-called planar Hall effect [both
are the components of the δj ∝ (E · B)B current [13], and see
comment [30] in Ref. [20]], anomalous Hall effect (due to
the chirality splitting [35] and due to the tilt aA alone [29]),
chiral collective modes [36,37], and others, which make Weyl
semimetals unique physical systems [38].

Conclusions. In this Letter we theoretically discussed the
mechanism of linear magnetoconductivity in magnetic met-
als. We identified two necessary ingredients for the minimal
model of the Hamiltonian of conducting fermions and three-
dimensional spin-orbit coupling and momentum dependent
coupling to the magnetization. If the spin-orbit coupling is two
dimensional, the coupling to the magnetization is of regular
exchange interaction. We proposed and studied four models,
Eqs. (2) and (7), of such two scenarios. In all of the models
linear magnetoconductivity contains three unique terms out-
lined in Eq. (1), with the model dependent coefficients; see
Eqs. (4), (5), (6), and (8).
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