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Chiral magic-angle twisted bilayer graphene in a magnetic field: Landau level correspondence,
exact wave functions, and fractional Chern insulators
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We show that the flat bands in the chiral model of magic-angle twisted bilayer graphene remain exactly flat in
the presence of a perpendicular magnetic field. This is shown by an exact mapping between the model and the
lowest Landau level wave functions at an effective magnetic field, in which the external field is either augmented
or reduced by one flux quantum per unit cell. When the external field reaches one flux quantum per unit cell, the
model exhibits a topological phase transition. These findings allow us to analyze a Jain series of fractional Chern
insulators states in the exactly flat band, and to point out an unconventional dependence of the energy gap on the
magnetic field.
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Magic-angle twisted bilayer graphene (MATBG) [1–5] has
generated interest as a platform that combines two major
components of modern condensed matter physics: strong in-
teractions and topology. The first is a result of the flat bands
occurring at charge neutrality [1,2]. As for the second, the flat
bands host “fragile” topology [6–9], and can be decomposed
into two Chern bands of opposite Chern numbers (per spin
and valley) [10,11], which are connected by parity-time (C2T )
symmetry. As a result of this combination the phase diagram
of MATBG was shown to host a wide range of phenom-
ena including superconductivity [3] (possibly unconventional
[3,12]), correlated insulators [4], correlated Chern insulators
[13–16], and most recently fractional Chern insulators [17].
Another point of interest in TBG (and in moiré materials
in general) is that, as a result of the large lattice size, it is
experimentally possible to apply a magnetic field of the order
of a single flux quantum per unit cell [15,18–20]. This allows
the experimental study phenomena such as the Hofstadter
spectrum [21], and even fractional states emerging on the
Hofstadter subbands [22,23].

In the study of MATBG, a significant role was played by
the so-called chiral model [24]. In this model one artificially
turns off the tunneling terms between atoms of the same
sublattice in the two graphene sheets (AA, BB). The resulting
Hamiltonian has an additional chiral symmetry (acting as σz

in sublattice space). One then finds a series of “magic” twist
angles [24,25] at which there are eight exactly flat bands (two
per spin and graphene valley index) at zero energy, which
could be chosen to have a definite Chern number C = ±1
and sublattice polarization. The Chern/sublattice polarization,
therefore, serves as a good quantum number for the flat bands
(a review of the model symmetries with and without the chiral
approximation is given in [10,26]).
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In this work we use the chiral model at the magic angle to
study the interplay between topology, exactly flat bands, and
an external perpendicular magnetic field b in twisted bilayer
graphene. For the rest of the text we focus on a single valley
and ignore the spin. We make here several observations.

(1) The application of a perpendicular field does not make
the bands disperse but rather leaves them exactly flat. The
magnetic field does not change the Chern number of each
band or its association with a particular sublattice. This was
first shown by [27]. Here it is shown by a different method.

(2) The main effect of the magnetic field is to change the
number of states within each band. While at zero field the
number of states per unit cell is n = 1, this number changes
to n(b) = 1 ± C�/�0, where � is the flux per unit cell and
�0 is the flux quantum. This change contradicts the intuitive
expectation that a Bloch band should have one state per unit
cell, i.e., n(b) ≡ 1. It is, however, necessitated by the bands
being Chern bands, just as the degeneracy of a Landau level
must be linear in the magnetic field. If one imagines filling one
such band, and adiabatically turning on a magnetic field b(t )
confined to within a large circle in the sample, the azimuthal
electric field generated by the time variation of b generates
a Hall current into the circle. The in-flowing electrons must
have states to occupy, and thus the number of states in the
band must vary. Equivalently, this may be seen as an example
for the Streda formula, applied separately to each band [28]:

σxy = −
(

∂n

∂b

)
μ

, (1)

where n is the electron density. We absorb the charge e into
the definition of the fields (b = eB) and assume throughout
the work that h̄ = c = 1. The formula is valid as long as the
chemical potential μ is in the gap and the Chern number
remains a good quantum number.

(3) As long as |�| < �0 and all bands are full, the total
Chern number of the zero-energy bands is zero. As � =
�0 the C = −1 band is emptied, and the Hall conductivity
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FIG. 1. (a) Hofstadter diagram (generated using the method of
[18,33]) for the cMATBG model. The bands remain exactly flat for
any applied external magnetic field. For � = �0, the gap closes
and the total Chern number of the flat bands changes from 0 to 2.
(b) Number of states per moiré unit cell as a function of magnetic
flux. After the phase transition, the number grows as it would for two
decoupled Landau levels.

changes to a nonzero integer. Thus, at � = �0, the gap must
close to allow for this change. Due to the chiral symmetry, the
gap closes from both sides of the E = 0 line (see Fig. 1), and
we obtain a single Dirac cone in the � = �0 band structure.

(4) We derive exact wave functions for the exactly flat
Chern bands with the applied magnetic field. They are given
in general in the form

ψ (r) = f (z)e− beff
4 |z|2 G(r), (2)

where z = x + iy and f (z) is analytic. The b-independent
functions G(r) are spinors in the layer indices [29]. They
are invariant under translations up to a position-dependent
phase and inherit the C3 symmetry of the original model. The
effective magnetic field beff is

beff = b + C
2π

AM
, (3)

where C is the Chern number of the layer and AM is the
moiré unit cell area. The restricted effect of b on the wave

function may be indicated by a direct substitution of (2) in the
Schrödinger equation that corresponds to the Hamiltonian (4).
This formulation makes explicit the relation between the chi-
ral model wave functions and the lowest Landau level (LLL),
in which G(r) ≡ 1, and generalizes the results of [24,30] to
a general magnetic field. The form given in (2) describes the
wave functions in the C = +1 bands. Different bands are then
obtained by C2 and C2T symmetries.

Following [24], we write the chiral MATBG (cMATBG)
Hamiltonian in the presence of a magnetic field as

Hchiral =
(

0 D∗
−b(−r)

Db(r) 0

)
,

Db(r) =
(−2ik−1

θ
(∂̄ + zb/4) αU (r)

αU (−r) −2ik−1
θ

(∂̄ + zb/4)

)
, (4)

where ∂̄ = 1
2 (∂x + i∂y) and U (r) is a position dependent tun-

neling potential [31]. The Hamiltonian acts on the bispinor
(ψ (r), χ (r)) where each spinor lives on a different graphene
sublattice (A/B) and the “spins” are the layer indices. We use
the symmetric gauge A = b

2 (yx̂ − xŷ) (so that b > 0 implies a
magnetic field in the −ẑ direction for negatively charged car-
riers), and assume the commensurability condition b = p

q
2π
AM

,
where p, q are coprime integers. This assumption allows us
to label the wave functions by common eigenvalues (lattice
momenta) of T̃ q

1 , T̃2, where T̃i are the magnetic translation
operators by

a1 = 4π

3kθ

(0,−1),

a2 = 4π

3kθ

(√
3

2
,

1

2

)
. (5)

We provide an explicit form of T̃i in the Supplemental Mate-
rial (SM) [32]. In this form of Hchiral the translations act as
nonsymmorphic symmetries where a phase difference Ū =
(1, e2π i/3) must be added between the layers. This phase
can be removed by gauge choice and will not be considered
further.

In the absence of a magnetic field, the authors of [24] found
that for specific values of α, the “magic angles” of the system,
the model has two exactly flat bands at zero energy. The bands
can be labeled by the sublattice index and have a definite
Chern number C = 1 for the A sublattice and C = −1 for the
B sublattice. The flatness is sensitive to model parameters, and
either changing α away the magic value or adding any AA
tunneling will result in a finite bandwidth. One would then
expect that any addition of a magnetic field b will also destroy
the exact flatness of the bands. As we now show, this is not
the case.

Landau level correspondence and exact wave functions.
Let us consider the relationship between the zero-energy wave
functions and the wave functions of the lowest Landau level
(LLL), which are the ground states of the Landau level Hamil-
tonian

HLL = (−i∇ + A)2. (6)

We recall that in the symmetric gauge the LLL wave func-
tions are given by Eq. (2) with G(r) = 1 and beff = b. For
cMATBG in the absence of an external magnetic field, one
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can write an exact correspondence between any wave function
in the perfectly flat Chern band and a function in the LLL at
b = 2π

AM
: As was shown by [24], at the magic angle the wave

function ψK (r), corresponding to the A-sublattice polarized
wave function at the K point, has a zero at r0 = (2a1 + a2)/3.
Since the kinetic term of D0(r) is proportional to the identity
matrix we can use ψK (r) to construct zero modes of D0(r) of
the form [24,34]

ψ (r) = f̃ (z)
ψK (r)

ϑ1
( z−z0

a1

∣∣ω) , (7)

where ω = e2π i/3, z0 = r0,x + ir0,y (we use nonbold symbols
for the complex versions of the vectors ai = ai,x + iai,y), and
ϑ1(z | τ ) is the Jacobi theta function. The definition of ϑ1(z |
τ ) is provided in the SM [32]. Here we note that

ϑ1(z | τ ) = 0 ↔ z = m + nτ (8)

for integer m, n. In this way the zeros of the theta function
cancel the zeros of ψK (r), making the wave functions (7)
normalizable. Furthermore, the function ϑ1(z | τ ) is periodic
in Re(z), with a period of one. When Im(z) is taken to infin-
ity, the function oscillates, with an envelope that diverges as

e
π (Imz)2

τ . This envelope makes (7) decay as a Gaussian in the

y direction. Writing f̃ = f e
π

2AM
(z−2z0 )2

we can write the wave
function as a product of an analytic function f (z) multiplied
by a function that decays like a Gaussian in all directions,
similar to the wave function of the lowest Landau level in the
symmetric gauge [35]. With this, we find that there is a corre-
spondence between LLL wave functions and wave functions
of the cMATBG flat bands, given by

f (z)e− 2π
AM

1
4 |z|2 �→ f (z)

e
π

2AM
(z−2z0 )2

ψK (r)

ϑ1
( z−z0

a1

∣∣ω) . (9)

The critical property of (9) is that if f (z) is chosen such that
the wave function on the left-hand side (LHS) is an eigenfunc-
tion of the magnetic translations, the wave functions on the
right-hand side (RHS) will be eigenfunctions of the translation
operators in cMATBG. It therefore maps a set of orthogonal
eigenfunctions to a set of orthogonal eigenfunctions and thus
provides a basis of wave functions for the cMATBG flat bands.

For b �= 0 one sees that the for any ψ (r) of the form (7) the
function e− b

4 |z|2ψ (r) solves Dbψ (r) = 0. The more difficult
part of our argument is to obtain the number of orthogonal
functions of this form. To do so we extend the correspondence
(9) by using the effective magnetic field beff defined in (3), and
mapping

f (z)e− beff
4 |z|2 �→ f (z)

e
1
4 (−b|z|2+ 2π

AM
(z−2z0 )2 )

ψK (r)

ϑ1
( z−z0

a1

∣∣ω) . (10)

The fact that the RHS gives a zero-mode of Hchiral can be
shown by direct substitution. In contrast with (9), the trans-
formation (10) is not guaranteed to preserve orthogonality be-
tween the wave functions: we see that in the former case both
sides can be labels by eigenvalues of the translation/magnetic
translation operators by (a1, a2). In the latter case, on the
other hand, the LLL wave functions can be classified by
the magnetic translation symmetries ( q

p+q a1, a2) while the

cMATBG model has only the magnetic translation symme-
tries (q a1, a2). This means that the correspondence gives
p + q wave functions for each k in the magnetic moiré Bril-
louin zone of TBG, whose orthogonality is not constrained by
symmetries. Nevertheless, the resulting p + q wave functions
remain linearly independent. Otherwise, we could construct
a finite linear combination of them that will be mapped to
zero under (10), which is clearly impossible for any nonzero
f . This shows that the Landau level correspondence gives us
p + q states per k in the cMATBG magnetic moiré Brillouin
zone, or equivalently 1 + �

�0
per unit cell. We can identify

G(r) as presented in (2) as

G(r) = e
π

2AM
(|z|2+(z−2z0 )2 )ψK (r)

ϑ1
( z−z0

a1

∣∣ω) . (11)

We can also explicitly write the Bloch wave functions ob-
tained from the above correspondence as

ψk,n(r) = ϑ1

(
q + p

q

z − z0

a1
+ k

b2
+ nω

q
+ ia1a2b

8π

∣∣∣∣q + p

q
ω

)

× e(ky+2π i n−p/2
qa1

)z e− b
4 (|z|2+z2 )ψK (r)

ϑ1
( z−z0

a1

∣∣ω) , (12)

where n = 1, . . . , p + q and b2 = kθ (
√

3, 0) is a reciprocal
lattice vector. The functions ψk,n for different n are not orthog-
onal but form a linearly independent set. They can be made
orthogonal by a Gram-Schmidt process.

We note that the above analysis works for negative and pos-
itive b alike, and that the result for B sublattice can be obtained
by applying the C2T symmetry together with b → −b. The
number of B-polarized states will then be 1 − �

�0
. For both

cases, this agrees with the arguments given above.
For � > �0 we find that there are additional p − q A-

polarized zero modes so that the total number of zero modes
is 2 �

�0
per unit cell (as we would have for two uncoupled

Landau levels). These additional functions cannot, however,
be obtained from (10) and we need to seek a more general
form of zero-energy wave functions for (4). This form is
discussed in the SM [32]. By the Streda formula (1) we can
conclude that the total Chern number of the zero-energy wave
functions becomes C = 2 for � > �0. The transition of the
Chern number should be accompanied by a closure of the
gap, which results in two additional zero modes at the  point
k0 = (0,−kθ ). In the SM we show how one can write explicit
forms for the additional zero modes [32].

Notice also that off the magic angle we have exactly 2 �
�0

zero-energy wave functions, which are all A-sublattice polar-
ized, and are given by

ψz.m.(r) = ν(r)ψK/K ′ (r), (13)

where ν(r) is a function in the LLL [Eq. (2) with magnetic
field b and G(r) = 1] and ψK/K ′ (r) are the zero-energy A-
polarized wave functions at zero magnetic field, at the K and
K ′ points of the moiré Brillouin zone.

Relation to the Atiyah-Singer index theorem. An elegant
way to reproduce the number of zero energy wave functions
is by means the Atiyah-Singer index theorem [36,37]. As was
pointed out in [38], the Hamiltonian (4) is a Hamiltonian of a
Dirac electron in a U (1) × SU(2) gauge potential, where the
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tunneling term couples to the SU(2) sector and the external
field couples to the U (1) sector. The non-Abelian gauge po-
tential A is given by

A = AI + Ai
n.a.σi,

Ai
n.a. = 1

2
{Re[Tr(σiU )], Im[Tr(σiU )]},

U = iαkθ

(
0 U (r)

U (−r) 0

)
, (14)

where I is the identity matrix and summation over the three
Pauli matrices is implied in the first line. At zero energy,
eigenstates reside purely on one sublattice, and we can discuss
the number nA/B of zero-energy states on the two sublattices
(per unit cell). Assuming periodic boundary condition, the
difference nA − nB between the number of zero-energy modes
(per unit cell) in the A and B sublattices is a form of a Chiral
anomaly. This difference can be obtained exactly by means of
the Atiyah-Singer index theorem [39]:

nA − nB = 1

2πNs

∫
TrFxydr, (15)

where Ns is the number of unit cells and Fxy is the curvature
associated with A, given by

Fxy = ∂xAy − ∂yAx + 1
2 [Ax,Ay]. (16)

The non-Abelian part has no contribution to the trace [40],
while the integral of the Abelian part gives

nA − nB = 2
�

�0
. (17)

This result does not depend on the system being at the magic
angle or on the magnetic field being uniform in space. The
total number nA + nB of zero-energy eigenstates may vary
considerably, being 2 max( �

�0
, 1) at the magic angle and 2 �

�0
off the magic angle, but the difference nA − nB (in the chiral
model) is governed by the topology.

Fractional Chern insulators. Since the zero energy bands
of the model can be presented as Chern bands, one may expect
that at partial filling and in the presence of electron-electron
interactions the ground state would be a fractional Chern insu-
lator (FCI) in which both time-reversal and flavor symmetries
are spontaneously broken [23,41,42]. A recent experiment
[17] has shown that indeed an FCI state can be found at
fillings 3 < ne < 4 (ne refers to the number of electrons per
unit cell added, counted from charge neutrality), with nonzero
magnetic field. These states seem to be connected to zero-field
FCI states [43–45] but require an external magnetic field to be
stabilized. The analysis of [17] suggests that the importance
of the external magnetic field is that it flattens the Berry
curvature, thus making the FCI more favorable [30,46].

Our expressions for the wave functions of the flat bands
in the presence of a perpendicular magnetic field naturally
suggest a few observations regarding the FCI states. Starting
with the case of one partially filled Chern band, and defining
n as the number of electrons per unit cell in that band, the
filling fraction of the band is n/(1 + Cp

�
�0

), with Cp its Chern
number. An FCI of the Jain series [47] would form when

n = (1 + Cp
�
�0

) j
2m j+1 with m, j integers. When the partially

filled band coexists with Nb full bands of Chern numbers Ci

(with i = 1, . . . , Nb), the relation between the total number of
electrons per unit cell ne and the flux density �

�0
is

ne =
Nb∑

i=1

(
1 + Ci

�

�0

)
+

(
1 + Cp

�

�0

)
j

2m j + 1
, (18)

as expected from the Streda formula (1), for constant m, j the
number of electrons varies when the flux is changed, and the
slope of the variation is the corresponding Hall conductivity
of the incompressible state.

For p = 1, for example, we get a series analogous to the
Laughlin series, where the analog to the Laughlin wave func-
tion (in the chiral limit) is

�({zi}) =
∏
i< j

(zi − z j )
m

∏
i

e− beff
4 |zi|2 G(ri ), (19)

generalizing the results of [34] to an arbitrary magnetic field.
When the FCI forms in a band whose Chern number is

negative, C = −1, the effective magnetic field decreases in
magnitude when the external magnetic field is increased. This
decrease has an interesting implication on the characteristic
interaction energy scale of the FCI (with Coulomb interac-
tions), which is

V = e2

ε�B,eff
, (20)

where �−2
B,eff = beff , and ε is the dielectric constant. We expect

the energy gap of the FCI to be determined by V , up to a
proportionality factor that depends on the band-structure ge-
ometry [42,46], but has only weak magnetic field dependence.
For large b, then Eq. (20) suggests that the FCI energy gap
may decrease with an increasing magnetic field, in contrast to
that of fractional quantum Hall states. In that limit we expect
the FCI state to be destabilized.

Discussion. As we focused in this letter on the chiral model
Hamiltonian, it is worthwhile to discuss which of our con-
clusions extend beyond it. In the case where a spontaneous
symmetry breaking results in a band with a definite Chern
number (as is expected, e.g., in 3 < ν < 4 in TBG), one can
still use the effective magnetic field approach to discuss frac-
tional states in this regime. Furthermore, an interesting future
direction is to use our results as a starting point for analyzing
the stability of FCI states as a function of the magnetic field in
the Chiral model and beyond. Finally, the correspondence (9)
[and therefore (10)] relies on nothing more but the existence
of a kinetic term acting as an antiholomorphic derivative with
no dependence on the spinor direction, together with the zero
of ψK (r). It would be interesting to ask whether one can find
additional models exhibiting the same correspondence.
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