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Constant of motion for ideal grain growth in three dimensions
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Most metallic and ceramic materials are comprised of space-filling collections of crystalline grains separated
by grain boundaries. While this grain structure has been studied for more than a century, there are few
rigorous results regarding its global properties available in the literature. We present a rigorous result for
three-dimensional grain structures that relates the integral of the Gaussian curvature over the grain boundaries to
the numbers of grains and quadruple junctions. The result is numerically verified for a grain structure consisting
of periodic truncated octahedra.
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The grain structure of polycrystalline materials is decep-
tively simple, and for that reason has been the subject of
intense and ongoing study. For specificity, consider a model
system where the grain boundary energy and mobility are
constants, i.e., do not depend on grain misorientation or
the boundary plane normal. The phenomenological Turnbull
equation [1] relates the normal velocity of a grain boundary
in such a system to the driving pressure, and along with the
Young-Laplace equation [2], suggests that the normal velocity
is directly proportional to the mean curvature of the grain
boundary. The migration of individual boundaries induces the
evolution of the grain structure, a process known as grain
growth, where the total area of grain boundaries and the num-
ber of grains decrease with time.

There are surprisingly few rigorous results known about
grain structures, even for the two-dimensional version of
this system. Energy considerations require that grain bound-
aries only meet at triple junctions with internal angles of
2π/3 [3,4]. A consequence of this and curvature-driven grain
growth is that a grain’s area changes at a rate that depends
only on the number of bounding vertices [5,6]. Globally,
topological arguments require that the average number of
such bounding vertices be precisely six [7]. There are natural
analogs to several, but not all, of these results in three dimen-
sions. Grain boundaries only meet at triple junction lines with
dihedral angles of 2π/3, and triple junction lines only meet at
quadruple junction points with angles of cos−1(−1/3) [3,4].
The rate of volume change of a grain depends not only on
the total length of the bounding triple lines, but on a mea-
sure of the linear dimension known as the mean width [8,9].
For both the two- and three-dimensional systems, the hypoth-
esis that the structure reaches a statistically self-similar state
implies that that the average grain diameter increases as the
square root of time [10,11]. This is the effective extent of
current knowledge.

There have been a variety of inexact relationships proposed
as well, usually for grain structures in the conjectured self-
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similar state [12]. Ones that relate to the global properties of
the three-dimensional system include proposed distributions
for the effective radius of a grain [13–15] and the number
of faces bounding a grain [15]. Recent advances in several
microscopy techniques promise to make three-dimensional
grain structure data more readily available, possibly allowing
such relationships to be further refined. Three-dimensional
electron backscatter diffraction [16,17] destructively images
the grain structure by a serial sectioning process, whereas
three-dimensional x-ray diffraction microscopy [18,19] is
nondestructive but generally offers poorer spatial resolu-
tion. Given this situation, additional rigorous results for the
global properties of the grain structure of the model three-
dimensional system would be valuable, both to measure
deviations of the experimental systems from the model one,
and to verify the accuracy of grain structures generated by
computational means. This Letter proves one such result, re-
lating the integral of the Gaussian curvature over the grain
boundaries to the numbers of grains and quadruple junction
points, and thereby to the numbers of grain boundaries and
triple junction lines.

Let � be a space-filling grain structure composed of grains
that meet in twos on grain boundaries, grain boundaries that
meet in threes at triple junction lines, and triple junction lines
that meet in fours at quadruple junction points, as in Fig. 1.
Further suppose that � satisfies Plateau’s laws [i.e., grain
boundaries meet at dihedral angles of 2π/3 and triple junction
lines meet at angles of cos−1(−1/3)], and that � is defined in
a three-dimensional region with periodic boundary conditions.
If G is a grain in �, then our main result is that the expectation
value of the Gaussian curvature K integrated over the interiors
of the grain boundaries of G and the expectation value of the
number of quadruple junction points f0(G) of G are related by〈∫

∂G
K dA

〉
= 4π − α〈 f0(G)〉. (1)

The angle brackets indicate an average performed over all
grains in �, ∂G indicates the interiors of the grain bound-
aries of G, and α = 2π − 3 cos−1(−1/3) is the angular defect
at a quadruple junction point. This result is exact (given a
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FIG. 1. A grain structure in a cubic volume, with several grains
removed to reveal the interior. Color indicates the individual grains,
internal curved surfaces are grain boundaries, internal black lines
are triple junction lines, and four triple junction lines intersect at
quadruple junction points

few technical assumptions that are usually satisfied and are
discussed in the Supplemental Material [20]), and to our
knowledge does not appear in the literature; a related result by
Kusner [21] requires that all the grain boundaries be minimal
surfaces, and one by Glicksman [22] applies only to uncon-
structable grain structures of average n-polyhedra.

The Gaussian curvature of a surface is defined as the prod-
uct of the principal curvatures at any point. The appearance
of this quantity in Eq. (1) could be surprising, since the mean
curvature (the sum of the principal curvatures) is the one that
controls the dynamics of the grain boundary network [1,2].
That said, the Gaussian curvature is in some ways the more
fundamental of the two quantities, being an intrinsic property
of the surface that does not depend on the way the surface
is embedded in Euclidean space. For example, the Gaussian
curvature of a sheet of paper is zero at every point whether
the sheet is laid flat or rolled up, though the same is not true
for the mean curvature. This invariance to the embedding is
reflected in the celebrated Gauss-Bonnet theorem:

∫
∂G

K dA +
f2(G)∑
i=1

∫
∂Fi

κg ds +
f0(G)∑
i=1

αi = 2πχ (∂G).

While this version specifically applies to the surface of a
grain, all versions relate the integrated Gaussian curvature of
a surface to its Euler characteristic χ (∂G) (equal to two when
the surface can be smoothly deformed into a sphere without
cutting or gluing). The terms on the left include the integrated
Gaussian curvature over the grain boundary interiors, the sum
of the integrated geodesic curvature κg over the interiors of the
bounding triple junction lines ∂Fi of all grain boundaries Fi,
and the sum of the angular defects αi of the quadruple junction
points of G.

If G can be smoothly deformed into a sphere and belongs
to a grain structure � that obeys Plateau’s rules, then this can
be simplified to

∫
∂G

K dA +
f1(G)∑
i=1

∫
Ei

κe2 · v ds + α f0(G) = 4π,

FIG. 2. Grain boundaries Fi and Fj meet at the triple junction line
in bold, and v bisects the dihedral angle between Fi and Fj . Arrows
indicate the tangent direction, and the second Frenet vector e2 points
along the triple junction line’s normal direction.

where the most significant change is to the middle term on
the left; this is now the sum of the integrated curvature of
the triple junction lines of G, weighted by the dot product
of the second Frenet vector e2 of the curve and a unit vector
v that bisects the dihedral angle between the adjoining grain
boundaries; see Fig. 2. Summing this equation over all grains
in � results in a remarkable cancellation (previously noted
by DeHoff [23]) where the contribution of the second term
on the left vanishes. Specifically, every triple junction line is
integrated over three times, once for each adjoining grain. κe2

is an inherent quantity of the triple junction line that is the
same for all three integrals, but the three v are all unit vectors
in a plane with mutual angles of 2π/3. That is, the sum of
the three v vanishes identically for each triple junction line,
leaving an alternative version of the main result,

f2(�)∑
i=1

∫
Fi

K dA = 2π f3(�) − 2α f0(�), (2)

where Fi is the ith grain boundary of � and f0(�), f2(�),
and f3(�) are the numbers of quadruple junction points, grain
boundaries, and grains of �. Dividing through by f3(�) and
multiplying by a constant gives Eq. (1). More detailed deriva-
tions of both Eqs. (1) and (2) are provided in the Supplemental
Material [20].

Although Eq. (1) appears to be simpler, there are at least
two observations that are more clearly made by means of
Eq. (2). The first is that the integral of K over the grain
boundaries of � depends only on the numbers of grains and
quadruple junction points of �, and not on the geometry of
the grain structure. That is, the left-hand side of Eq. (2) is
invariant to any deformation of � that preserves the numbers
of grains and quadruple junction points. The second is that
a sufficiently accurate measurement of the integral of K over
the grain boundaries of � in principle specifies the numbers
of all components of �. Observe that since there is no ratio-
nal number that relates the coefficients of f3(�) and f0(�)
in Eq. (2), the numbers of grains and quadruple junctions
can be inferred if the left-hand side is known sufficiently
accurately. The number of triple junction lines can then be
found from 2 f1(�) = 4 f0(�) by a counting argument, and the
number of grains from 0 = f0(�) − f1(�) + f2(�) − f3(�)
which follows from the domain of � being a three-torus with
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FIG. 3. An infinite periodic grain structure that satisfies Plateau’s
laws can be constructed by repeating a relaxed truncated octahedron
(left). This grain was found by starting with a periodic unit of a
grain structure consisting of unrelaxed truncated octahedra, fixing the
location of the interior quadruple junction points, and minimizing the
grain boundary area (right).

χ (�) = 0. The necessary modifications to Eqs. (1) and (2)
for grain structures in other domains (e.g., ones with free
boundaries) are discussed in the Supplemental Material [20].

As a numerical confirmation of Eq. (1), consider a grain
structure consisting of periodic truncated octahedra, relaxed
under the action of surface tension to satisfy Plateau’s laws;
one such grain is shown on the left of Fig. 3. The shape of this
grain was found by starting with a grain structure consisting
of unrelaxed truncated octahedra and constructing the periodic
unit shown on the right of Fig. 3, with a single grain at the cen-
ter and corners at the centers of the neighboring grains. The
periodic unit was computationally represented by a volumetric
finite element mesh with linear elements, with the average
number of triangles per hexagonal face nt depending on a
characteristic length and the details of the mesh adaptation
algorithm. The locations of the interior quadruple junction
points were fixed, and the structure was relaxed by allowing
the vertices on grain surfaces to move according to equations
of motion known to reproduce curvature-driven grain growth
[24] until the magnitude of the vertex forces fell below a
threshold. The grain structure did not reach a steady-state
configuration when the locations of the interior quadruple
junction points were not fixed, owing to a known instability
of this grain structure to volumetric perturbations [25]. While
quadratic elements would allow the steady-state geometry to
be more accurately represented, a convergence analysis with
an increasing number of linear elements is sufficient for the
present purpose.

The simulations were performed with a modified version of
a recently developed microstructure evolution code [26] that
usually uses SCOREC [27] for mesh management and main-
tenance, but the mesh adaptation operations were found to
interfere with the convergence of the grain geometry. Instead,
artificial vertex forces defined by Kuprat [28] were used to
maintain the mesh element quality during the structure relax-
ation. Since the artificial forces only acted on vertices on the
grain interiors, it is expected that they did not substantially
affect the grain geometry. The boundary conditions were de-
fined to make the simulation cell behave as a periodic unit in

a grain structure consisting of periodic truncated octahedra.
Whereas the grain boundaries on the simulation cell interior
had a constant nonzero energy per unit area, the external
surfaces of the simulation cell were assigned zero energy per
unit area; this is consistent with viewing them as the result
of intersecting grains in the underlying grain structure with
the boundary of the periodic unit. Vertices on the external
surfaces were constrained to remain on the external surfaces
during relaxation by projecting away any displacement in the
normal direction, effectively imposing a Neumann boundary
condition. The integrated Gaussian curvature was calculated
as the sum of the angular defects at the vertices on the grain
boundary interiors, where the angular defect is defined as 2π

minus the sum of the interior angles of the grain boundary
triangles meeting at the vertex.

Table I shows the results of this analysis for increasing
refinement of the mesh, i.e., as a function of nt . The geometric
accuracy of the representation can be evaluated by means of
the percent reduction in grain boundary area �A of the relaxed
truncated octahedron relative to the unrelaxed one. A detailed
analysis [29] suggests a value of 0.159% for the continuous
system; that �A does not converge to this value is likely due
to the irregularity of the mesh. As for the integrated Gaussian
curvature, the average quantities in Eq. (1) are equivalent to
those for a single grain by periodicity. This implies that the
integral of the Gaussian curvature over the interiors of the
grain boundaries should be

∫
∂G

K dA = 4π − 24α ≈ −0.664 484.

A conjugate gradient minimization algorithm and bootstrap-
ping were used to fit the model

∫
KdA = a + bnc

t to the data
in Table I, giving a = −0.661 ± 0.022, b = 2.08 ± 0.51, and
c = −0.378 ± 0.060 (reported as the medians and half the
interquartile range). This implies that the integrated Gaussian
curvature would be −0.661 ± 0.022 in the nt → ∞ limit,
and is interpreted as numerically confirming Eq. (1) given
the degree of approximation of the grain geometry. That the
integrated Gaussian curvature converges to the expected value
even though the percent area reduction does not confirms
the assertion that Eqs. (1) and (2) are invariant to geometric
perturbations of the structure, provided the numbers of grains
and quadruple junction points remain the same and Plateau’s
laws are satisfied.

Alternatively, one could consider the feasibility of inferring
f3(�) and f0(�) by means of a sufficiently accurate measure-
ment of the integral of K over the grain boundaries of � in
Eq. (2). This can be done by a graphical construction in the
plane with f3(�) and f0(�) on the vertical and horizontal
axes. Given the integral of the Gaussian curvature over the
grain boundaries of �, Eq. (2) defines a line in this plane
with an irrational slope. Since the actual values of f3(�)
and f0(�) are necessarily positive integers, this line passes
through exactly one point on the integer lattice in the positive
quadrant. In practice, any error in the measurement of the
integrated Gaussian curvature would change the intercept with
the vertical axis and shift the line off of the lattice point;
whether this is an issue or not depends on the magnitude
of the error and any a priori bounds that can be placed on
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TABLE I. The percent grain boundary area change of the relaxed truncated octahedron relative to the unrelaxed one and the integrated
Gaussian curvature of the relaxed truncated octahedron as functions of nt .

nt 61 129 477 665 1885 2610 3250 4314 5322 6532 7649 8906

�A (%) 0.0863 0.129 0.135 0.136 0.136 0.137 0.136 0.136 0.136 0.136 0.136 0.136∫
K dA −0.219 −0.349 −0.461 −0.477 −0.544 −0.554 −0.563 −0.568 −0.578 −0.588 −0.593 −0.597

f3(�) and f0(�). For example, Fig. 4 shows this construction
for the data in Table I with the constraints 3 � f3(�) � 5
and 20 � f0(�) � 28. Since the magnitude of the error is
assumed to be unknown, it is reasonable to suppose that the
correct values of f3(�) and f0(�) correspond to the integer
lattice point closest to the line within the feasible region. This
procedure correctly identifies the relevant integer lattice point
as (24, 4) for nt � 477; in general, the effect of integrated
Gaussian curvature error is reduced as the area of the feasible
region decreases.

Apart from advancing our fundamental understanding of
grain structures, there remains the question of the practical
utility of Eqs. (1) and (2) (and the analogs in the Supplemen-
tal Material [20]). This question is made more pressing by
there being few materials that actually evolve by the relevant
ideal grain growth process; the grain boundary energy and
mobility do generally depend on the grain misorientation and
boundary plane normal, but in a way that is not precisely
known even for simple model systems. The only way to con-
ceivably measure grain boundary mobility is by a time series
of three-dimensional microstructures, visualized using a non-
destructive technique. While such techniques exist [18,19],
fitting to such data has not yet yielded single-valued mobili-
ties [30], perhaps due to insufficient experimental resolution
or confounding variables. As for grain boundary energies,
despite the seminal work of Morawiec [31] indicating how
the grain boundary energies could in principle be extracted
from a three-dimensional microstructure, the grain boundary
energies for, e.g., simple metals are not yet widely available
in the literature. Finally, simulations of grain boundary prop-
erties [32–35] out of necessity only consider a small subset of
possible grain boundary characters, and cannot be validated in
the absence of reliable experimental data.

Given this situation, the authors propose two possible ap-
plications of this Letter’s results based on the differences of

the left and right sides of Eqs. (1) and (2):

e1 =
〈 ∫

∂G
K dA

〉
− 4π + α〈 f0(G)〉,

e2 =
f2(�)∑
i=1

∫
Fi

K dA − 2π f3(�) + 2α f0(�).

First, e1 and e2 could be used as rough measures of the devia-
tion of a physical system from an ideal one (along with other
quantities such as the grain growth exponent and the grain size
distribution), thereby contributing to the ongoing investigation
of how severe is the assumption of ideal grain growth in
practice. Second, there is widespread interest in generating
microstructures (for use in, e.g., integrated computational ma-
terials engineering) by means of physics-based simulations of
microstructure evolution. Faced with the absence of reliable
grain boundary data, such simulations generally assume that
grain boundary properties are constants, making this Let-
ter’s results relevant to the vast majority of contemporary
microstructure evolution codes. In this context, e1 and e2

could be used to evaluate the accuracy of the geometric repre-
sentation of a grain structure; the derivation above suggests
that these quantities should be particularly sensitive to the
geometry around triple junction lines and quadruple junction
points. Since the angle conditions around triple junction lines
are directly implicated in the rates of area and volume change
of two-dimensional [5,6] and three-dimensional [8,9] grains,
any deviations from Eqs. (1) and (2) could function as bounds
on the maximum achievable accuracy of simulations of mean-
curvature driven grain growth.

The authors are grateful to R. D. MacPherson for enlight-
ening discussions about grain structure geometry. E.E. and
J.K.M. were supported by the National Science Foundation
under Grant No. 1839370.

FIG. 4. The lines defined by Eq. (2) for the data in Table I in the feasible region 3 � f3(�) � 5 and 20 � f0(�) � 28. The lines are
colored from red to blue with decreasing error and the black line passing through (24, 4) corresponds to the exact solution. The closest integer
lattice point to the line is (24, 4) for nt � 477.
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