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Reservoir-assisted energy migration through multiple spin domains
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The transfer of energy through a network of nodes is fundamental to how both nature and current technology
operate. Traditionally, we think of the nodes in a network being coupled to channels that connect them, in
which energy is passed from node to channel to node until it reaches its targeted site. Here we introduce an
alternate approach to this, where our channels are replaced by collective environments (or, actually, reservoirs)
which interact with pairs of nodes. We show how energy initially located at a specific node can arrive at a
target node—even though that environment may be at zero temperature. Further, we show that such a migration
occurs on much faster timescales than the damping rate associated with a single spin coupled to the reservoir.
Our approach shows the power of being able to tailor both the system and environment and the symmetries
associated with them to provide new directions for future quantum technologies.

DOI: 10.1103/PhysRevB.104.L140303

Introduction. Nature has developed many methods for the
transport of energy on length scales ranging from the atomic
to cosmological [1–4]. Photosynthesis is one extremely well-
known example where pigment cofactors absorb the light and
transfer it to antennae pigments where it is converted to chem-
ical energy [5–13]. Such energy transport is not restricted to
natural processes, but is central to how our modern society
and current technologies operate. We are always looking at
new approaches to achieve this, but one needs to keep the
possible applications in mind and the properties they require.
In general, both classical and quantum systems are affected by
the environment [14]. The natural question here is the follow-
ing: Does noise help or hinder this transport process? Actually
(and counterintuitively), it was found that energy transport
can be enhanced by adding environmental noise [15–20].
Further, quantum mechanics provides unique opportunities in
how energy transport could be enhanced using the principles
of superpositions and entanglement [21–23], and establishes
tight bounds on how fast such energy transport processes can
be [24–26].

The recent developments in quantum technology have
given us excellent design options to tailor both our system
and environmental properties to the tasks we want to achieve
[27–35]. It has been shown that a hybrid quantum system
composed of an ensemble of negatively charged nitrogen-
âvacancy (NV−) centers in diamond coupled to a resonator
[36] exhibits superradiant decay [37,38]—a collective effect
where radiation is amplified by the coherence of multiple
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emitters. In fact, they showed collective decay that is 12 orders
of magnitude faster than the decay of a single NV− cen-
ter [36]. Interestingly, the reverse process “superabsorption”
also exists—when radiation is absorbed much faster into the
ensemble [39], which has been experimentally realized by
implementing a time-reversal process of superradiance [39].
From an energy transport point of view, combining the two
phenomena would allow extremely fast energy transfer.

In our work, we show an unexplored mechanism to migrate
energy via dissipation only, from an initial node to a spatially
separated target node. We consider a network where the ith
node is an ensemble with Ni spins. The energy is not being
transferred into the reservoir from one node and then released
to the next node. Instead, energy becoming present in the later
nodes arises from symmetries associated with the collective
decay. This is a very different way for energy to migrate
through a chain of nodes. Additionally, due to superradiant
decay, it is possible to achieve this migration extremely fast
(much faster than the relaxation rate). Actually, at site i, it
occurs ∼Ni/ ln Ni times faster.

Generally, one would consider each ensemble coupling to
its own environment. Hama et al. [40,41] recently considered
collective coupling of two ensembles to a reservoir and noted
an unusual observation. They investigated what occurs if the
first much larger ensemble was initially fully excited while the
second is in its ground state and found that the first ensemble
“superradiantly” decays while the second ensemble under-
goes “superabsorption” (and can become fully populated).
However, the process is not that simple due to the nature of
the coupling to the environment [40,42], which can induce
coherent coupling [43,44]. The key to explain the observed
behavior lies in the symmetries of the system, which can be
seen from this very simple example. Consider two spins A and
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FIG. 1. (a) Illustration of a dissipatively coupled chain of spin domains. Each domain Di contains Ni identical spin-1/2 particles. All spins
have an energy h̄ω0 with associated frequency ω0/2π . Two neighboring domains Di and Di+1 are interacting via a common (zero-temperature)
reservoir mediated by the dissipation rate γi. (b) Schematic representation of the effective excitation transfer from the first domain (with N1 = 3
spins and total angular momentum j1 = 3/2 and 1/2) to the second domain (with N2 = 2 spins and total angular momentum j2 = 1 and 0):
initially, D1 is fully excited while D2 is in the ground state. This corresponds to the (partial) excitation of states with different total angular
momentum (bottom row). Due to the collective decay, which preserves the total angular momentum, the system relaxes down the ladders
and reaches a steady state where D1 and D2 are locally not in their respective ground states. This results in excitations arising in the second
domain—even though it was initially in its ground state.

B initially in a state |ψ〉 = |1〉A|0〉B = |1〉|0〉, which can also
be expressed as

|ψ〉 = 1
2 [|1〉|0〉 + |0〉|1〉] + 1

2 [|1〉|0〉 − |0〉|1〉]. (1)

Under collective decay to a zero-temperature bath, the first
Bell state (a triplet state) decays to |0〉|0〉, while the second
term (a dark state) remains unchanged. This means the mean
population of spin B has increased from zero to n̄B = 1/4 via
that collective coupling to the reservoir. We must emphasize
that there is no direct coupling between the spins, meaning we
are not seeing simple energy transfer. Further, those spins only
collectively couple to a zero-temperature reservoir, meaning
energy is not being given to the second spin from it. This
is a quantum process associated with the collective decay
breaking a symmetry in the system and the symmetries of the
initial state. The triplet (or symmetric) part of the initial state
can decay but the dark (antisymmetric) part cannot. While
this behavior can be seen in two spins [45], similar behavior
can be seen with two ensembles collectively coupled to the
environment [40,41,46]. We would like to highlight that this
process is different from energy transfer in the traditional
sense. Instead, we call this energy migration to distinguish it.

In this Letter, we will build upon Refs. [40,41] and extend
these results to multiple nodes. Additionally, by utilizing the
well-known phenomena of superradiance and superabsorption
[38], we show that our system can facilitate energy migration
as fast as needed between the multiple nodes. Further, we
will show that this energy migration can proceed even if
the reservoirs are at zero temperature. We will discuss how
such a technique can be used to migrate energy around small
networks where each node is an ensemble of spins that are
collectively coupled to an environment.

Our model. Let us begin with a simple mathematical model
of our system which extends a double domain system [40,41]
to the multiple spin domain regime. Our system depicted
in Fig. 1(a) consists of M different noninteracting spin do-
mains Di, each containing Ni identical spin-1/2 particles (with
frequency ω0/2π ). Pairwise, these domains are collectively
coupled to a zero-temperature reservoir. These reservoirs are
modeled as a collection of bosonic modes with frequencies
ωki/2π and bosonic creation (annihilation) operators a†

ki
(aki ).

Importantly, our system is symmetric under the exchange of
any two spins within each domain, but not within the overall
system. Therefore, it is useful to define collective spin oper-
ators for the ith domain Jα

i = ∑Ni
ni=1 Sα

ni
, with α = x, y, z and

where Sα
ni

are the nith spin operators. Further the ith domain
raising and lower operators are given by J±

i = Jx
i ± iJy

i . The
Hamiltonian of the total system with M ensembles and M − 1
reservoirs is

H = h̄ω0

M∑

i

Jz
i +

M−1∑

i

∑

ki

h̄ωki a
†
ki

aki

+
M−1∑

i

∑

ki

[tki (J
+
i + J+

i+1)aki + t∗
ki

a†
ki

(J−
i + J−

i+1)], (2)

where the first and second term represents the Hamiltonian of
the spin ensembles and the bosonic reservoirs, respectively.
The third term is the interaction of the spin ensemble i and
i + 1 with their common reservoir (labeled as i), where tki , t∗

ki

represent emission (absorption) amplitudes that fix the spec-
tral density of the reservoirs, �i(ω) = 2π

∑
ki

|tki |2δ(ω − ωki ).
Within the standard weak-coupling approach (Born-Markov
approximation) and assuming zero-temperature reservoirs, the
Lindblad master equation of the system can be written in the
rotating frame as [14,47]

ρ̇s =
M−1∑

i

γi

2
D[J−

i + J−
i+1]ρs, (3)

where the Lindblad term is D[O]ρ = 2OρO† − O†Oρ −
ρO†O for any operator O. Additionally, the weak-coupling
regime necessarily assumes ω0/γ is very large. The dis-
sipative coupling between the different spin ensembles is
mediated via the rates γi = �i(ω0) = αiω0 in the wide band
limit, where αi is constant. Previous works have used dis-
sipative coupling to induce frustration [48] and quantum
synchronization of oscillators [49] and atomic ensembles
[50]. The work in Ref. [43] experimentally demonstrated a
double spin domain system implemented via two distinct
nitrogen-vacancy ensembles in diamonds collectively coupled
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FIG. 2. Normalized collective spin relaxation 〈Jz
i 〉/Ni with dynamics governed by the master equation (3). (a) Two spin domains with

N1 = 40 (solid magenta), N2 = 2 (dashed blue); (b) three domains with N1 = 12 (solid magenta), N2 = 6 (dashed blue), N3 = 2 (dotted gold);
(c) four domains with N1 = 8 (solid magenta), N2 = 6 (dashed blue), N3 = 5 (dotted gold), and N4 = 1 (dot-dashed mint green).

to a resonator; potentially an extension of this work could see
the realization of the multiple spin domain regime.

System dynamics. As we are mostly interested in excitation
migration through the different spin domains, our results will
focus on the situations where the first domain is initialized
with all spins in their excited states while all spins in subse-
quent domains begin in the ground state. Our initial state can
be expressed as

|ψin〉 = |↑ ... ↑〉1 ⊗ |↓ ... ↓〉2 ⊗ · · · ⊗ |↓ ... ↓〉M . (4)

As observed in [41] for the two-domain case, this initial state
(4) is not symmetric under the exchange of the ensembles
1 and 2. It is worth noting that the dissipative terms in the
master equation (3) induce correlations between neighboring
domains i and i + 1 because it describes their collective decay.
The initial state can be decomposed as a superposition of
symmetric and antisymmetric states. As a consequence of the
decay of the symmetric subspace components, the average
number of excitations stays finite at the steady state despite
the presence of the zero-temperature reservoir [see Fig. 1(b)].
Furthermore, the system may relax into a steady state, where
the second domain population of spins in the excited state is
greater than 50%. However, an unbalanced configuration of
domain sizes—specifically, N1 	 N2—is necessary for this
situation to occur. For this reason, we restrict ourselves to the
unbalanced configurations where N1 > N2 > · · · > NM and
explore the dynamics of excitation migration from the first to
the last domain.

We are now in the position to explore the dynamics of the
dissipatively coupled spin ensembles. The master equation (3)
represents a series of coupled differential equations which can
be solved in conjunction with the initial conditions (4). The
only parameters governing the dynamics of our collective spin
relaxation are the domain size Ni and the reservoir coupling
γi. For simplicity, we will set all reservoir couplings to be
equal and all results presented in this work use a time axis
that is rescaled with γ /2. In Figs. 2–4, we show the collective
spin relaxation of a system with two, three, and four domains
with initial state |ψin〉 given by (4). For the two-domain sys-
tem [Fig. 2], we set N1 = 40 (magenta) and N2 = 2 (blue),
while for the three-domain system [Fig. 3], we have N1 = 12
(magenta), N2 = 6 (blue), and N3 = 2 (gold). Similarly, for

the four-domain system [Fig. 4], we have N1 = 8 (magenta),
N2 = 6 (blue), N3 = 5 (gold), and N4 = 1 (mint green). Since
we solve Eq. (3) numerically, we are restricted to rather small
ensemble sizes, especially as the number of spin domains in-
creases. Nevertheless, small systems provide valuable insights
into the general dynamics and allow conclusions to be drawn.

It can be seen in Fig. 2 that the decay of the first domain
first leads to the excitation of the second domain as a result of
the reservoir-mediated interaction between the two domains.
In the case of only two domains [Fig. 2], the dynamics comes
to a halt and the system reaches a steady state. Due to the large
imbalance N1 > N2, the first domain (magenta) is (almost)
completely deexcited and the second domain (blue) gets close
to the fully excited state [41]. For more than two domains,
the second domain (at a slower rate) also decays due to the
additional dissipation channel and the ensemble excitation is
transferred to the third domain [Fig. 3]. This process will
continue until the last (smallest) domain absorbs the excita-
tion and the system finally reaches its steady-state solution

FIG. 3. Normalized collective spin relaxation 〈Jz
i 〉/Ni for three

domains using mean-field dynamics. (a) N1 = 106 (solid magenta),
N2 = 104 (dashed blue), and N3 = 102 (dotted gold). (b) N1 = 108

(solid magenta), N2 = 105 (dashed blue), and N3 = 102 (dotted
gold).
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FIG. 4. Collective spin relaxation 〈Jz
i 〉/Ni for an initial state of

the first domain with 〈Jz
1〉 (t = 0) = 0 showing that the relative pop-

ulation of the later domains never exceeds 〈Jz
2,3〉 = 0. (a) The master

equation approach with N1 = 12 (solid magenta), N2 = 6 (dashed
blue), and N3 = 2 (dotted gold). (b) The mean-field approach with
N1 = 106 (solid magenta), N2 = 104 (dashed blue), and N3 = 102

(dotted gold).

where the smallest ensemble is excited. For the system sizes
considered here, the intermediate domain population of spins
in the excited state stays below 50% and the average number
of excitations in the last domain is considerably less than the
ensemble size. However, the results of the two-domain system
depicted in Fig. 2 indicate that larger ensemble sizes may
allow the fully excited initial state to dissipatively migrate
from the first domain along the chain to the last domain.

The dynamics that we are able to access from numerically
solving Eq. (3) are intriguing; however, due to the scaling
of the Hilbert space with system size, we are limited in the
number of spins. In order to investigate larger domain sizes,
we perform a mean-field (MF) approximation by factorizing
different moments (see Supplemental Material [51]). In the
following, we consider the dynamics of three dissipatively
coupled spin domains which is described by a closed set of
13 coupled differential equations for the expectation values of
the collective spin operators, which we denote by an overbar
to emphasize their MF character.

In Fig. 3, we show the collective spin relaxation according
to the MF description for two different ensemble sizes of the
first and second domain. In Fig. 3(a), we set N1 = 106 (ma-
genta), N2 = 104 (blue), and N3 = 102 (gold), and in Fig. 3(b),
N1 = 108 (magenta), N2 = 105 (blue), and N3 = 102 (gold).
Unlike the smaller system sizes shown in Fig. 2, each domain
differs substantially in the number of spins from the previous
domain. Consequently, we are able to witness (almost) full
excitation of the second and third domains, with D3 relaxing
to a steady state of J̄ z

3/N3 ≈ 0.49. This is in contrast to the
results of Fig. 3, where 〈Jz

2〉/N2 and 〈Jz
3〉/N3 clearly do not

reach the maximum of 〈Jz
1〉/N1(t = 0) = 1/2.

Additionally, the discrete migration of excitation from one
spin domain to the next can clearly be witnessed (notice the
logarithmic timescale), in contrast to the collective spin relax-
ations of Fig. 2 where all domains absorb and decay on the
same timescale. This is a clear signature of the superradiant

decay and thus superradiant excitation transfer, which scales
as 1/Ni for large system sizes. From the dynamics shown in
Fig. 3, we note that the superradiant decay time of D1 as
well as the superradiant absorption time of D2 are mostly
governed by the size of D1, and thus occur at a time that
is orders of magnitude before the superradiant decay of D2

and absorption of D3. Therefore, efficient migration in this
dissipatively coupled system occurs when the spin population
of the initial excited domain (N1) is sufficiently larger than the
final domain (in this case, N3).

So far, we have explored the superradiant migration of
excitations when the first domain is initially fully excited and
all subsequent domains are in their respective ground state.
However, one may assume that a partially excited initial state
is sufficient to fully excite the last domain as the number of
spins within each domain decreases along the chain. In the
following, we show that this is, in fact, not the case and,
moreover, that the maximum relative excitation transferable
from one domain to the other is bounded by the initial relative
excitation.

Let us start by numerically exploring the three-domain sys-
tem, where small and large system sizes can be investigated.
We first study the effect of initial conditions on the excita-
tion transfer described by the master equation (3) for domain
sizes N1 = 12, N2 = 6, and N3 = 2. As N2 = N1/2, we choose
as the initial state the first domain to be only half excited
(〈Jz

1 〉(t = 0) = 0); however, the second and third domains are
to be in their respective ground state. In Fig. 4, one sees that
for this initial configuration, the second (blue) and third (gold)
domains are both less excited compared to the initial state |is〉
[cf. Fig. 3], and, especially, the third domain is considerably
below half excited. In contrast, in Fig. 4, the spin relaxation
dynamics is shown for N1 = 106, N2 = 104, and N3 = 102

[same system sizes as Fig. 3(a)] with half of the spins in D1

initialized in the excited state and half in the ground state.
Here, we make use of the MF equations to solve the dynamics.
Even though the number of spins in the second and third do-
mains is significantly less than the number of initially excited
spins in the first domain, both J̄ z

2/N2 and J̄ z
3/N3 always remain

below the value of J̄ z
1/N1(t = 0). Interestingly, this occurs for

any value of N1 and any proportion of excited spins in the
initial state. That is, we observe J̄ z

1/N1(t = 0) � max(J̄ z
2/N2)

and J̄ z
1/N1(t = 0) � max(J̄ z

3/N3). This already suggests that
the initial population of spins in the excited state limits the
transferable amount of excitations.

The results we have observed so far for the three-domain
case also hold for the case of only two domains. That is, the
maximum relative excitation of the second domain is bounded
by the initial relative excitation of the first domain. In fact,
as we show in the Supplemental Material [51], for the two-
domain case with N1 	 N2, the steady state of the second
domain is given by

J̄z
2

N2
(t → ∞) ≈ J̄z

1

N1
(t = 0). (5)

As we discussed in the previous section, for superradiant
excitation transfer to occur, we need large differences in
the number of spins within each domain. This results in a
timescale separation of transfer between the first and sec-
ond domains, and transfer between the second and third
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domains. Because of this timescale separation, the second
domain reaches its maximum relative excitation before trans-
port to the third domain takes place. We thus conclude from
Eq. (5) that the maximum relative excitation of the last do-
main is bounded by the initial state, i.e., J̄ z

M/NM (t → ∞) ≈
J̄z

1/N1(t = 0). This has implications for quantum thermody-
namics and especially the charging of quantum batteries [52].

Discussion. It is well established that movement or transfer
of energy around physical system is a primitive operation with
applications in many diverse fields. We are always looking for
new ways to achieve this in faster and more efficient ways. In
this Letter, we have shown an energy migration approach in a
small scale quantum network based on collective coupling to
a reservoir. Energy is not flowing from node to node. Instead,
our initial state is not symmetric with respect to the collective
coupling to the reservoirs and so different parts of the quantum
wave function decay at different rates (or not at all). This

results in populations arising in nodes which were initially
unoccupied. Combining this behavior with superradiant decay
and absorption, we show the apparent flow of energy from
node to node in the network. In exploring the dynamics of
energy migration in the network, we were able to find the
conditions which facilitate the fastest and most efficient en-
ergy transfer. By tailoring the system and environment, and
symmetries associated with them, our approach can illustrate
different directions for the future of quantum technologies.
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