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We introduce the electronic polarization originally defined in one-dimensional lattice systems to characterize
two-dimensional topological insulators. The main idea is to use spiral boundary conditions which sweep all
lattice sites in one-dimensional order. We find that the sign of the polarization changes at topological transition
points of the two-dimensional Wilson-Dirac model (the lattice version of the Bernevig-Hughes-Zhang model)
in the same way as in one-dimensional systems. Thus the polarization plays the role of “order parameter” to
characterize the topological insulating state and enables us to study topological phases in different dimensions

in a unified way.
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Introduction. For more than ten years, topological phases
and topological transitions have been extensively studied
in connection with topological insulators [1-7]. Topological
insulators have energy gaps in the bulk and gapless edge
(surface) states in two (three) dimensions. On the other hand,
topological phases and topological transitions have also been
discussed in two-dimensional (2D) classical spin systems
and one-dimensional (1D) quantum spin systems since the
1970s [8-10]. For example, a dimer-Néel transition in a
spin-1/2 frustrated anisotropic Heisenberg chain is regarded
as a transition between two topologically distinct gapped
phases [11]. The discovery of the Haldane gap in integer spin
chains has added to the variety of topological phases [12,13].
In this Research Letter, we study these topological phases
and topological transitions of different systems in different
dimensions in a unified way.

For this purpose, we consider the electronic polariza-
tion [14-18]. In 1D lattice electron systems, the polarization
operator is defined as the following ground-state |\¥,) expec-
tation value of the “twist operator” U,
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where L is the number of sites, n; is the electron number
operator at the jth site, and ¢ is the degeneracy of the ground
state. Resta related z(I) with the electronic polarization as
lim; _, oo (e/270)Im Inz" [15]. This quantity, z(¥, has been
calculated for several 1D systems [16,19,20]. Hereinafter we
call (9 itself “polarization.” The signs of z'? identify topolo-
gies of the systems such as charge or spin density waves. By
replacing n; with a spin operator S%, z'9) can also identify sev-
eral magnetic orders including valence bond solid states [20].
Furthermore, the condition z(9 = 0 can be used to detect a
phase transition point.

2469-9950/2021/104(12)/L121114(5)

L121114-1

The same quantity as in Eq. (1) was also introduced in
the Lieb-Schultz-Mattis (LSM) theorem for 1D quantum sys-
tems [21-25]. In the LSM theorem, Eq. (1) appears as an
overlap between the ground state and a variational excited
state. According to the LSM theorem, an energy gap above
a g-fold degenerate ground state is possible for z(? # 0 with
L — oo.

Thus the property of the polarization z'? has been well
studied for 1D systems; however, its application to higher-
dimensional systems is not fully understood. In this Research
Letter, we extend the twist operator in Eq. (1) to 2D system:s,
characterize the topological orders, and identify topological
transition points. The main idea of our study is to use spi-
ral boundary conditions (SBCs) which sweep all lattice sites
in one-dimensional orders. For a 2D square lattice with the
number of lattices L, x L,, SBCs are introduced as shown in
Fig. 1. These boundary conditions have been introduced in
extending the LSM theorem to higher dimensions [26,27] to
remove unphysical restrictions for the system sizes [28]. We
further introduce the parameter A to deal with a variety of
modulations. Then we show that topological insulating states
in 2D systems can be identified by the polarization (1) with
SBCs. Throughout this Research Letter, the lattice constant a
and the reduced Planck constant 7 are set to unity.

The Wilson-Dirac model. As a fundamental model to
describe 2D topological insulators, we consider the Wilson-
Dirac model [29,30], which is the lattice version of the
Bernevig-Hughes-Zhang (BHZ) model [3,4],

H= Z cr o Hup(k) ¢, 5 (2a)
k.o,

Hky=1 ) sink, 1:“+|:M—BZ (1 —Cosku):|TZ, (2b)
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FIG. 1. (a) and (b) Spiral boundary conditions (SBCs) for 2D square lattices where the systems are represented as extended 1D chains (blue

lines). The parameter A is the hopping range ¢!

i+ a.oCia T H.c. of the 1D chain originating from the hopping along the y direction (magenta

lines). For even L,, k = (;, ) [k = (;r, 0)] order is represented by 1D k = 7 modulation with A = L, — 1 (A = L,). For odd L,, the roles of

A are interchanged.

where ¢ is the hopping amplitude, M is the mass, B is the
coefficient of the Wilson term, ¢ 4, is the annihilation operator
of a fermion with a 2D wave number, «, 8 are orbital in-
dices, and 7, are the Pauli matrices. The energy eigenvalue is
given by

8,% = t*(sin® k, + sin® ky) +{M — B(2 — cos k;, — cos ky)}z.

3)
This system is a topological (trivial) insulator for B < M /4
(B > M/4), and a phase transition among two topological
phases occurs at B = M/2. These transition points can be
identified by vanishing of the bulk energy gap & = 0. In
the continuum version of the model, the Hall conductivity is
calculated as [31]

o2
Oy = —7 [sgn(M) + sgn(B)]. “

Therefore the system is a topological (trivial) insulator for
MB >0 (MB < 0), and a topological transition occurs at
B = 0 for fixed M.

Now we consider the lattice model (2) based on SBCs.
Here, SBCs are introduced by replacing the 2D wave vector
k = (ky, ky) as k, — k and k, — Ak with the 1D Fourier
transformation

L
1 -
Cha = —= E e ey, ©)
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where L=L.L,, xj=aj, and k=2mn/L with n=
0,1,2,...,L —1 meaning periodic boundary conditions
(PBCs) for the extended 1D chain, c¢jtf 4 = ¢io. When L,
is even, the parameter A is chosenas A =L, — 1 (A =L,)
to detect a modulation of k = (r, ) [k = (0, ), (;r, 0)] as
shown in Fig. 1. The present system has translational sym-
metry TcjoT ' =cjt1o and parity symmetry Pc;,P =
CL—j+1.0» SO that 7@ = 7(@e=247N/L gnd 7@ = [7(D]*i247N/L
with N being the number of fermions. Thus we should choose
g = 1 in the present case with N = L.

Polarization. In order to calculate the polarization z" for
the 2D Wilson-Dirac model, we use the following Resta’s
argument [15]. After the inverse Fourier transformation, the
Wilson-Dirac model (2) with SBCs is written as a 1D

quadratic Hamiltonian [32],

H = Z CjaHij,aﬂCjﬁ’ (6)

ijap

where i, j are sites. Then we obtain its single-particle eigen-
states by

Wm> = &pu |¢1§u)’ )

Z H;j
Iz

where |y7,) = U5 uy), U, =e7 /YL, and  |up,)
are the eigenstates of the Bloch Hamiltonian H(p) =

) iUyl ]Z/Ij_[} Then the polarization is given as
L 2
£ = det'SY, S (ke ko) = Y (W |V ®)

J=1

where det’ indicates the determinant restricted to the occupied
single-particle states. This calculation is simplified as

L-1

det SO = (—1)¢ [ [ det S (ky1q. k). ©)
s=0

S/(Zl(kv-k—q’ ks) = <ukj+qu|uksv> , (10)

where k; = 27s/L and the factor (—1)7 stems from the an-
tisymmetry of the determinant [32]. Here, the meaning of
the polarization becomes clear: it is a product of overlaps
between Bloch states with wave vectors that differ by k,.
This decomposition to small matrices and cancellation of x;
dependence greatly simplify the calculations and enable us
to deal with large systems. Especially, in the present system
with a single occupied band, S, ,(ksy1,ks) is no longer a
matrix, but a number. This simplification is also one of the
advantages of SBCs, where each state is specified by a single
wave number k, compared with conventional 2D PBCs.
Conductivities. As a physical quantity to compare with the
polarization, we calculate the Hall conductivity o,,, which is
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FIG. 2. Dispersion relations of the 2D Wilson-Dirac model (L, =
L,=4,M/t =1)at B=M/4[(a)and (b)] and at B = M/2 [(c) and
(d)]. (a) and (c) are written with spiral boundary conditions for A =
L, — 1 and for A = L,, respectively, while (b) and (d) are based on
conventional 2D boundary conditions. The bulk gap closes and the
Dirac dispersion appears at k = 7.

given in Matsubara form as

Re o;; = — 111110 4’ {i, /) € {x, v}, (11a)
w— w
. 62 .
IL;(p, ivm) = LL B Tr[g(k, la)n)y,-(k + g)
v k,w,

x Gk + p, iwn + ivy) y,-(k n g)] (11b)

where B is the inverse temperature and the temperature
Green’s function is given as G(k, iw,) = {iw, — [H(k) —
] +isgn(w,)I'}~" with w, and v, being Matsubara fre-
quencies for fermions and bosons, respectively. The chemical
potential and the impurity scattering time are denoted by u
(=0) and 1/2T", respectively. y; is defined by

dH (k)
yitk) = ok (12)
and the replacement of the wave number (k,,k,)—
(k, Ak) [32].

Results. First, we look at the dispersion relation of the
2D Wilson-Dirac model with SBCs as shown in Fig. 2. The
Brillouin zone is 0 < k < 2m. Since the present model with
SBCs is represented as a 1D model with long-range hopping
terms C,'T+ A.aCiq T Hec., there appear many oscillations. At
the phase transition points where the bulk gap closes, Dirac
points appear at k = w for A = L, — 1 and A = L,. Here, we
have assumed that L, is even. For odd L,, the roles of A are
interchanged.

We calculate several quantities including the polarization
as shown in Fig. 3. As expected, the Hall conductivity at
zero temperature vanishes (oy, = 0) in the trivial phase B <
M/4, and o,, = +e?/2h for the topological phase B > M/4
as shown in Fig. 3(a). This is due to the absence of chiral
symmetry. At the phase transition between two topological
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FIG. 3. Several quantities around the parameter regions of the
topological transitions of the 2D Wilson-Dirac model with M/t =
1: (a) Hall conductivity, (b) energy levels in a finite-size system,
and (c) polarization. The Hall conductivity is quantized at 4-e?/2h.
(a) and (c) are calculated under SBCs with APBCs ¢ii1 o = —Cig
to prevent divergences at the transition points (B/t = 1/4,1/2). The
insets of (c) show how z!’ approaches to zero at the transition points.
The polarizations with different A converge to the same value except
for the intermediate region 1/4 < B/t < 1/2.

states B = M/2, the sign of the Hall conductivity changes.
The results of the lattice model do not coincide with those
of the effective mass approximation. Since the Hall conduc-
tivity is defined in the thermodynamic limit, the results do not
depend on boundary conditions: we get the same quantized
Hall conductivities for SBCs with A =L, —1and A =L,,
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and also for the usual 2D PBCs. However, at the phase tran-
sition points, the Hall conductivity diverges because of the
vanishing of the bulk energy gap &; = 0. Therefore we have
calculated the Hall conductivity in antiperiodic boundary con-
ditions (APBCs) for the extended 1D chain, ¢itr o = —Cig»
namely, k = 27 (n + 1/2)/L, to prevent these divergences.

Next we consider energy spectra of the 2D Wilson-Dirac
model in finite-size systems. As shown in Fig. 3(b), en-
ergies of k = (w, ) [(k, A) = (7, Ly — 1)] intersect at the
topological phase transition point at B = M/4 without size
dependence. This is similar to “level spectroscopy” for 1D
quantum systems [33-35]. In this method, phase transition
points between two different gapped states described by ¢ = 1
conformal field theory are identified by an intersection of en-
ergy spectra with different parities. The phase transition point
at B = M/2 is also given by an intersection of energy spectra,
but these spectra are given by k = (7, 0) [(k, A) = (, L,)],
so that we need to choose A = L,.

Now we turn our attention to the polarization z("’, which is
the main target of this Research Letter. Before looking at the
result, let us evaluate the sign of z(" from the real-space rep-
resentation of the 2D Wilson-Dirac model [32]. For the trivial
phase (B <« 0 < M), the electrons of the system are located
on each site; therefore it follows from (27 /L) Zle j=(L+

1)z that z) = —1 for even L. On the other hand, the topo-
logical phase (0 < M <« B) is considered to be dominated by
bond-located fermions. When all the fermions are located on
the bonds along the x direction, the wave function is |Wy) =
2742 néﬁ (C;k—u + c;k,l)(cgk,z + C;k-H,Z) |0). Then the po-
larization is calculated as z(1 = [cos(7r /L)]Le!E+2™ — | for
L — oo. Here, the phase is given by the center of mass of
the bond-located fermions (27 /L) Z?zl( j+1/2). If there
are bond-located fermions along the y direction, then |W)
includes long-range bonds 2‘1/2(c;a + CLA ) 10) in the 1D
representation. However, in such éases, the center of mass
of the bond-located fermions is unchanged regardless of the
choice of A [32]. Therefore the sign of z(! is expected to
change between the topological and the trivial phases.

As shown in Fig. 3(c), the sign of z(I changes between
the trivial and the topological regions, as we expected. For
the region between two phase transition points at B = M /4
and B = M/2, the sign of z(I) becomes different depending
on the choice of A. The interpretation of this result is not
clear, but the difference in the sign of z(I’ indicates the system
given by bond-located fermions with modulations character-
ized by (ky, ky) = (m, ) or (7, 0), (0, 7). For even L,, ZD
with A = L, — 1 changes sign at B = M /4 and approaches to
zero at B = M/2, while for A = L,, zD approaches to zero

at B = M/4 and changes sign at B = M/2. The fact that 7"
vanishes at the phase transition points where the system is
gapless is consistent with the LSM theorem. Here, we have
used SBCs with APBCs ¢« = —ci o to prevent divergences
at the transition points. For PBCs, z(!) changes discontinu-
ously at the level-crossing point in finite-size systems [36].

Summary and discussion. In summary, we have discussed
the polarization in the 2D Wilson-Dirac model based on spiral
boundary conditions that sweep all lattice sites in 1D order.
Here, the system is described as 1D chains with long-range
hopping. Then the electronic polarization defined in 1D sys-
tems can be extended to 2D systems. In the same way as in
the 1D cases, topologically distinct gapped phases are char-
acterized by the difference in the sign of the polarization.
This means that the polarization operator and SBCs enable us
to deal with topological transitions between different gapped
states in different dimensions in a unified way.

The SBCs also have a great advantage in calculating the
polarization. In Resta’s formalism for noninteracting systems,
the polarization 79 is given by products of overlaps between
the Bloch states with wave vectors separated by 2gm /L.
so that denoting the states by 1D wave numbers greatly re-
duces the calculation costs and enables us to obtain results in
large enough systems to be almost regarded as the thermo-
dynamic limit. The present SBCs are also useful for several
numerical methods, such as exact diagonalization and the
density matrix renormalization group.

We have analyzed the 2D Wilson-Dirac model successfully
based on SBCs, but we cannot conclude here whether the
behavior of the polarization is universal or not in other mod-
els of 2D topological insulators. We need further systematic
study of the general relationship between the polarization
and topological phases in several symmetries and dimensions,
including calculations of other physical quantities such as
entanglement spectra. For example, there are several works
relating the Chern number and the conventional type of 2D
twist operators [37,38]. It would also be interesting to apply
the present analysis to multipole polarizations in higher-order
topological insulators [39-41] and non-Hermitian systems.
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