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Suppression of heating by long-range interactions in periodically driven spin chains
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We propose a mechanism to suppress heating in periodically driven many-body quantum systems by employ-
ing sufficiently long-range interactions and experimentally relevant initial conditions. The mechanism is robust
to local perturbations and does not rely on disorder or high driving frequencies. Instead, it makes use of an
approximate fragmentation of the many-body spectrum of the nondriven system into bands, with band gaps that
grow with the system size. We show that when these systems are driven, there is a regime where decreasing
the driving frequency decreases heating and entanglement buildup. This is demonstrated numerically for a
prototypical system of spins in one dimension, but the results can be readily generalized to higher dimensions.
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Periodically driven quantum systems continue to produce
fascinating physics and phenomena inaccessible to their static
counterparts. Some notable examples include the Kapitza pen-
dulum [1], dynamical localization [2–4], Floquet topological
insulators [5–7], dynamical phase transitions [8], induced
many-body localization (MBL) [9–13], and Floquet time crys-
tals [14–18]. However, a key obstacle to realizing new phases
of matter in driven systems is that typically the drive heats up
the system to a featureless infinite-temperature state where all
correlations and observables become trivial [19–22].

In one-dimensional systems, heating can be suppressed
with the inclusion of sufficiently strong disorder, which leads
to the formation of the Floquet-MBL phase [13,20,23–25].
Alternatively, heating can be suppressed at any dimension,
whether the system is clean or disordered, by considering
driving frequencies greater than the single-particle excitation
energy, such that the absorption of a photon from the drive will
always result in a multiparticle process [26–32]. Under these
conditions the system will spend a significant amount of time
in a nontrivial metastable state—a phenomenon called Floquet
prethermalization [26–32]. It has been recently demonstrated
with nuclear spins using nuclear magnetic resonance tech-
niques [33] and with ultracold atoms in a driven optical
lattice [34].

If the driving frequencies are smaller than the single-
particle excitation energy, the system can efficiently absorb
energy from the drive, which results in fast heating to infinite
temperature [35]. But is this the fate of all driven quantum
systems? In this Letter, we show that the answer is negative.
Heating can actually be suppressed in any dimension and for
frequencies smaller than the single-particle excitation if the
system has sufficiently long-range interactions.

The physics of nondriven systems with power-law de-
caying interactions, r−α (where r is the distance between
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two bodies), has gained considerable attention due to exper-
imental realizations in trapped ions [36–40], where the range
of the interactions can be tuned. A particularly intriguing
regime is α < d (d being the dimension of the system), where
conventional thermodynamics does not apply [41]. Power-
law decaying interactions occur in various systems, from
spin glasses and magnetically frustrated systems to atomic,
molecular, and optical systems [42–46]. They are associated
with phenomena that are absent for neighboring interac-
tions [47–54]. They are known to affect transport [55–61],
destroy many-body localization [62–68], and facilitate the
propagation of correlations [53,54,69–71].

While for α > d , the physics is many times only quan-
titatively different from the physics of systems with local
interactions (α → ∞), novel physics often emerges for slowly
decaying interactions, α < d . An example is the emergence
of a Hilbert space fragmentation into weakly connected sub-
spaces. If the dynamics starts in one of these subspaces, it
can be effectively described by a local Hamiltonian for a long
time [72,73], so despite the presence of long-range interac-
tions, features that are usually associated with short-range
interactions may be observed, such as the logarithmic growth
of entanglement [52,74], light-cone evolution [72,75], and
self-trapping [76]. On the other hand, if the initial state spans
multiple subspaces, the dynamics violates the generalized
Lieb-Robinson bound and leads to the instantaneous spread
of correlations [36–38,54].

The behavior of periodically driven systems with power-
law decaying interactions was studied in Refs. [77–80]. For
α > d and large driving frequencies, exponentially slow heat-
ing and the emergence of Floquet prethermalization were
obtained [26–29,78]. In this prethermal regime, a novel
nonequilibrium phase of matter dubbed the prethermal time
crystal [79], which is similar to the MBL-time crystal [14–16],
has been argued to exist. For α < d , the general expectation is
that to achieve a prethermal plateau, the system needs both to
be in the high-frequency regime and to be finite. The second
condition arises since the single-particle excitation energy
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increases with system size and therefore for fixed fre-
quency, the prethermal plateau shrinks as the system size
increases [78].

In this Letter, we show that it is in fact possible to suppress
heating in systems with long-range interactions in the low-
frequency regime, where the driving frequencies are smaller
than the single-particle excitation energy. This can be done
by taking advantage of the effective fragmentation of the
Hilbert space, which is induced by interactions with α < d ,
and by selecting initial states within one of those approximate
subspaces, such that the energy absorption from the drive
becomes ineffective. In this way, we can achieve prethermal
phases whose lifetimes grow as the system size increases
and which are viable at any dimension. We demonstrate this
behavior by numerically examining the dynamics of the half-
chain entanglement entropy and the energy absorption in a
spin chain with α < 1.

Model. We consider a long-range interacting spin chain of
length L described by the Hamiltonian,

Ĥ0 = JzV̂ + Jx

L−1∑
〈i, j〉

σ̂ x
i σ̂ x

j + hx

L∑
i=1

σ̂ x
i ,

V̂ =
L−1∑
i< j

1

|i − j|α σ̂ z
i σ̂ z

j , (1)

where σ̂
x,y,z
i are Pauli operators, Jz is the strength of the

long-range term V̂ and we set Jz = 1, Jx corresponds to the
strength of nearest-neighbor interactions in the x direction,
and hx is the amplitude of a transverse magnetic field. The op-
erator norm of the long-range term is ‖V̂ ‖ ∼ L2−α for α < 1,
such that it becomes dominant in the thermodynamic limit.
Nevertheless, even in this limit, the dynamics is not given
by V̂ for almost all initial states, and is highly nontrivial,
since the model stays nonintegrable for any value of α. While
one can make V̂ extensive by proper rescaling [81–83], this
rescaling does not naturally occur in the experiments, where
finite systems are studied [17,36,37,84]. We therefore do not
consider this rescaling in our work.

The static Hamiltonian Ĥ0 is periodically driven by the
following time-dependent perturbation,

Ĥ1(t ) = sgn[sin(ωt )]

(
hy

L∑
i=1

σ̂
y
i + hz

L∑
i=1

σ̂ z
i

)
, (2)

such that the total Hamiltonian is Ĥ (t ) = Ĥ0 + Ĥ1(t ). Here,
ω = 2π/T is the driving frequency, sgn(·) is the sign function,
T is the driving period, and hy and hz are the magnitudes of the
magnetic fields along the y and z directions, respectively. We
use a square-wave driving to closely follow the experiment
with trapped ions in Ref. [40], and also since it is computa-
tionally more efficient than a continuous time-varying drive.
However, the results presented here should be insensitive to
the choice of the driving protocol. We explore the dynamics
of the driven system, Ĥ (t ), with α < 1.

To study the heating dynamics, we use the numerically
exact Krylov subspace techniques to evolve the system in
time [85]. Due to the lack of symmetries, we have to consider
the entire Hilbert space of dimension 2L, so we analyze system

FIG. 1. Dynamics of (a), (b) the half-chain entanglement entropy
and (c), (d) the energy absorption, for different ranges of the driv-
ing frequencies ω. The infinite-temperature values are marked by
horizontal black dashed lines and the prethermal values of S(t ) by
solid horizontal lines. The dotted-dashed red lines mark the heating
time, where the entropy (energy) reaches the halfway mark between
its plateau value (initial value) and its infinite-temperature value.
The initial state is |ψ (0)〉 = |11 · · · 11011 · · · 11〉, L = 20, α = 0.67,
Jx = 0.69, hx = 0.23, hy = 0.21, and hz = 0.19. For these parame-
ters, Jeff = �1 = 10.92.

sizes up to L = 22. We investigate the energy density of the
static system measured with respect to the initial state,

ε(t ) ≡ 1

L
Tr [[ρ̂(0) − ρ̂(t )]Ĥ0], (3)

where ρ̂(t ) is the density matrix as a function of time, and the
half-chain entanglement entropy,

S(t ) = −Tr[ρ̂A(t ) ln ρ̂A(t )], (4)

where ρ̂A(t ) = TrB ρ̂(t ) is the reduced density matrix of the
subsystem A consisting of L/2 spins.

Heating suppression. Figure 1 shows the evolution with
time of the entanglement entropy and the energy density for
L = 20, different frequencies, and the initial state |ψ (0)〉 =
|11 · · · 11011 · · · 11〉, where all the spins, except the one in the
middle, point up. For most frequencies in Fig. 1, the entangle-
ment entropy exhibits three distinct regimes: an initial growth
for a short time, which is followed by the emergence of a long-
lived prethermal state (Floquet prethermalization), where S(t )
saturates to a plateau value Sp (horizontal black solid line),
after which the entropy finally reaches an infinite-temperature
value (black dashed line) corresponding to the result by Page,
SPage = (L ln 2 − 1)/2 [86]. The dependence of the behavior
of the energy density on the frequency is comparable to that
for the entropy, so it remains constant during the prethermal
phase, and eventually goes to its infinite-temperature value at
long times. Those distinct dynamical stages in Fig. 1 were
observed before in Ref. [78], where high driving frequen-
cies were considered and the dynamics started with initial
product states in the z direction with an equivalent number
of spins pointing up and down. But in stark contrast with
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FIG. 2. Heating time τ ∗ as extracted from the entanglement en-
tropy for different system sizes as a function of (a) frequency and
(b) rescaled frequency, ω/�1. The two vertical lines on the x axis
in (b) indicate the gaps �2 (dashed-dotted) and �1 (dashed) for
L = 22. The gap �1 is equal to Jeff (see text). As in Fig. 1: ini-
tial state |ψ (0)〉 = |11 · · · 11011 · · · 11〉, α = 0.67, Jx = 0.69, hx =
0.23, hy = 0.21, and hz = 0.19.

previous studies, we find that below a certain frequency value,
we can extend the prethermal phase and postpone heating
by decreasing the driving frequency, as shown in Figs. 1(b)
and 1(d). Contrary to past studies for which the heating time
increases monotonically with the frequency, we have now a
nonmonotonic dependence. For frequencies ω � 11, the heat-
ing time grows as ω increases [Figs. 1(a) and 1(c)], but for
a range of frequencies with ω < 11, the heating time shrinks
as ω increases [Figs. 1(b) and 1(d)]. For frequencies close to
ω ∼ 11, the system heats up very quickly, hinting at a resonant
behavior.

To show the frequency dependence more explicitly, we
define the heating time τ ∗ as the time when the en-
tanglement entropy reaches a halfway mark between its
prethermal plateau and its asymptotic value, S(τ ∗) ≡ Sp +
[SPage − Sp]/2, which is indicated with dotted-dashed red
lines in Figs. 1(a) and 1(b). We see in Fig. 2(a) that, as
expected, for ω > 11 the heating time increases as we increase
the driving frequency, however, within a range of values for
ω < 11, the heating time increases as we decrease ω and
these results further improve as the system size grows. A
similar qualitative picture is obtained also for the heating time
calculated from the energy density ε(t ). As we explain next,
this unusual dependence on the frequency is a consequence
of the effective fragmentation of the Hilbert space verified for
the nondriven system when α < 1 [72].

Energy bands. To better understand the Hilbert space
fragmentation of the static system, let us first examine the
long-range term V̂ of Ĥ0 [Eq. (1)], which for α = 0 can be
written in terms of the collective spin operator M̂z = ∑L

i σ̂ z
i /2

as V̂ = 2M̂2
z − L/2. The energy spectrum of V̂ consists of

degenerate bands with the energies

Eb = 2

(
L

2
− b

)2

− L

2
, b = 0, 1, . . . ,

L

2
, (5)

where b indicates the number of spins pointing down in the z
direction, and we designate the corresponding energy band as
the band b. Since the energy of a product state with b down
spins is equal to the energy of a state with L − b down spins,
each band is 2

(L
b

)
degenerate for b < L/2. For 0 < α < 1,

FIG. 3. The lowest energy gaps �1 (black lines and circles) and
�2 (red lines and circles) as a function of L. The solid lines indicate
the exact calculations for Jx = hx = 0 [Eqs. (6) and (7)] and the
circles are the numerical results for Jx = 0.69 and hx = 0.23.

the degeneracy within each band of the spectrum of V̂ is
partially lifted, but the different subspaces are still separated
in energy. We define the energy gap between two nearby bands
as �b ≡ Eb − Eb−1, which can be obtained analytically. The
gap between the bands b = 0 and b = 1 can be calculated as

�1 =
L−1∑
r=1

2

rα
∼ 2

1 − α
L1−α. (6)

One sees that the gap increases monotonically with system
size for α < 1. Similarly, we can obtain �2,

�2 =
(

L−1∑
r=2

2

rα
+

L−2∑
r=1

2

rα

)
− 2

[
L/2−1∑

r=1

2

rα
+

(
2

L

)α
]

∼ 2(2 − 2α )

1 − α
L1−α, (7)

which also increases with the system size, although �2 < �1.
The other terms of the static Hamiltonian Ĥ0 couple the

states of V̂ . The Jx term connects states within the same band
and states from band b to bands b ± 2, while the hx term
connects states of band b to bands b ± 1. However, if the
values of Jx and hx are smaller than the gap between the
bands, they cannot effectively couple them. Furthermore, the
numerical calculations for the values of �1 and �2 for Ĥ0

with Jx, hx 
= 0 approach the gaps between the bands of V̂ in
the limit L → ∞, as shown in Fig. 3. This implies that the
dynamics starting from an initial state within one band gets
confined to that approximate subspace for a time that grows
with the system size [72].

Resonant transition. The periodic driving of Ĥ0 tries to
establish transitions between the different bands, but for this
to happen efficiently it must deposit an amount of energy on
par with the gap between the bands, ω ≈ �b. For the initial
state considered in Fig. 1, the most relevant bands are b = 0,
1, and 2, with the corresponding gaps �1 and �2. To see the
dependence of the heating time on the dominant gap more
clearly, we rescale the driving frequency by the largest gap,
�1, as shown in Fig. 2(b). We see that the heating time τ ∗
reaches its smallest value when ω ≈ �1, because at this point
we hit a resonant transition that leads to fast heating. This can
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FIG. 4. Half-time decay of the fidelity τF as a function of the
rescaled frequency ω/�1. The two vertical lines indicate the gaps
�2 (dashed-dotted) and �1 (dashed) for L = 22. As in Fig. 1: ini-
tial state |ψ (0)〉 = |11 · · · 11011 · · · 11〉, α = 0.67, Jx = 0.69, hx =
0.23, hy = 0.21, and hz = 0.19.

be directly observed also in Fig. 1, where the fastest heating
is indeed verified for ω ≈ �1 ≈ 11. Another drop in the value
of τ ∗ occurs when ω ≈ �2, which may be due to a multiple
photon process. Since a square-wave drive contains multi-
ple harmonics, higher-order transitions might occur. While
such processes are suppressed at high enough frequencies, at
very low frequencies, they could give rise to a nonmonotonic
dependence of the thermalization time on the frequency as
is indeed observed in Fig. 2. Next, we explain what causes
the suppression of heating as the frequency increases above
�1 and, especially, when it decreases within the range �2 <

ω < �1.
Nonmonotonic frequency dependence. The maximum en-

ergy required to flip one spin for any initial state, scales as
Jeff ≡ ∑

r r−α ∼ L1−α , with the system size. For the initial
state considered above, Jeff coincides with the largest gap
between the energy bands, Jeff = �1. In the high-frequency
regime, ω � Jeff, we expect slow heating, as indeed observed
in Figs. 1(a) and 1(c). For ω < Jeff one might have expected
fast heating to occur, however, because �1 = Jeff, one photon
from the drive is not sufficient to induce a transition from
the band b = 1 of the initial state to a neighboring band and
the dynamics gets confined to the initial band for a long
time, leading to heating suppression and the emergence of
the prethermal phase in Figs. 1(a) and 1(c). In this case,
increasing the frequency, ω → �1, induces heating due to
the approach to the resonant condition. Therefore, heating
suppression can be achieved by going away from the reso-
nant frequency either by increasing [Figs. 1(a) and 1(c)] or
decreasing [Figs. 1(b) and 1(d)] the driving frequency.

To demonstrate that for frequencies off resonance to the
gap the dynamics is indeed confined for long times to the band
of the initial state, we calculate the fidelity corresponding to
the probability to find the evolved state within the initial band,

Fb(t ) = Tr[ρ̂(t )P̂b], P̂b =
∑

k

∣∣V b
k

〉〈
V b

k

∣∣, (8)

where P̂b is the projector to the initial band spanned by the
states |V b

k 〉. In Fig. 4, we plot the time τF that it takes for
the fidelity to decay to half of its initial value for various
frequencies and starting from an initial state in the band b = 1.
We obtain a behavior very similar to that for the heating time
τ ∗: The fidelity decays fast for frequencies close to the gap
value, ω ≈ �1, and as we move away from it, τF increases
significantly. This corroborates our claim that the suppression
of heating and the emergence of Floquet prethermalization,
that we observe, are indeed a result of the confinement of the
dynamics to the initial band.

Discussion. We demonstrate that in periodically driven
spin systems with long-range interactions, heating can be
strongly suppressed not only with driving frequencies larger
than the energy it costs to flip a single spin, but also with
frequencies smaller than that energy. This is due to the forma-
tion of energy bands in the many-body spectrum of the static
system, which get further apart as the system size increases.
If the system is initialized within one band and the drive is
off resonance with the gap between the bands, then heating
is significantly suppressed. This results in a nonmonotonic
dependence of the heating time on the frequency. For frequen-
cies larger than the gap, increasing the frequency suppresses
heating, while for frequencies below the gap, increasing the
frequencies enhances heating.

Our results therefore provide a robust way to suppress heat-
ing even for small driving frequencies, which can be tested in
experiments with ion traps [36,40]. While in this Letter, due
to numerical limitations, we have explored a one-dimensional
system, our results should hold for any dimension, provided
α < d .

In the future, it would be interesting to see if constraining a
long-range interacting system to a certain energy band allows
us to obtain, at least a transient, time-crystalline behavior,
which has been ruled out for α < d [79]. It would be also
interesting to study the effect of aperiodic drives on heating in
such systems [87,88].
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[23] P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, Many-Body
Localization in Periodically Driven Systems, Phys. Rev. Lett.
114, 140401 (2015).

[24] D. A. Abanin, W. De Roeck, and F. Huveneers, Theory
of many-body localization in periodically driven systems,
Ann. Phys. (NY) 372, 1 (2016).

[25] P. Bordia, H. Lüschen, U. Schneider, M. Knap, and I. Bloch,
Periodically driving a many-body localized quantum system,
Nat. Phys. 13, 460 (2017).

[26] D. A. Abanin, W. De Roeck, and F. Huveneers, Exponentially
Slow Heating in Periodically Driven Many-Body Systems,
Phys. Rev. Lett. 115, 256803 (2015).

[27] D. A. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers,
Effective Hamiltonians, prethermalization, and slow energy ab-
sorption in periodically driven many-body systems, Phys. Rev.
B 95, 014112 (2017).

[28] T. Mori, T. Kuwahara, and K. Saito, Rigorous Bound on
Energy Absorption and Generic Relaxation in Periodically
Driven Quantum Systems, Phys. Rev. Lett. 116, 120401
(2016).

[29] D. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers, A Rig-
orous Theory of Many-Body Prethermalization for Periodically
Driven and Closed Quantum Systems, Commun. Math. Phys.
354, 809 (2017).

[30] S. A. Weidinger and M. Knap, Floquet prethermalization and
regimes of heating in a periodically driven, interacting quantum
system, Sci. Rep. 7, 45382 (2017).

[31] K. Singh, C. J. Fujiwara, Z. A. Geiger, E. Q. Simmons, M.
Lipatov, A. Cao, P. Dotti, S. V. Rajagopal, R. Senaratne, T.
Shimasaki, M. Heyl, A. Eckardt, and D. M. Weld, Quantifying
and Controlling Prethermal Nonergodicity in Interacting Flo-
quet Matter, Phys. Rev. X 9, 041021 (2019).

[32] L. F. Santos, The quick drive to pseudo-equilibrium, Nat. Phys.
17, 429 (2021).

[33] P. Peng, C. Yin, X. Huang, C. Ramanathan, and P. Cappellaro,
Floquet prethermalization in dipolar spin chains, Nat. Phys. 17,
444 (2021).

[34] A. Rubio-Abadal, M. Ippoliti, S. Hollerith, D. Wei, J. Rui,
S. L. Sondhi, V. Khemani, C. Gross, and I. Bloch, Floquet
Prethermalization in a Bose-Hubbard System, Phys. Rev. X 10,
021044 (2020).

[35] Recently, Floquet prethermalization was achieved away from
the high-frequency limit in a model with short-range interac-
tions by imposing special constraints on the driving protocol
[89].

[36] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-
Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe, Non-local
propagation of correlations in quantum systems with long-range
interactions, Nature (London) 511, 198 (2014).

[37] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller,
R. Blatt, and C. F. Roos, Quasiparticle engineering and en-
tanglement propagation in a quantum many-body system,
Nature (London) 511, 202 (2014).

[38] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. Adu Smith, E. Demler, and J.
Schmiedmayer, Relaxation and prethermalization in an isolated
quantum system, Science 337, 1318 (2012).

[39] W. Morong, F. Liu, P. Becker, K. S. Collins, L. Feng, A.
Kyprianidis, G. Pagano, T. You, A. V. Gorshkov, and C.
Monroe, Observation of Stark many-body localization without
disorder, arXiv:2102.07250.

[40] A. Kyprianidis, F. Machado, W. Morong, P. Becker, K. S.
Collins, D. V. Else, L. Feng, P. W. Hess, C. Nayak, G. Pagano,

L140301-5

https://doi.org/10.1103/PhysRevA.79.013611
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1103/PhysRevLett.110.200403
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevLett.108.043003
https://doi.org/10.1103/PhysRevB.97.100301
https://doi.org/10.1016/j.aop.2013.02.011
https://doi.org/10.1103/PhysRevB.96.020201
https://doi.org/10.1103/PhysRevB.102.024201
https://doi.org/10.1103/PhysRevLett.115.030402
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevLett.116.250401
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1038/nature21413
https://doi.org/10.1103/PhysRevB.102.195116
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.21468/SciPostPhys.3.4.029
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevLett.114.140401
https://doi.org/10.1016/j.aop.2016.03.010
https://doi.org/10.1038/nphys4020
https://doi.org/10.1103/PhysRevLett.115.256803
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1103/PhysRevLett.116.120401
https://doi.org/10.1007/s00220-017-2930-x
https://doi.org/10.1038/srep45382
https://doi.org/10.1103/PhysRevX.9.041021
https://doi.org/10.1038/s41567-020-01117-8
https://doi.org/10.1038/s41567-020-01120-z
https://doi.org/10.1103/PhysRevX.10.021044
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/nature13461
https://doi.org/10.1126/science.1224953
http://arxiv.org/abs/arXiv:2102.07250


BHAKUNI, SANTOS, AND LEV PHYSICAL REVIEW B 104, L140301 (2021)

N. Y. Yao, and C. Monroe, Observation of a prethermal discrete
time crystal, Science 372, 1192 (2021).

[41] T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens, Dynamics
and Thermodynamics of Systems with Long-Range Interactions,
1st ed., Lecture Notes in Physics Vol. 602 (Springer, Berlin,
2002).

[42] K. Binder and A. P. Young, Spin glasses: Experimental facts,
theoretical concepts, and open questions, Rev. Mod. Phys. 58,
801 (1986).

[43] M. Saffman, T. G. Walker, and K. Mølmer, Quantum in-
formation with Rydberg atoms, Rev. Mod. Phys. 82, 2313
(2010).

[44] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard,
A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-
exchange interactions with lattice-confined polar molecules,
Nature (London) 501, 521 (2013).

[45] R. Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith,
A. Lee, E. E. Edwards, C. C. J. Wang, J. K. Freericks, and
C. Monroe, Emergence and frustration of magnetism with
variable-range interactions in a quantum simulator, Science
340, 583 (2013).

[46] J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K.
Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, Engineered
two-dimensional Ising interactions in a trapped-ion quantum
simulator with hundreds of spins, Nature (London) 484, 489
(2012).

[47] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One- or Two-Dimensional Isotropic
Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).

[48] D. Mukamel, S. Ruffo, and N. Schreiber, Breaking of Ergod-
icity and Long Relaxation Times in Systems with Long-Range
Interactions, Phys. Rev. Lett. 95, 240604 (2005).

[49] G. L. Celardo, J. Barré, F. Borgonovi, and S. Ruffo, Time
scale for magnetic reversal and the topological nonconnectivity
threshold, Phys. Rev. E 73, 011108 (2006).

[50] R. Bachelard, C. Chandre, D. Fanelli, X. Leoncini, and S. Ruffo,
Abundance of Regular Orbits and Nonequilibrium Phase Tran-
sitions in the Thermodynamic Limit for Long-Range Systems,
Phys. Rev. Lett. 101, 260603 (2008).

[51] M. Kastner, Nonequivalence of Ensembles for Long-Range
Quantum Spin Systems in Optical Lattices, Phys. Rev. Lett.
104, 240403 (2010).

[52] J. Schachenmayer, B. P. Lanyon, C. F. Roos, and A. J. Daley,
Entanglement Growth in Quench Dynamics with Variable
Range Interactions, Phys. Rev. X 3, 031015 (2013).

[53] J. Eisert, M. van den Worm, S. R. Manmana, and M. Kastner,
Breakdown of Quasilocality in Long-Range Quantum Lattice
Models, Phys. Rev. Lett. 111, 260401 (2013).

[54] P. Hauke and L. Tagliacozzo, Spread of Correlations in Long-
Range Interacting Quantum Systems, Phys. Rev. Lett. 111,
207202 (2013).

[55] L. S. Levitov, Delocalization of Vibrational Modes Caused
by Electric Dipole Interaction, Phys. Rev. Lett. 64, 547
(1990).

[56] I. L. Aleiner, B. L. Altshuler, and K. B. Efetov, Localization
and Critical Diffusion of Quantum Dipoles in Two Dimensions,
Phys. Rev. Lett. 107, 076401 (2011).

[57] D. B. Gutman, I. V. Protopopov, A. L. Burin, I. V. Gornyi, R. A.
Santos, and A. D. Mirlin, Energy transport in the Anderson
insulator, Phys. Rev. B 93, 245427 (2016).

[58] Y. Prasad and A. Garg, Many-body localization and enhanced
nonergodic subdiffusive regime in the presence of random long-
range interactions, Phys. Rev. B 103, 064203 (2021).

[59] B. Kloss and Y. Bar Lev, Spin transport in a long-range-
interacting spin chain, Phys. Rev. A 99, 032114 (2019).

[60] B. Kloss and Y. Bar Lev, Spin transport in disordered long-
range interacting spin chain, Phys. Rev. B 102, 060201 (2020).

[61] N. C. Chávez, F. Mattiotti, J. A. Méndez-Bermúdez, F.
Borgonovi, and G. L. Celardo, Disorder-Enhanced and
Disorder-Independent Transport with Long-Range Hopping:
Application to Molecular Chains in Optical Cavities, Phys. Rev.
Lett. 126, 153201 (2021).

[62] A. L. Burin, Energy delocalization in strongly disordered
systems induced by the long-range many-body interaction,
arXiv:cond-mat/0611387.

[63] A. L. Burin, Localization in a random XY model with long-
range interactions: Intermediate case between single-particle
and many-body problems, Phys. Rev. B 92, 104428 (2015).

[64] W. De Roeck and F. Huveneers, Stability and instability towards
delocalization in many-body localization systems, Phys. Rev. B
95, 155129 (2017).

[65] K. S. Tikhonov and A. D. Mirlin, Many-body localization
transition with power-law interactions: Statistics of eigenstates,
Phys. Rev. B 97, 214205 (2018).

[66] S. Gopalakrishnan and D. A. Huse, Instability of many-body
localized systems as a phase transition in a nonstandard ther-
modynamic limit, Phys. Rev. B 99, 134305 (2019).

[67] S. Nag and A. Garg, Many-body localization in the presence of
long-range interactions and long-range hopping, Phys. Rev. B
99, 224203 (2019).

[68] S. Roy and D. E. Logan, Self-consistent theory of many-body
localisation in a quantum spin chain with long-range interac-
tions, SciPost Phys. 7, 42 (2019).

[69] Z. X. Gong, M. Foss-Feig, S. Michalakis, and A. V. Gorshkov,
Persistence of Locality in Systems with Power-Law Interac-
tions, Phys. Rev. Lett. 113, 030602 (2014).

[70] L. Mazza, D. Rossini, M. Endres, and R. Fazio, Out-of-
equilibrium dynamics and thermalization of string order,
Phys. Rev. B 90, 020301(R) (2014).

[71] M. Foss-Feig, Z. X. Gong, C. W. Clark, and A. V. Gorshkov,
Nearly Linear Light Cones in Long-Range Interacting Quantum
Systems, Phys. Rev. Lett. 114, 157201 (2015).

[72] L. F. Santos, F. Borgonovi, and G. L. Celardo, Cooperative
Shielding in Many-Body Systems with Long-Range Interaction,
Phys. Rev. Lett. 116, 250402 (2016).

[73] G. L. Celardo, R. Kaiser, and F. Borgonovi, Shielding and
localization in the presence of long-range hopping, Phys. Rev.
B 94, 144206 (2016).

[74] A. Lerose and S. Pappalardi, Origin of the slow growth of
entanglement entropy in long-range interacting spin systems,
Phys. Rev. Research 2, 012041(R) (2020).

[75] D. M. Storch, M. Van Den Worm, and M. Kastner, Interplay
of soundcone and supersonic propagation in lattice models with
power law interactions, New J. Phys. 17, 063021 (2015).

[76] H. N. Nazareno and P. E. de Brito, Long-range interactions and
nonextensivity in one-dimensional systems, Phys. Rev. B 60,
4629 (1999).

[77] W. W. Ho, I. Protopopov, and D. A. Abanin, Bounds on Energy
Absorption and Prethermalization in Quantum Systems with
Long-Range Interactions, Phys. Rev. Lett. 120, 200601 (2018).

L140301-6

https://doi.org/10.1126/science.abg8102
https://doi.org/10.1103/RevModPhys.58.801
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1038/nature12483
https://doi.org/10.1126/science.1232296
https://doi.org/10.1038/nature10981
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.95.240604
https://doi.org/10.1103/PhysRevE.73.011108
https://doi.org/10.1103/PhysRevLett.101.260603
https://doi.org/10.1103/PhysRevLett.104.240403
https://doi.org/10.1103/PhysRevX.3.031015
https://doi.org/10.1103/PhysRevLett.111.260401
https://doi.org/10.1103/PhysRevLett.111.207202
https://doi.org/10.1103/PhysRevLett.64.547
https://doi.org/10.1103/PhysRevLett.107.076401
https://doi.org/10.1103/PhysRevB.93.245427
https://doi.org/10.1103/PhysRevB.103.064203
https://doi.org/10.1103/PhysRevA.99.032114
https://doi.org/10.1103/PhysRevB.102.060201
https://doi.org/10.1103/PhysRevLett.126.153201
http://arxiv.org/abs/arXiv:cond-mat/0611387
https://doi.org/10.1103/PhysRevB.92.104428
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.97.214205
https://doi.org/10.1103/PhysRevB.99.134305
https://doi.org/10.1103/PhysRevB.99.224203
https://doi.org/10.21468/SciPostPhys.7.4.042
https://doi.org/10.1103/PhysRevLett.113.030602
https://doi.org/10.1103/PhysRevB.90.020301
https://doi.org/10.1103/PhysRevLett.114.157201
https://doi.org/10.1103/PhysRevLett.116.250402
https://doi.org/10.1103/PhysRevB.94.144206
https://doi.org/10.1103/PhysRevResearch.2.012041
https://doi.org/10.1088/1367-2630/17/6/063021
https://doi.org/10.1103/PhysRevB.60.4629
https://doi.org/10.1103/PhysRevLett.120.200601


SUPPRESSION OF HEATING BY LONG-RANGE … PHYSICAL REVIEW B 104, L140301 (2021)

[78] F. Machado, G. D. Kahanamoku-Meyer, D. V. Else, C. Nayak,
and N. Y. Yao, Exponentially slow heating in short and long-
range interacting floquet systems, Phys. Rev. Research 1,
033202 (2019).

[79] F. Machado, D. V. Else, G. D. Kahanamoku-Meyer, C.
Nayak, and N. Y. Yao, Long-Range Prethermal Phases
of Nonequilibrium Matter, Phys. Rev. X 10, 011043
(2020).

[80] T. Kuwahara, T. Mori, and K. Saito, Floquet-Magnus theory and
generic transient dynamics in periodically driven many-body
quantum systems, Ann. Phys. (NY) 367, 96 (2016).

[81] M. Kastner, Diverging Equilibration Times in Long-Range
Quantum Spin Models, Phys. Rev. Lett. 106, 130601 (2011).

[82] R. Bachelard and M. Kastner, Universal Threshold for the
Dynamical Behavior of Lattice Systems with Long-Range In-
teractions, Phys. Rev. Lett. 110, 170603 (2013).

[83] M. Kastner, N-scaling of timescales in long-range N-body
quantum systems, J. Stat. Mech. (2017) 014003.

[84] B. Neyenhuis, J. Zhang, P. W. Hess, J. Smith, A. C. Lee,
P. Richerme, Z. X. Gong, A. V. Gorshkov, and C. Monroe,
Observation of prethermalization in long-range interacting spin
chains, Sci. Adv. 3, e1700672 (2017).

[85] D. J. Luitz and Y. B. Lev, The ergodic side of the many-body
localization transition, Ann. Phys. 529, 1600350 (2017).

[86] D. N. Page, Average Entropy of a Subsystem, Phys. Rev. Lett.
71, 1291 (1993).

[87] H. Zhao, F. Mintert, R. Moessner, and J. Knolle, Random
Multipolar Driving: Tunably Slow Heating through Spectral
Engineering, Phys. Rev. Lett. 126, 040601 (2021).

[88] T. Mori, H. Zhao, F. Mintert, J. Knolle, and R. Moessner, Rig-
orous Bounds on the Heating Rate in Thue-Morse Quasiperi-
odically and Randomly Driven Quantum Many-Body Systems,
Phys. Rev. Lett. 127, 050602 (2021).

[89] C. Fleckenstein and M. Bukov, Prethermalization and thermal-
ization in periodically driven many-body systems away from
the high-frequency limit, Phys. Rev. B 103, L140302 (2021).

L140301-7

https://doi.org/10.1103/PhysRevResearch.1.033202
https://doi.org/10.1103/PhysRevX.10.011043
https://doi.org/10.1016/j.aop.2016.01.012
https://doi.org/10.1103/PhysRevLett.106.130601
https://doi.org/10.1103/PhysRevLett.110.170603
https://doi.org/10.1088/1742-5468/aa5119
https://doi.org/10.1126/sciadv.1700672
https://doi.org/10.1002/andp.201600350
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevLett.126.040601
https://doi.org/10.1103/PhysRevLett.127.050602
https://doi.org/10.1103/PhysRevB.103.L140302

