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Analytical WKB theory for high-harmonic generation and its application to massive Dirac electrons
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We propose an analytical approach to high-harmonic generation (HHG) for nonperturbative low-frequency
and high-intensity fields based on the (Jeffreys-)Wentzel-Kramers-Brillouin (WKB) approximation. By properly
taking into account Stokes phenomena of WKB solutions, we obtain wave functions that systematically include
the repetitive dynamics of production and acceleration of electron-hole pairs and quantum interference due to
phase accumulation between different pair production times (Stiickelberg phase). Using the obtained wave func-
tions without relying on any phenomenological assumptions, we explicitly compute electric current (including
intra- and interband contributions) as the source of HHG for a massive Dirac system in (14-1) dimensions under
an ac electric field. We demonstrate that the WKB approximation agrees well with numerical results obtained
by solving the time-dependent Schrodinger equation and point out that the quantum interference is important in
HHG. We also predict in the deep nonperturbative regime that (1) harmonic intensities oscillate with respect to
electric-field amplitude E, and frequency €2, with a period determined by the Stiickelberg phase, (2) the cutoff
order of HHG is determined by 2eE,//iQ?, with e being the electron charge, and that (3) noninteger harmonics,
controlled by the Stiickelberg phase, appear as a transient effect. Our WKB theory is particularly suited for a
parameter regime, where the Keldysh parameter y = (A/2)S2/eE,, with A being the gap size, is small. This
parameter regime corresponds to intense lasers in the terahertz regime for realistic massive Dirac materials. Our
analysis implies that the so-called HHG plateau can be observed at the terahertz frequency within the current
technology.

DOI: 10.1103/PhysRevB.104.L140305

Introduction. High-harmonic generation (HHG) is one of
the most intriguing phenomena in nonlinear optics [1]. Ow-
ing to developments in laser technologies over the decades,
HHG has been observed and analyzed in various media (e.g.,
atomic gases [2—4], liquids [5,6], semiconductors [7-11],
graphene [12-15], superconductors [16-19], strongly cor-
related electrons [20-23], and amorphous solids [24,25]),
providing a unique opportunity to explore the fully nonpertur-
bative regime of matter-field interactions and rich applications
such as attosecond light sources and ultrafast imaging meth-
ods [26]. HHG has also been predicted in the fundamental
theory of quantum electrodynamics (QED), i.e., the QED
vacuum emits high harmonics when exposed to strong fields
exceeding the Schwinger limit [27,28].

One of the greatest theoretical challenges to eluci-
date the HHG mechanism is to understand nonperturbative
electron dynamics under low-frequency and high-intensity
fields [29,30]. Typically, theorists numerically solve the
time-dependent Schrodinger equation (TDSE) [31-33] (or
von Neumann equation [34-37]) to simulate electric current
and/or polarization as the source of HHG. These stud-
ies have provided numerical evidence that the interplay
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between the intra- and interband electron dynamics plays an
essential role. Meanwhile, analytical methods are demanded
to deepen the fundamental understanding and to analyze
numerically inaccessible parameter regimes such as the low-
frequency limit. Analytical theories exist for the simplest
single-band model [7,38], which, however, completely ne-
glects the interband dynamics. For multiband models, there
are Floquet-theoretical approaches [39,40], but analytical re-
sults have been limited to the high-frequency regime where
the laser frequency 2 exceeds the band gap A. Thus, an
analytical HHG theory has not been established for the
quintessential low-frequency and high-intensity fields.

In this Letter, we present an analytical method to study
HHG in the nonperturbative low-frequency and high-intensity
regime. Our method is based on the (Jeffreys-)Wentzel-
Kramers-Brillouin [(J)WKB [41-44]] approximation, which
has been extended by mathematicians since the 1980s (leading
to the exact WKB analysis) [45-52] and applied successfully
to various physical problems such as tunneling pair produc-
tion [53-57] and nonlinear radiative processes under strong
fields [58-60]. The WKB approximation is a semiclassical
method valid in the formal limit # — O or equivalently when
the Keldysh parameter [55,61-64]
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is sufficiently small (e and Ej are the electron charge and
electric-field amplitude, respectively, and we assume eEy > 0
and set the speed of light to be unity). Hence, it is suited
for low-frequency and high-intensity fields, where nonpertur-
bative processes, such as quantum tunneling (Landau-Zener
transition [65-68] or Sauter-Schwinger effect [69-71]), take
place. Another advantage is that one can explicitly solve
TDSE (up to some order of /) and can compute observables
directly from the wave function without any ad hoc assump-
tions. The wave function has microscopic information on the
nonperturbative electron-hole dynamics under strong fields,
which enables us to understand the HHG mechanism.

Setup. For concreteness, we consider massive Dirac elec-
trons in (14+1) dimensions under a time-dependent electric
field E(¢). The Hamiltonian reads

A2 k—eA
H= ) 2
k—eA —AJ2
where A(t) = — ft dt' E(t") is the vector potential, k is canon-

ical momentum (or Bloch momentum in solids), and A is
the gap energy. Note that the Hamiltonian (2) is relativistic
and linear in k, so that the diamagnetic term A? is absent
unlike nonrelativistic Hamiltonians. The following argument
also applies to general two-level systems, e.g., Dirac mate-
rials (including QED) in other dimensions [72], topological
insulators [73], semiconductors [29], and graphene [74,75].
We assume that the electric field is turned on at t = t;,, be-
fore which the system is in the ground state, and compute
the induced electric current as the source of HHG. As we
will clarify soon, our WKB theory is valid in the nonper-
turbative regime y < 1. For realistic massive Dirac materials
A = O(10 meV) [76,77], this corresponds to intense (Ey =
1 kV/cm) terahertz [Q2/(27) ~ 10'2 Hz] lasers, which are
available within the current laser technology used in the tera-
hertz HHG observations [15,78,79].

WKB solution and Stokes phenomenon. To solve TDSE
with the Hamiltonian (2), we expand the solution ¢ by WKB
wave functions ¥,

V(1) = ay_(1) + By (1), 3

where « and B are called Stokes constants and satisfy 1 =
loe)? + |B]? so that 1 = v Tyr. We work within the lowest-order
WKB approximation, where ¥4 is given by the instantaneous
eigenstates for the Hamiltonian (2) with dynamical phase

factors,
eA
- 1 1— A/2< sA/Z) Lfdte
V2 1 ’

1 A2 1 i
Yo = 1- o Jetiode )
\/_ <_ ek—A?2>

with € = \/ (A/2)* + (k — eA)? being the instantaneous
eigenenergy, which includes the intraband acceleration by the
external field.

To determine the Stokes constants o and B, we analyt-
ically continue the instantaneous energy onto the complex
z plane €(t € R) — €(z € C) and analyze the associated
Stokes graph (see Fig. 1). The Stokes constants o and B take
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FIG. 1. (a) A typical Stokes graph, composed of Stokes lines
(blue lines) and turning points (red points), and (b) the corresponding
physical processes during the real-time evolution.

constant values within each Stokes region, which is defined
as a region in the complex z plane separated by Stokes lines
Co={zeC|0=Im[; [i»dz €]}, with ' € C being turn-
ing points such that 0 = €(z'?). For the instantaneous energy
€ that are real on the real axis, turning points and Stokes
lines are symmetric in the upper and lower complex z planes,
and the pairs of turning points (z%, z**) are connected with
a doubly degenerate Stokes line crossing the real axis only
once at t" = {r € R|0 = Im[% f;p dzel} [55]. Whenever ¢ €
R crosses a degenerate Stokes line at + = ¢ during the time
evolution, the Stokes constants & and  jump discontinuously
(Stokes phenomenon) as [55,80]

G (e 7))
B/ ersor —(=1)e 7 1 B

where 0, = 2i Z" dze (Reo, > 0),1" " < <t <)
is the nth crossmg associated with (z7, z"*), and we ne-
glected subleading O(e_FxRe"") terms by assuming i — 0.
Using Eq. (5), we find an approximate solution, starting from
the initial ground-state wave function (&, 8)|;—» = (1, 0), as

b
-0+

&)

Y=y - Z( 'e™ 7Ot — 7). (6)

The Stokes constant S (5) [i.e., the coefficient in front
of ¥, in Eq. (6)] gives the probability amplitude from the
initial ground state to an excited state with the instantaneous
basis (4). Thus, B # 0 means that electron-hole pair produc-
tion occurs (see Fig. 1), and |B|* gives the pair production
number. The typical magnitude of the production number
is determined by the exponential factor ¢~ iR Note that
Eq. (6) takes the form of superposition of the wave functions
describing the pair production at different times. The phase
factor e~ #™M%  related to the so-called Stiickelberg phase,
is thus responsible for quantum interference effect [67,80—
82]: When pair production occurs repetitively, the Stiickelberg

L140305-2



ANALYTICAL WKB THEORY FOR HIGH-HARMONIC ...

PHYSICAL REVIEW B 104, L140305 (2021)

phase, i.e., the relative phase between each wave function,

et

O = 3/" die = —~(mo, —Imo,) £0. (7)
' b Ji h
gives rise to destructive and constructive interferences, which
suppress and enhance the production, respectively. Note that
our Stokes constants o and S (5) neglect pair annihilation pro-
cesses followed after the production, which are higher-order
effects O(e’%R”").

Within the lowest-order WKB approximation (4), the
production number |B|*> shows stepwise time dependence,
meaning that each production process is treated as an instanta-
neous one that occurs exactly atz = f;". In reality, the stepwise
evolution is an approximation, and pair production takes finite
time 8¢ # 0. Under an electric field, for a pair production
to occur via quantum tunneling, an electron in the valence
band needs to tunnel a distance ~A/eEy to the conduction
band, and hence 8t ~ y Q™' with the Keldysh parameter .
Thus, the WKB approximation would not work for very high
harmonics N = w/Q > (2n/6t)/Q2 ~ 2wy~ or when y >
27 /N. This also implies that the WKB approximation cannot
describe perturbative excitation processes, which dominate
for large y [55,61-64].

WKB result for electric current. We compute the electric
current J = (—8H/8A) = eyTo'y at each momentum k. The
WKB approximation (6) gives J as a sum of the valence-,
intra-, and interband contributions, J = Jyu + Jintra + Jinters
where

Ja=eyloly = —ev,

Jora = Y 1B (Fe)ylo v
+

2

=2ev|Y (~1)'e T O(t — 1)

n

Jinter = 2¢Re(ap*ylo'y)

A 1 2 !
— o —1)" ——Reo,,® t— 1" = dt ,
eEXn:( Y™ ( ")Cos<h/,cr e)
®)

with velocity v = (k — eA)/€. Being proportional to v, Jyy
(Jinra) 18 accompanied by valence-band electrons (electron-
hole pairs) accelerated along the band(s). Jine, originates from
interference between conduction- and valence-band electrons
(or dipole [83]), as is evident from the wave-function overlap
Re(a ,3*1//1011//_). Since the actual observable is the differ-
ence from the ground state, we subtract Jy, and focus on

Jobs =J - Jval = Jimra + Jinter- (9)

]

This is a standard subtraction scheme widely used in
quantum-field theory in external fields [84]. Also, in the
condensed-matter context, the subtracted J,,; amounts to be
when summed over the entire Brillouin zone. Note that the
observable currents Jiyy, and Jiyer reproduce the phenomeno-
logical expressions used in previous studies on semiconductor
HHG [36,37].

According to Eq. (8), the nonlinear response to the applied
field arises not only from the pair production factor e~ but
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FIG. 2. HHG spectrum for the oscillating field (10), with
Q/(AJ2) =1/4, eEy/(A/2)*> =1 (e, y=1/4), and Qt, =
—177/3, T, = 2|tiy]. The parameter set corresponds to, e.g.,
Q/2mr =1THz and Ey =4.2kV/cm for a Dirac material with
Fermi velocity vg = 10° m/s and mass A = 33 meV.

also from the velocity v in Jiyy,. Whereas the nonlinearity
of v is absent for the quadratic dispersion, it can be signifi-
cant for the linear one in massless Dirac systems [78,79,85].
The strong nonlinearity survives to some extent even in our
massive case.

HHG by ac electric field. As a demonstration, we consider
a monochromatic ac field,

eky .
eA = =7 sin(S), (10)

and take k — 0, as pair production at large k£ may be energet-
ically disfavored (see Ref. [86] for situations where various
k’s become important). For the field (10), the wave function
encounters two crossings in a cycle ;" € $Z, i.e., pairs are
produced twice in a cycle. This is similar to the three-step
process in the gas HHG [3.4]. Although our WKB approach
also applies to other k’s, their analytical expressions become
more complex. We leave for future work this generalization
and summing the results over k’s. In exchange for restricting
ourselves to k — 0, we will obtain analytical closed formulas,
which would at least qualitatively capture the HHG in the
massive Dirac electrons.

We compute the Fourier spectrum of the observable Jops =
f_’L:OO dt e W Jops = Jintra + Jinter, Where we insert a window
function W with width T,, to avoid contaminations due to
the finiteness of fields/measurements [31,87]. Here, we chose
the Hann window W = O(t — i,)O(T,, + tin — t) sin’[7 (t —
tin)/T,] and confirmed that the results are insensitive to the
choice of W. One can obtain a closed analytical expression
for Jyps under Eq. (10), from which one can compute the
spectrum J,,, numerically or even analytically under certain
approximations [88].

The HHG spectrum obtained from the WKB approxima-
tion (8) agrees well for small y with the exact one obtained by
numerically solving TDSE; see Fig. 2. Due to the limitation
of the WKB approximation, the discrepancy for very high
harmonics appears at N 2 35 in Fig. 2, which is consistent
with our estimate ~27y L.

Our WKB result confirms that the interband contribution
dominates over the intraband one, except for the low harmon-
ics (N < 3 in Fig. 2) [36,37]. This means that the interband
contribution is the origin of the plateau structure in the HHG
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FIG. 3. The magnitude of N = 3 (left), 9 (middle), and 15 (right) harmonic peaks plotted against amplitude eE, with fixed frequency

Q/(A)2) =
Ty = 2tinl.

spectrum [8]. One may estimate the location of the cutoff by
using the saddle-point method [4,36,37] when evaluating the
Fourier integral of the WKB expressions (8). The stationary
conditions for the intra- and interband currents are given by
o = 0 and 2¢ — h|w| = 0, respectively. The former condition
confirms why the intraband current contributes only to the
low harmonics. The latter condition can have real solutions
when A/RQ SN < /A2 +4(k| + eEo/Q)2 /R ~ 2(|k| +
eEy/2)/h2. If the stationary points are imaginary, the saddle-
point action acquires a positive real part and then the spectrum
Jinter 18 suppressed exponentially. Therefore, it is sufficient to
pick up the contribution from the real solution only, which
yields that the upper cutoff of the HHG spectra for k — 0 is
given by

26E0
nQ?

(~32 in Fig. 2). The linear dependence on Ej is consistent
with semiconductor experiments [7], and the frequency de-
pendence 2 is our prediction in the massive Dirac electrons,
which is worth testing in experiments (see Ref. [39] for a sim-
ilar prediction in a charge-density-wave material). Note that
the lower cutoff N ~ A/A2 (~8 in Fig. 2) for the interband
current is also consistent with Fig. 2.

To further investigate the HHG spectrum, we plot the eE)
and Q! dependence of each harmonic intensity in Fig. 3. The
WKB result reproduces the exact one in the nonperturbative
high-intensity and low-frequency regime y < 27 /N, while
it fails for the perturbative low-intensity and high-frequency
one y 2 25 /N. In the perturbative regime, the Nth harmonic
intensity shows a power dependence on the potential (eA)"
(eEy/ )V . This indicates that a perturbative N-photon process
dominates, which cannot be captured by the WKB approxima-
tion. On the other hand, the harmonic intensities saturate (with

J

(1)

cut ~

1/4 (a) and inverse frequency ! with fixed amplitude eEy/(A/2)* = 1 (b). The other parameters are chosen as Qf, = —177/3,

oscillations) in the nonperturbative regime. The typical mag-

/27

nitude of the currents asymptote |Jipwa| — |B]> o< e " “o

N @7 . .
and |Jier]| = |B] & e " %%, which are independent of Q

and N. This explains why the harmonic intensities have a
weak N dependence in the nonperturbative regime and the
plateau appears in Fig. 2. Notice that the nonperturbative
dependence on eE) is the manifestation that the production is
driven by tunneling and agrees with the tunneling production
formula [65-71].

The oscillating behavior in Fig. 3 is caused by the quantum
interference. When the interference becomes destructive (con-
structive), the production and associated HHG are suppressed
(enhanced). For our field (10) with the limit k — 0, the Stiick-
elberg phase can be decomposed as 6,,, = (n — n')6, where
0 = hft;;“ dte =2 ”/Q
productlon and is 1ndependent of n. Then, Eq. (5) indicates
that the most destructive (constructive) interference occurs
when 6 matches even- (odd-) integer multiples of 7. As shown
analytically below, @ is roughly proportional to eEy/2?, and
hence the harmonic intensities oscillate with eE and 2. This
Stiickelberg-phase mechanism for the oscillation is analogous
to that in the gas HHG [89,90] and would also apply to the
recent semiconductor HHG experiment [91]. Note that we
focus on k — 0 although the physically observed currents are
obtained in principle by collecting contributions from differ-
ent k’s over the Brillouin zone. Since the Stiickelberg phase
depends smoothly on k, the sum over k would smoothen the
oscillating behavior in Fig. 3. As noted above, we leave it for
future work to extend our analytical WKB theory for different
k’s.

Analytical formula in the low-frequency limit. To get deeper
insights, we analytically carry out the Fourier integration for
the WKB result in the limit of y, k — 0 [88],

dt € is the phase for two successive

. 9 ~
- 2Reo in sin % - 0 W(w— (2n— 1))
Jintra ~ Fin (312 F Ve _W(o-QF2(n——)Q)- ,
) [Ze A ) T T 1
- _res —( 1)[”/973/ = +in ([ - D(EFL Dy o
Fonter ~ ———— > > ny? +2Hy,- w1 =) F =Dy 2(n- =)0
inter ™ € 477 cos g o (Iny + 1/2)6 wFz\n o
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+(1n(4y2) _ <(_1)n cosg - 1)}13%_1 + ((_1)" cosg + I)Hgifn_;)W(a) —@n— 1)9)}, (12)

where W is the Fourier transform of the window function
(i.e., aregularized delta function), H, is the harmonic number,

Reo = C2%1 + 0(y?)], and 6 = 2 [1 + O(y?)).

The analytic formula (12) captures the important fea-
tures of the exact numerical results for small y; see Fig. 3.
The saturation behavior is determined by the overall factor
e i, reflecting the abundance of pair production due to
tunneling. The oscillating behavior derives from cos % in the
denominators. Whenever 6 hits an odd-integer multiple of 7,
each harmonic intensity is maximized, as anticipated from
the quantum-interference argument. Incidentally, the second
terms in the square brackets give odd-order harmonics, while
the first ones give noninteger split peaks around the integer
harmonics with SN = £6/x. This splitting is a transient ef-
fect, as is evident from the #, dependence, and is tunable by
changing the Stiickelberg phase 6, which can be varied, e.g.,
with the carrier-envelope phase [92].

Summary. We have studied HHG in a massive Dirac system
based on the lowest-order WKB approximation, including
Stokes phenomena. We have shown that the WKB approx-
imation provides a powerful analytical framework to study
HHG in the nonperturbative low-frequency and high-intensity
regime and well reproduces the exact results of TDSE. Our

(

results imply that the repetitive dynamics of production and
acceleration of electron-hole pairs and quantum interference
due to the Stiickelberg phase are the essence of HHG. We
have also predicted some characteristic features of HHG in the
deep nonperturbative regime, such as the scaling of the cutoff
New o eEy/Q?, the oscillation of harmonic intensities with
a period determined by the Stiickelberg phase 6 o eEy/Q?,
and the noninteger splittings of harmonic peaks N o 6 as a
transient effect. Our WKB approach applies to various media
such as Dirac/Weyl materials (including QED), topological
insulators, semiconductors, and graphene, paving the way to-
ward a universal understanding of HHG beyond gases.
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