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We present a general microscopic first-principles method to study the Coulomb-interaction-mediated heat
transfer in the near field. Using the nonequilibrium Green’s function formalism, we derive Caroli formulas for
heat transfers between materials with translational invariance. The central physical quantities are the screened
Coulomb potential and the spectrum function of polarizability. Within the random phase approximation, we
calculate the polarizability using the linear response density functional theory and obtain the screened Coulomb
potential from a retarded Dyson equation. We show that the heat transfer mediated by the Coulomb interaction
is consistent with that of the p-polarized evanescent waves which dominate the heat transfer in the near field. We
adopt single-layer graphene as an example to calculate heat transfers between two parallel sheets separated by
a vacuum gap d . Our results show a saturation of heat flux at the extreme near field which is different from the
reported 1/d dependence for local response functions. The calculated heat flux is up to 5 × 104 times more than
the blackbody limit, and a 1/d2 dependence is shown at large separations. From the spectrum of energy current
density, we infer that the near-field enhancement of heat transfer stems from electron transitions around the Fermi
energy. With a uniform strain, the heat flux increases for most of the distances, while a negative correlation
is shown at the moderate field. Our method is valid for inhomogeneous materials in which the macroscopic
response function used in conventional theory of fluctuational electrodynamics would fail at the subnanometer
scale.
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Introduction. From the 1970s, heat transfer in the near
field has attracted extensive interest because of its colossal
thermal radiation over the blackbody limit [1–3]. When the
gap size is smaller than Wien’s wavelength, experimental
works revealed that the heat flux between two parallel plates
can achieve thousands of times more than that predicted by
the Stefan-Boltzmann law [4–6]. The most widely recognized
theoretical explanation of such near-field effects is given by
the fluctuational electrodynamics (FE) of Rytov [7,8] with the
further development by Poler and Van Hove [9]. In the FE
theory, the heat flux is generated by thermally driven current
fluctuations that follow the equilibrium fluctuation-dissipation
theorem [10,11]. Based on macroscopic Maxwell’s equations,
the energy current is given by a Landauer-type expression
with transmission coefficients that consist of contributions
from both propagating and evanescent modes. The great en-
hancement of thermal radiation in the near field is due to the
tunneling of evanescent waves that decay exponentially with
the gap size [12,13].

Recent experiments have approached distances down to
the scale of nanometers to angstroms in which extraordi-
narily large heat current was found [14–17]. The reported
near-field enhancements exceed the value predicted by the
FE theory and have been partially explained by mechanisms
such as phonon tunneling and potential contaminants [18–20].
However, at the scale of subnanometers, the microscopic inho-
mogeneity of materials induces local field effects (LFEs) [21]
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that can significantly alter the response properties of ma-
terials [22], and thus, the phenomenological macroscopic
response functions used in the FE theory are insufficient to
describe heat transfers between inhomogeneous materials in
the extreme near field. On the other hand, many efforts have
been devoted to developing microscopic theories beyond the
FE theory [23–26]. In the extreme near field, the vector po-
tential of current fluctuations is less important, and the scalar
potential of the density fluctuations becomes dominant [27].
In the quasistatic limit, the scalar potential gives rise to in-
stantaneous Coulomb interactions between electrons, so that
thermally driven density fluctuations induce energy transfers
in the near field. Using the nonequilibrium Green’s function
(NEGF) method, a quantum mechanical scalar field theory of
heat transfer was proposed in which the transmission coeffi-
cient can be written as a Caroli formula [28,29]. An equivalent
formula can be obtained from the Joule heating effect of
charge fluctuations due to external electric fields [30–32].

This Coulomb-interaction-mediated heat transfer in the
near field has been studied for some systems [28,30,33–
35]. However, similar to conventional FE studies, a specific
theoretical modeling of the response function is needed for
different materials to obtain the transmission coefficient. In
this Letter, we introduce a generalized parameter-free first-
principles method to calculate the near-field heat flux between
two parallel plates. Within the random phase approxima-
tion (RPA), we obtain the response function from electronic
band structures calculated from density functional theory
(DFT) [36]. The obtained response function can be used in
both the NEGF and FE formalism with proper treatment of
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the LFEs [32]. Since the microscopic NEGF theory naturally
captures the inhomogeneities of materials, in this work, we
mainly follow the NEGF scheme of heat transfers and derive
Caroli formulas for systems with translational invariance in
which inhomogeneities are given by reciprocal lattice vectors.
Moreover, with macroscopic approximation, we show that the
NEGF formalism for the Coulomb heat transfer is equivalent
to the p-polarized evanescent modes of the FE theory in the
quasistatic limit. Last, we adopt graphene as an example to
introduce the procedures to obtain the heat flux, and this
method can easily be applied to other materials with arbitrary
thicknesses and possible inhomogeneity.

Method. In the NEGF formalism of heat transfer, the en-
ergy current per unit area between two bodies is given by a
Landauer-like formula:

J =
∫ ∞

0

dω

2π
h̄ω[N1(ω) − N2(ω)]T (ω), (1)

where Nα = 1/(eh̄ω/(kBTα ) − 1) is the Bose distribution func-
tion at the temperature Tα for plate α. With the local
equilibrium approximation, Eq. (1) can be derived from the
Meir-Wingreen formula [37,38], and the transmission coeffi-
cient T (ω) is given by a Caroli formula [28,33]:

T (ω) = Tr[Dr�1Da�2], (2)

where superscripts r and a denote retarded and advanced
components, respectively. The screened Coulomb potential
D follows the Dyson equation [39] D = D0 + D0�D for the
scalar-field Green’s function. At the quasistatic limit, D0 has
only the component of the pure Coulomb potential v. In real
space, we can write the retarded Dyson equation as

Dr (r, r′, ω) = v(r, r′) +
∫

dr′′
∫

dr′′′v(r, r′′)

×�r (r′′, r′′′, ω)Dr (r′′′, r′, ω), (3)

where �r is the retarded scalar photon self-energy or the po-
larizability that represents the linear response of the induced
charge density to the total potential of the system. Within the
RPA [40], the linear-response Kubo’s formalism of polariz-
ability is [41,42]

�r (r, r′, ω) = 2e2
∑
i, j

( f j − fi )
ψ j (r)ψ∗

j (r′)ψ∗
i (r)ψi(r′)

ε j − εi − h̄ω − iη
,

(4)
where ψi( j) and εi( j) are volume-normalized independent par-
ticle wave functions and energies of state i ( j), respectively.
The function f = (1 + eβ(ε−μ) )−1 is the Fermi distribution
function, with β = 1/kBT and μ being the chemical potential.
The factor of 2 accounts for the spin degeneracy, and e is
the electron charge. The damping factor η is a small, positive
quantity that accounts for the carrier relaxation of long-range
scatterers [43].

In Eq. (2), the spectrum function of each plate is defined
as �α = i(�r

α − �a
α ), where α = 1 or 2 and �α is the indi-

vidual polarizability of plate α in isolation. As the advanced
components are the Hermitian transpose of the retarded one,
i.e., Da = (Dr )† and �a = (�r )†, in the following discussion,
we omit the superscript, and all quantities are retarded unless
otherwise specified.

FIG. 1. Sketch of the unit simulation box of two parallel plates
with a vacuum gap of d . Each of the plates is in its own internal
thermal equilibrium state; that is, plate 1 has temperature T1, and
plate 2 has temperature T2. a, b, and c are lattice constants of the x,
y, and z directions, respectively.

With Eqs. (1) to (4), one can obtain the heat flux between
two bodies with arbitrary geometry. However, both polariz-
ability � and screened Coulomb potential D are difficult to
solve in real space as the position r is continuous. For periodic
systems with planar geometry, due to translational invariance
f (r + R, r′ + R) = f (r, r′), it is more convenient to calcu-
late these quantities in momentum space with the Bloch wave
vector q and the reciprocal lattice vector G.

We show in Fig. 1 the unit simulation box of two parallel
plates separated by a vacuum gap of d . From the Dyson
equation, the screened Coulomb potential can be written as
D = ε−1v, where ε is the dielectric function that is given by

εG,G′ (q, ω) = δG,G′ − vG,G(q)�G,G′ (q, ω). (5)

The Fourier transform of the pure Coulomb potential in mo-
mentum space is

vG,G′ (q) = δG,G′
1

ε0|q + G|2 , (6)

where ε0 ≈ 8.85 × 10−12 F/m is the vacuum permittivity.
In RPA, the polarizability can be obtained from DFT with

the Adler-Wiser formula [44,45]:

�G,G′ (q, ω)

= 2e2




∑
n,n′,k

wk( fn′k+q − fnk )

× 〈φnk|e−i(q+G)·r|φn′k+q〉〈φn′k+q|ei(q+G′ )·r|φnk〉
εn′k+q − εnk − h̄ω − iη

, (7)

where φnk and εnk are Kohn-Sham [46] eigenfunctions and
eigenvalues, respectively. The Fermi occupation function f
equals 1 for occupied states and 0 for unoccupied states. 


is the volume of the primitive cell, and wk is the weight of
each k point in the first Brillouin zone, which accounts for
symmetry.

In the momentum space, the transmission coefficient for
parallel plates is

T (ω) = 1

A

∑
q

TrG[D�1D†�2], (8)

where A is the area of plates and q lies in the first Brillouin
zone. All quantities inside the brackets in Eq. (8) involve
matrix multiplications with dimensions of N × N , where N is
the number of G vectors, which is subject to the kinetic energy
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cutoff of response functions, i.e., |q + G|2 < Ecut. The trace
is applied to only the G space that accounts for microscopic
inhomogeneity.

With Eqs. (5) to (8), one can calculate the transmission
coefficient of two parallel plates with arbitrary thickness.
Nevertheless, because the two plates are localized in the z di-
rection with a vacuum gap of d , a sufficiently large number of
Gz components is required. If we assume there is no electronic
tunneling between the two plates, i.e., the Hamiltonian is
block diagonal, the polarizability of the system can be written
as � = �1 + �2, which in G space is

� =
(

�11 0

0 �22

)
, (9)

where �11 and �22 are submatrices of �1 and �2 with
dimensions of N1 × N1 and N2 × N2, respectively. In other
words, each diagonal block of the whole polarizability matrix
consists of localized polarizability of each plate in isolation,
and all entries in the off-diagonal block are zero. In this case,
we can simplify our problem by separating the whole system
into two independent pieces and perform separate calculations
of �1 and �2 with the same unit cell and same sets of G
vectors [47].

Moreover, if both plates are two-dimensional (2D) mate-
rials, then electrons are confined in the plane perpendicular
to the z axis, i.e., electron density ρ(r⊥, z) ∝ δ(z). We can
further simplify the problem by introducing the 2D surface
density

σ (r⊥) =
∫ ∞

−∞
ρ(r⊥, z)dz (10)

into Kubo’s formalism and define the 2D polarizability as [48]

�2D
G⊥,G′

⊥
(q⊥, ω) = c × �3D

(G⊥,0),(G′
⊥,0)((q⊥, 0), ω), (11)

where c is the lattice constant in the z direction. Equation (11)
implies that we can reduce the original three-dimensional
(3D) problem to a 2D problem by sampling q and G with
only in-plane components, i.e., q = (q⊥, 0) and G = (G⊥, 0).
Without cross correlation between two sides, the Dyson equa-
tion in Eq. (3) has a matrix form,(

ε1 −v12�22

−v21�11 ε2

)(
D11 D12

D21 D22

)
=

(
v11 v12

v21 v22

)
,

(12)
where εα = I − vαα�αα is the dielectric function of plate α.
The components of the 2D pure Coulomb potential are defined
as

[vαβ]G,G′ = δG,G′
e−|q+G||zα−zβ |

2ε0|q + G| , (13)

where zα(β ) is the coordinate of plate α (β) in the z axis. Taking
the trace of each side explicitly, the transmission coefficient in
Eq. (8) can be simplified as

T (ω) = 1

A

∑
q

TrG[D21�11D†
12�22], (14)

where all quantities are in the 2D form and q lies in the 2D
first Brillouin zone.

It is worth mentioning that Eq. (8) is valid for both 2D
and 3D problems, provided that all quantities are consistent

in dimension. However, it requires a very large sampling of q
and G to capture the locality of each plate in the z direction,
which might limit its practical applications. On the other hand,
the computational cost is significantly reduced for the 2D
cases with Eqs. (11) to (14) because only in-plane components
of q and G have to be considered.

Furthermore, if the 2D material is homogeneous along
both the x and y directions, one can also neglect the LFEs,
i.e., set Gx = Gy = 0. In this case, the difference between
microscopic and macroscopic response functions vanishes, so
the microscopic NEGF Caroli formula (14) is expected to be
consistent with the macroscopic FE theory. Actually, from
Eq. (13), we can introduce vq = 1/(2ε0q) such that v11 =
v22 = vq and v12 = v21 = vqe−qd , where q = |q| is the mag-
nitude of wave vector. Then, the components of the screened
Coulomb potential in Eq. (12) can be written explicitly as

D12 = D21 = vqe−qd

ε1ε2 − e−2qdvq�11vq�22
. (15)

Additionally, the reflection coefficient for TM polarization is
r = (1 − ε)/ε [49]. With the spectrum function � = i(� −
�†) = −2Im(�) and a straightforward derivation, we finally
have

T (ω) = 1

A

∑
q

4Im(r1)Im(r2)e−2qd

|1 − r1r2e−2qd |2 , (16)

which is exactly the FE evanescent modes of the transmission
coefficient in the quasistatic limit [49].

Computational details. As an example, we calculate the
heat flux between two parallel single-layer graphene sheets
that have been studied theoretically in the framework of
both the NEGF [33] and FE theory [49–51] with specific
phenomenological treatments of the response function. To
obtain the heat flux from the first-principles method, we
start from the ground state calculations of graphene by us-
ing DFT as implemented in QUANTUM ESPRESSO [52,53].
We adopt the norm-conserving pseudopotential generated
by the Martins-Troullier method [54] with the Perdew-
Burke-Ernzerhof exchange-correlation functional [55] in the
generalized gradient approximation. The plane-wave basis set
with a 60 Ry energy cutoff is used to expand the Kohn-
Sham wave functions. Fermi-Dirac smearing with a 0.002 Ry
smearing width is employed to treat the partial occupancies.
The in-plane lattice constants are a = b = 2.46 Å. To avoid
interactions from the neighboring lattice in the z direction, a
large lattice constant of c = 18 Å is set in the z direction of
the unit cell.

The polarizability of each side is calculated on top of
the ground state band structure by using the BERKERELYGW

package [56,57]. A 90 × 90 × 1 Monkhorst-Pack [58] grid
is used to sample the first Brillouin zone for the nonlocal
polarizability, while the long-wave (q → 0) polarizability is
obtained from a much finer 300 × 300 × 1 grid. To avoid
divergence of the Coulomb potential, we use a small value
of q = 10−5 a.u. in the calculation of contributions from
the long-wave polarizability. The energy broadening factor
η is set to 0.05 eV, which corresponds to an electron re-
laxation time of 10−14 s [49]. We also neglect the LFEs,
that are important only for systems with inhomogeneous
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FIG. 2. Distance dependence of the near-field heat flux ratio
between two parallel graphene sheets. The temperature is fixed at
T1 = 1000 K and T2 = 300 K. The red solid curve shows results
obtained from ab initio first-principles calculation, and the blue solid
curve represents results obtained from a local response function of
graphene in the Dirac model. The red and blue dashed lines show the
asymptotic 1/d2 and 1/d dependence of heat flux at small and large
separations, respectively.

geometry [22]. Then we solve the Dyson equation to get the
screened Coulomb potential and calculate the transmission
coefficient from the Caroli formula. Last, we integrate over
frequencies to get the heat flux. To compare our results with
previous reports, we also do a parallel calculation using a local
response function of graphene in the Dirac model [42,49].

Results and discussion. In Fig. 2, we show the calculated
heat flux of two parallel graphene sheets as a function of gap
sizes. The vertical coordinate is the ratio of the calculated
near-field heat flux to the blackbody radiative heat flux given
by the Stefan-Boltzmann law Jbb = σ (T 4

1 − T 4
2 ), with σ ≈

5.67 × 10−8 W/(m2 K4). As shown in Fig. 2, the near-field
heat flux is remarkably larger than that of the blackbody radi-
ation. At small separation, a converged ratio around 5 × 104

is shown for the ab initio results. This value agrees well
with a previous report that used the tight-binding method to
calculate the density response function of graphene [33]. The
saturation of heat flux in the extreme near field originates from
the nonlocal effect of wave vectors, which is a typical behav-
ior of thermal radiation mediated by p-polarized evanescent
waves [59]. Without spatial dispersion, the heat flux calculated
from the local response function shows a 1/d dependence at
short separation, which agrees with the previous report [51].

With an increase in distances, the heat flux decreases
monotonically. Due to the exponential factor that appears in
the 2D Coulomb potential, the long-wave (q → 0) contribu-
tion becomes dominant at large distances. When d > 100 nm,
the ab initio heat flux shows an asymptotic dependence of
1/d2, which is consistent with near-field heat flux between
parallel plate capacitors [24]. On the other hand, the heat
flux calculated from the local response function decays faster
than that from the ab initio results. Different power laws of
heat flux at large separations have also been reported [33,51].
According to Eqs. (14) to (16), for homogeneous materials
like graphene, the NEGF Caroli formula is equivalent to the
FE formalism for heat transfers, so all discrepancies between

FIG. 3. The Coulomb (solid curve, left axis, d = 100 nm) and
blackbody radiative (dashed curve, right axis) energy current density
of graphene with different temperatures. The left and right axes have
the same scale of ticks but differ by 4 orders of magnitude.

previous reports and our first-principles calculation originate
from the different theoretical treatments of the response func-
tion. In Ref. [42], we gave a more detailed comparison of the
response function of graphene obtained from different theo-
retical approaches. In addition, the uncertainty of numerical
errors from finite samplings of the first Brillouin zone may
also play a role because exact results require an infinitely large
k-point sampling. Despite several different power laws that
have been reported, we believe the first-principles calculation
is the most accurate as the response function is obtained
from full DFT band structures. This is further supported by
recent experimental work showing that the near-field heat flux
between graphene sheets is higher than that predicted by FE
with the Dirac response function [60]. When d > 2 μm, the
heat flux is smaller than that of the blackbody radiation. This
agrees with the fact that heat transfer is mainly achieved by
propagating waves in the far field [12].

Figure 3 compares energy current densities obtained from
the ab initio calculation of the Coulomb-type heat trans-
fer with Plank’s law of blackbody radiation. The blackbody
energy current density depends on only frequency and tem-
perature, while the Coulomb interaction decays exponentially
with the gap sizes, as shown in Eq. (13). To eliminate the
nonlocal effects, we calculate the Coulomb energy current
density between two graphene sheets at the separation d =
100 nm. As shown in Fig. 3, the Coulomb energy current
density is approximately 4 orders of magnitude larger than
that of blackbody radiation. Moreover, most spectrum weights
of Coulomb energy current density lie in the low frequen-
cies, while the blackbody radiation has a broader spectrum.
When ω < 0.16 eV, the Coulomb energy current density has
an increasing trend similar to that of the blackbody spectrum.
However, with a further increase in frequency, the Coulomb
energy current density decays rapidly and vanishes at high
frequencies. This implies that the near-field enhancement of
the Coulomb energy current between two graphene sheets
is mainly attributed to electron transitions around the Fermi
level.

Another advantage of our method is that one can easily
change the parameters of materials without further theoretical
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FIG. 4. Strain effect on the Coulomb heat flux between two
parallel single-layer graphene sheets with different gap sizes. The
horizontal axis is the magnitude of strain in percent, and the vertical
axis is the percentage change of heat flux after strain is applied.

treatment of models. Experimentally, the strain arises natu-
rally due to the surface corrugations [61] or lattice mismatch
between graphene and the substrate [62]. In Fig. 4, we show
the strain effect on the heat flux between two graphene sheets
with different gap sizes. We introduce the uniform biaxial
strain by varying the lattice constant with a percentage change
from −3% to 25% and calculate the heat flux after strain is ap-
plied. As shown in Fig. 4, the heat flux is positively correlated
to the strain for most of the gap size. This enhancement may
originate from effective electronic scalar potential induced
by uniform strain in graphene [63,64]. Interestingly, with an
increase in gap size, the enhancement becomes less significant
at d = 1 nm, and even a negative dependence is shown at
d = 10 nm. This may be due to the interplay between local
and nonlocal effects in calculating the transmission coeffi-
cient. At short distances, the heat flux is calculated with full
nonlocal effects. However, with the increase in the distances,
finite wave vectors are gradually killed by the exponential
factor e−qd in the Coulomb potential, so that only partial
finite wave vectors contribute at moderate distances. With a

further increase of the gap size, the long-wave component
dominates, and the heat flux shows a positive dependence
again. Similar behavior was reported in Ref. [65], where such
unusual strain dependence may be related to the bandwidth
of the spectral transmission coefficient. However, a decisive
quantitative analysis of this phenomenon is still lacking, and
we leave it for future works.

Summary. In summary, we have presented a general
first-principles method to study the near-field heat transfer
mediated by Coulomb interaction. Using the NEGF formal-
ism, we derived Caroli formulas for both 2D and 3D materials
with translational invariance. Within the density functional
theory, we calculated the polarizability from electronic band
structures and obtained the screened Coulomb interaction
with the retarded Dyson equation. With the macroscopic
approximation, we showed that the Caroli formula for 2D
materials reduces to the p-polarized evanescent modes in the
FE theory. We adopted single-layer graphene as an example to
show the procedures for calculating the heat flux between two
parallel sheets. Our results show that the near-field Coulomb
heat flux is significantly larger than that of the blackbody
radiation, and an asymptotic dependence of 1/d2 was shown
at large separations. With spatial dispersion, the heat flux
saturates at small distances, while 1/d dependence was shown
for results obtained from the local response function. The
spectrum weight of the Coulomb energy current concentrates
at low frequencies, which implies that the near-field enhance-
ment originates from electron transitions around the Fermi
level. For most of the gap sizes, the calculated heat flux
has a positive correlation with the strain applied. A negative
correlation is shown at moderate distances which may relate
to the interplay between local and nonlocal effects or to the
narrow bandwidth of the spectral transmission coefficient. Our
method can be used to study the Coulomb heat transfer of
a wide range of materials with finite thickness and possible
inhomogeneities, which provides a benchmarking reference
for both theory and experiment.
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