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Exploiting localized transition waves to tune sound propagation in soft materials
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Programmable materials hold great potential for many applications such as deployable structures, soft robotics,
and wave control; however, the presence of instability and disorder might hinder their utilization. Through a
combination of analytical, numerical, and experimental analyses, we harness the interplay between instabilities,
geometric frustration, and mechanical deformations to control the propagation of sound waves within self-
assembled soft materials. We consider levitated magnetic disks confined by a magnetic boundary in-plane. The
assemblies can be either ordered or disordered depending on the intrinsic disk symmetry. By applying an external
load to the assembly, we observe the nucleation and propagation of different topological defects within the
lattices. In the presence of instabilities, the defect propagation gives rise to time-independent localized transition
waves. Surprisingly, in the presence of frustration, the applied load briefly introduces deformation-induced order
to the material. By further deforming the lattices, new patterns emerge across all disk symmetries. We utilize
these patterns to tune sound propagation through the material. Our findings could open new possibilities for
designing exotic materials with potential applications ranging from sound control to soft robotics.
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Patterns emerge within an assembly when the system el-
ements are left to interact based on their individual energy
[1]. When an external load is applied to these self-assembled
patterns, the elements keep reorienting themselves to mini-
mize their energy, resulting in different patterns [2]. In the
case of incompatible elements, geometric frustration [3–6]
can arise, particularly, when the global energy minima of
the system is incompatible with the minima of the individual
elements [7]. Such geometric frustration can prohibit the self-
assembly from achieving long-range order. Furthermore, the
presence of instabilities can influence the emerging order (or
disorder) within a tunable material [8–14]. A valid path for
functional tunability of matter is external stimuli (such as heat
or magnetic fields) which can effectively apply an external
load to tune material properties [15–20]. For soft materials,
however, this usually translates to large deformation with the
potential rise of instabilities, disorder, incompatibility, and
geometric frustration. While such materials hold great po-
tential for many applications such as deployable structures,
soft robotics [21–23], and wave control [16,17,24–29], the
presence of frustration, instability, and disorder within tun-
able soft materials might hinder their utilization. Here, we
analytically, numerically, and experimentally show that in the
presence of instabilities and disorder, pattern evolution due to
deformation can be harnessed. By deforming our lattices, we
control the nucleation and propagation of topological defects
as time-independent localized transition waves. Furthermore,
we exploit the evolving patterns to tune the propagation of
sound waves within our material systems.

We consider the mechanics of levitated disks (lying in the
horizontal plane) with repulsive magnetic interactions within
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a fixed magnetic boundary. The boundary magnets are equally
spaced. The embedded disk magnets vary between 1 and 4,
resembling the shape of a dot, line, triangle, and a square
(Fig. 1). The boundary magnets create energy potential wells
dictating the alignment of the free-floating disks. When con-
fined within an energy potential well, a single disk translates
and rotates freely to minimize its own energy. For a disk with
one magnet, the minimum energy state is at the center of the
energy potential well (i.e., the center of the four boundary
magnets). In the case of two or four magnets per disk, the disk
has four degenerate minimum energy states located at the cen-
ter of the potential well with a 90◦ phase angle φ [Figs. 1(a)

FIG. 1. Concept. Minimum energy state for one disk (top) and
three disks (middle) confined by a fixed boundary with (a) two,
(b) three, and (c) four magnets per disk. The potential energy as a
function of the disk phase angle for the central disk is shown as a
polar plot (bottom).
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and 1(c)]. In the case of three magnets per disk, there exist
multiple minimum energy states that are off-center. Each of
these off-center positions has three minimum energy states
with a 120◦ phase angle [Fig. 1(b)]. When multiple disks are
confined within the boundary, the self-alignment must take
into account the added nearest-neighbor interaction. For both
two and four magnets per disk, the minimum energy states
exist at the center of the potential wells, resulting in perfectly
aligned self-oriented lattices [Figs. 1(a) and 1(c), middle]. In
the case of three magnets per disk, the disks have no clear
state of self-alignment that minimizes both their individual
and total energies, hence the system is frustrated [Fig. 1(c)].
To experimentally validate the potential energy calculations
[Figs. 1(a)–1(c)], we enclose each disk type (i.e., with one
to four magnets) within a fixed boundary atop an air bearing
table. Both examples of the numerical and the experimental
self-aligned disks with one to four embedded magnets are
included in the Supplemental Material [30]. The disks start
in random positions relative to the boundary and to each
other. Then, we pressurize the air bearing, activating a layer
of laminar air flow beneath the surface of the disks to allow
them to float freely in the horizontal plane (i.e., levitating the
disks similar to the arcade game “Air Hockey”).

To study the wave propagation characteristics of the as-
semblies, we first consider a model of infinite periodic lattices
with a single disk and its four boundary magnets as the unit
cell with nearest-neighbor interaction (i.e., the immediately
adjacent disks). Only the free-floating disks are allowed to
move on both sides of the considered disk. Each disk has two
degrees of freedom in the x and y directions. The dispersion
relation of the system can be calculated using Bloch’s theorem
as [−ω2M + K(κ )]φ = 0, where ω is the frequency, κ is the
wave number, φ = [u v]T is the Bloch displacement vector in
the x and y directions, M is the mass matrix, and K(κ ) is the
stiffness matrix [31], taking into consideration the static repul-
sive forces between the disks in the equilibrium configuration
[32] (see Supplemental Material [30]). For disks with three
embedded magnets, we assume perfect alignment of the disks
in order to use Bloch’s theorem. The analytically computed
dispersion curves show two distinctive bands representing the
longitudinal and shear motion in each of the four lattices
[Figs. 2(a)–2(d)]. In addition, as the number of magnets per
disk increases, the frequency of the bands increases, due to
the increase in stiffness within the lattice.

To numerically verify the infinite model, we consider a fi-
nite arrangement of ten disks confined to a magnetic boundary
(using the Verlet method [33]). The disks can move freely
in-plane. The simulations are initialized with random disk
positions. After the model reaches equilibrium, based on the
balance of repulsive forces, we excite the rightmost disk with a
chirp signal between 0.2 and 10 Hz. The fast Fourier transform
(FFT) of the longitudinal transmission ranges matches closely
with the analytical model [Figs. 2(e)–2(h)]. Remarkably, in
the case of frustrated disks (i.e., with three magnets), the
simulated transmission through the disordered lattice closely
matches the dispersion curve calculated for a perfectly or-
dered lattice.

To experimentally verify the dispersion curves, we har-
monically excite the longitudinal mode of the floating
self-aligned lattices [Figs. 2(i)–2(l)] using a mechanical

FIG. 2. Lattice wave propagation. (a)–(d) Analytical (black) and
experimental (contour) dispersion curves for one to four magnets per
disk. Numerical (orange) and experimental (blue) transmission at a
central disk within the assembly. (i)–(l) The initial and final positions
of ten disks with one to four embedded magnets. All the lattices are
perfectly aligned except for three magnets per disk in panel (k).

shaker with a chirp signal between 0.2 and 10 Hz and measure
the x displacement of the disks through digital image correla-
tion. The longitudinal excitation takes place at the rightmost
disk. The oscillatory motion of the disks is processed using
one-dimensional (1D) and two-dimensional (2D) fast Fourier
transform, resulting in a transmission spectrum and an ex-
perimental dispersion curve, respectively (see Supplemental
Material [30]).

The experimentally measured transmission ranges (1D
FFT) and dispersion curves (2D FFT) are in agreement
with our numerical predictions within the longitudinal mode
[Figs. 2(e)–2(h)]. Once more, in the presence of frustra-
tion, the experimentally measured transmission and dispersion
through the disordered lattice matches closely with a per-
fectly ordered lattice. In addition, we note the emergence
of an extra transmission band around 1 Hz for both mea-
sured transmission and dispersion. This transmission anomaly
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FIG. 3. Time-independent transition wave. Numerically obtained
energy per unit cell as the lattice is compressed for (a) one, (b) two,
(c) three, and (d) four embedded magnets per disk.

dissipates as the wave propagates further down the lattice due
to the increased disorder. We note that there is no experimental
transmission correlating with the shear modes, due to the
absence of shear excitation.

A viable strategy for tuning wave propagation in soft ma-
terial is applying an external load to tune stiffness [13,34–
37]; however, this usually tunes the material globally. An
intriguing feature of our material is the localized pattern trans-
formation enabled by the boundary-induced multistability of
the potential wells. When a load is applied at one end of
the material, the disks initially experience an added global
stiffness. Once the applied load passes a threshold, the first
disk overcomes its boundary potential and snaps into the next
potential well. As the compression at the boundary increases,
the migration of disks between potentials creates a propagat-
ing defect, which gives rise to a stable transition wave. If the
compression pauses, the propagation of the defects throughout
the lattice stops (i.e., the transition wave is time independent).

We numerically simulate the compression of a 50-disk
chain for each disk type using the Verlet method (Fig. 3). The
disks start at random positions (and phase angle in cases of
more than one magnet per disk) within their potential wells.
After reaching equilibrium, we periodically increase the load
applied at the leftmost disk with intermittent pauses allowing
the disks to reassemble. In the case of one magnet per disk, the
material starts at an equilibrium state with all disks experienc-
ing the same repulsion forces, except those at the boundary
[Fig. 3(a)]. As the load increases, the leftmost disk escapes
its potential well, snaps into the next well, and consequently
creates the first defect in the chain. This takes place once the
disk overcomes the energy barrier formed by the vertical pair
of boundary magnets. When the load increases further, the
second disk snaps into the next potential well and the defect

propagates further down the chain as another defect nucleates
at the load interface. The transition wave propagating into the
chain creates a checkered energy pattern [Fig. 3(a)]. The same
phenomenon arises when compressing a chain of disks with
two and four embedded magnets [Figs. 3(b) and 3(d)]. In the
case of two magnets per disk, the energy pattern is distinctly
different from the previous pattern (for one magnet per disk)
and the transition wave propagates further down the chain
at the same rate of compression as panel (a). However, the
transition wave does not reach the end of the chain in either
case. At four magnets per disk, the transition wave reaches
the end of the chain at (≈0.25 m) compression, significantly
changing the emerging energy pattern. In the case of three
magnets per disk, the equilibrium positions before deforma-
tion have a high-energy state due to the frustration-induced
disorder. This state is elucidated by the thin green line at top of
Fig. 3(c), which is consistent with our previous experimental
observation [Fig. 2(k)]. Surprisingly, the frustration-induced
disorder vanishes after applying a small load to the chain.
This compression (≈0.01 m) causes all the disks to align
perfectly with a minimum energy state [a thin horizontal dark-
blue line in Fig. 3(c)]. The self-alignment, or this emergent
deformation-induced order happens every time the chain is
compressed by a full unit cell length (i.e., 0.028 m), appearing
as flat blue lines in Fig. 3(c).

To experimentally verify our numerical observations, we
consider a chain of ten free-floating disks within the same
magnetic boundary (Fig. 2). We apply a load at the leftmost
disk, at equilibrium [Figs. 4(a)–4(d)], causing the disk to snap
into the next potential well. This nucleates the first defect
[highlighted with dashed red boxes in Figs. 4(a)–4(d)]. In the
case of three magnets per disk, we experimentally observe the
emergent deformation-induced order. All the ordered lattices
are highlighted green in Figs 4(a)–4(d). As the load increases,
the defect migrates further down the chain and a new defect
arises [highlighted with dashed orange boxes in Figs. 4(a)–
4(d)]. As more defects nucleate, a pattern of alternating defect
and defect-free cells emerges. This is congruent with the en-
ergy patterns observed numerically (Fig. 3).

We observe different defect topologies depending on the
disk type. For disks with one embedded magnet, we identify
one defect type as two disks, aligned horizontally, confined
within the same potential well [Fig. 4(e)]. In the case of two
magnets per disk, we observe two distinct defects with two
disks per potential well. The normal to the line connecting
the centers of the two defect disks points either left or right
[Fig. 4(f)]. In the case of three magnets per disk, we observe a
combination of these three defect topologies (i.e., flat, point-
ing left, or pointing right) [Fig. 4(g)]. In the case of four
magnets per disk, the defect is composed of three disks, not
two, sharing two adjacent potential wells. There is either a
horizontal alignment of the three disks or a mix of left and
right pointing normals [Fig. 4(h)].

The deformation-induced pattern transformation displays
a distinct topological signature with different disk couplings.
This translates to a change in material properties as patterns
evolve. We experimentally test the dynamical characteristics
of the emerging patterns by exciting three of the newly formed
lattices for each of the disk types (Fig. 5). For reference, we
first harmonically excite the undeformed self-aligned chain

L140101-3



WATKINS, EICHELBERG, AND BILAL PHYSICAL REVIEW B 104, L140101 (2021)

FIG. 4. (a)–(d) Defect nucleation and propagation. Stepwise deformation of ten levitated disks with one to four embedded magnets per
disk. The defects are marked with the same color dashed box as they propagate through the material. (e)–(h) The different types of defects
arising for various disk types. The perfectly aligned state is highlighted with a green solid rectangle [top picture in each panel except for the
frustrated state in (c)]. The normals are highlighted in yellow throughout all panels.

of ten magnets with a chirp signal between 0.2 and 35 Hz
and record the transmission through the lattice (1D FFT). The
leftmost disk is then compressed until a new pattern emerges
across the ten disks. The chain is then excited with the same
chirp signal. The experiment is repeated for two emerging
patterns [panels (ii) and (iii) in Fig. 5] in addition to the pattern
of the undeformed disks [panels (i) in Fig. 5]. The basic
repeating pattern in each case is also included (Fig. 5 insets).

FIG. 5. Tunable wave propagation. (a)–(d) Experimentally mea-
sured transmission in a lattice with one to four embedded magnets
per disk. (i) Transmission through the uncompressed configuration
for each disk type. (ii),(iii) Transmission within the lattice after
deformation. The insets show the corresponding basic building block
in each case.

With the one-magnet per disk arrangement, the refer-
ence pattern has a single longitudinal transmission band
[Fig. 5(a(i))]. This single band turns into two distinct bands
when the pattern is a defect cell sandwiched between two
defect-free cells [Fig. 5(a(ii))]. As the load increases and
the pattern turns into a single defect-free cell and a de-
fect cell, both bands widen and shift to higher frequencies
[Fig. 5(a(iii))]. The same phenomenon takes place for disks
with two embedded magnets. The reference assembly with
perfectly aligned disks transitions into a defect sandwiched
between two defect-free cells. The pattern then transforms
into a single defect-free and a defect cell, with the emer-
gence of two wider transmission bands at higher frequencies
[Figs. 5(b(i))–5(b(iii))]. In the three magnets per disk case,
the initial pattern is frustrated with no long-range order.
As observed earlier [Fig. 2(g)], two transmission bands are
present [Fig. 5(c(i))]. Once the lattice is compressed, the
deformation-induced order emerges and the low-frequency
disorder-induced band disappears [Fig. 5(c(ii))]. As the load
increases, the pattern transforms further into a defect cell
sandwiched between two defect-free cells [Fig. 5(c(iii))]. Fi-
nally, at four magnets per disk, the lattice transforms from
aligned disks in a 0◦ phase angle into two neighboring lattices
with 0◦ and 45◦ phase angles [Fig. 5(d(ii))]. The difference in
transformation for this disk type is a combination of both the
number of disks within the defect (i.e., three instead of two)
and the small number of disks considered in the experiment
(i.e., only ten disks). As the load increases, two transmission
bands emerge as the pattern transforms into an alternation of
two defect-free cells and one defect cell [Fig. 5(d(iii))].

In summary, we consider free-floating magnetic disks
within a magnetic boundary with periodic potentials. The
levitated disks perfectly align in the case of one, two, and four
magnets per disk. In the case of three magnets per disk, the
global lattice assembly shows no long-range order due to the
presence of geometric frustration. Despite the clear disorder,
the transmission within the lattice closely resembles that of
a perfectly ordered lattice. For all different disk types, we
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further transform the self-alignment of the disks by applying
a load at one end of each emerging lattice. We observe the
nucleation and propagation of different defect types (depend-
ing on the number of magnets per disk) within the lattices,
giving rise to time-independent stable transition waves due to
instabilities. Remarkably, in the presence of frustration (i.e.,
three magnets per disk), the applied load briefly introduces a
stable order to the assembly. By further deforming the lattices,
new patterns emerge across all disk types. We harness these
emerging patterns to tune the harmonic wave propagation
characteristics of the soft material. Our findings shed light

on the understanding of deformation-induced pattern transfor-
mations, particularly the rise of frustration-induced disorder
and deformation-induced order. The nature of the localized
and stable defect propagation, in addition to the nonlinear
coupling potentials, can be harnessed in designing the next
generation of soft materials for applications ranging from
sound manipulation to soft robotics.
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