
PHYSICAL REVIEW B 104, L121113 (2021)
Letter

Strong suppression of electron convection in Dirac and Weyl semimetals
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It is shown that the convective instability in electron fluids in three- and two-dimensional (3D and 2D) Dirac
and Weyl semimetals is strongly inhibited. The major obstacles for electron convection are the effects of the
Coulomb forces and the momentum relaxation related to the interaction with impurities and phonons. The effect
of the Coulomb forces is less pronounced in 2D materials, such as graphene. However, momentum relaxation
still noticeably inhibits convection, making it very difficult to achieve in practice.
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Introduction. Electron hydrodynamics is an unusual trans-
port regime that can be realized in clean crystals. As first
conjectured by Gurzhi in the 1960s [1,2], electrons could form
a hydrodynamic fluid when the electron-electron scattering
rate is larger than the scattering rates of electrons on impurities
and phonons. In such a regime, the electron transport should
reveal some conventional hydrodynamic effects, including the
Poiseuille-like profile of the current in a wire, the formation
of vortices, etc.

Historically, a hydrodynamic electron flow was first
observed in a two-dimensional (2D) electron gas of high-
mobility (Al, Ga)As heterostructures [3,4]. Later, a similar
regime was confirmed in the ultrapure 2D metal palladium
cobaltate (PdCoO2) [5] and graphene [6–12]. (For reviews on
electron hydrodynamics, see Refs. [13,14].) Electron hydro-
dynamics in graphene could be experimentally revealed via
a negative nonlocal resistance and the formation of current
vortices [15–19], higher than ballistic conduction in constric-
tions [8,20], and certain collective modes [21–24]. The profile
of electric currents in the hydrodynamic regime can be re-
constructed from the stray magnetic fields [11] or the Hall
field across the graphene ribbon [12]. Recently, evidence of
three-dimensional (3D) relativisticlike hydrodynamic electron
transport was reported in the Weyl semimetal tungsten diphos-
phide WP2 [25]. This shows that Dirac and Weyl semimetals
provide another promising platform for investigating the hy-
drodynamic regime of the electron transport in solids.

Dirac and Weyl semimetals are novel materials whose elec-
tron quasiparticle spectrum is described by the corresponding
equations in the vicinity of the band-crossing points known
as Dirac points and Weyl nodes [26–28], respectively. Rep-
resentative material realizations of Dirac semimetals include
A3Bi (A = Na, K, Rb) [29,30] and Cd3As2 [31–33] in 3D, as
well as graphene in 2D. Weyl semimetals are realized, e.g., in
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transition metal monopnictides (TaAs, TaP, NbAs, and NbP)
[34–40], EuCd2As2 [41,42], Co3Sn2S2 [43–45], etc.

Guided by experience with conventional fluids, one may
expect similar hydrodynamic effects to show up in the electron
fluid. For example, the possibility of a preturbulent regime in
graphene was proposed in Refs. [46,47]. (Kagome metals may
provide a compelling platform for realizations of turbulence in
electron fluids [48].) The formation of the Rayleigh-Bénard
convective cells in graphene was suggested and numerically
studied in Ref. [49]. Generally, the Rayleigh-Bénard instabil-
ity occurs in fluids subject to a buoyancy force (e.g., caused
by gravity) and temperature gradient that results in a local
thermal expansion of fluid [50,51]. If the buoyancy force is
strong enough, it becomes favorable to develop regular con-
vective cells where the heat transfer is greatly assisted by
the fluid motion. The observation of such cells would be a
definitive signature of electron hydrodynamics. The possibil-
ity of electron convection is not only of academic interest
but also can have important practical applications. Indeed,
the convective regime may be invaluable for an effective heat
transfer because the Nusselt number, which quantifies the
ratio of convective to conductive heat transfer, is up to 10
(1000) times larger for a laminar (turbulent) flow. Since there
are significant differences between conventional fluids and
electron plasma in semimetals, it is necessary to investigate
the onset conditions for electron convection in detail.

In this Letter, we show that the Rayleigh-Bénard instability
in electron fluids in Dirac and Weyl semimetals is strongly in-
hibited. We identify two major obstacles for the electron fluid
convection: (i) Coulomb forces and (ii) momentum-relaxation
effects. Unlike many conventional fluids, the electron plasma
is electrically charged. In a semimetal, the overall electric
neutrality is preserved by the compensating charge of immov-
able lattice ions. Any deviation from local neutrality induces
a strong electric field and, consequently, is energetically un-
favorable. In other words, the effects of the Coulomb forces
strongly suppress local expansion and compression of the
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electron fluid. For the same reason, a temperature gradient
cannot easily induce sufficiently large local density deviations
needed for triggering convection.

We support this qualitative argument by a quantitative es-
timate of the Rayleigh number. Due to the aforementioned
obstacles, the latter is so large in 3D Dirac and Weyl semimet-
als that achieving convection becomes practically impossible
under any realistic conditions. As one might expect, the effects
of the Coulomb forces are less pronounced in 2D materials.
However, due to ubiquitous disorder effects and interaction
with phonons, the momentum relaxation also noticeably in-
hibits a convective flow in both 2D and 3D systems.

Model. The starting point in our discussion of the electron
fluid is the Navier-Stokes equation [13,14],

1

v2
F

[∂t (uw) + uw(∇ · u) + (u · ∇)(uw)] − η�u

−
[
ζ + η(d − 2)

d

]
∇(∇ · u)

= −∇P − wu
v2

F τ
− enE. (1)

Here, w = ε + P is the enthalpy, ε is the energy density,
P is the pressure, u is the electron fluid velocity, n is the
electron number density, −e is the electron charge, and vF

is the Fermi velocity. Further, η and ζ are the shear and
bulk viscosities, respectively. In relativisticlike systems, ζ ≈
0 [52] and η = ηkinw/v2

F , where ηkin ∼ v2
F τee is the kinematic

shear viscosity and τee is the electron-electron interaction time
(see, e.g., Refs. [53,54]). For a relativisticlike fluid, P = ε/d
and w = (d + 1)ε/d , where d is the spatial dimension. The
momentum relaxation, which is inevitable in real solids, is
quantified by the relaxation time τ that contains contributions
from scattering on impurities and phonons. For simplicity, we
assume that the electron fluid is isotropic, which is sufficient
for the purposes of this study. Finally, we account for an
electric field E, which includes both external and induced
contributions.

The electric and energy current densities are

J = −enu + σ

[
E + T

e
∇

(
μ

T

)]
, (2)

Jε = wu − η

[
(∇ · u)u + u j∇u j − 2

d
u(∇ · u)

]
. (3)

Here, μ is the chemical potential, T is temperature, and σ

is the intrinsic conductivity [13]. The electric and energy
currents satisfy the standard continuity relations

−e∂t n + (∇ · J) = 0 (4)

and

∂tε + (∇ · Jε ) = (E · J), (5)

respectively.
Since the electron fluid is electrically charged, the hy-

drodynamic equations should be supplemented by Maxwell’s
equations. By assuming a slow flow, we neglect the effects of
dynamic magnetic fields on fluid motion. In such a quasistatic

approximation, only the Gauss law

∇ · E = −4πeδn (6)

is relevant. Here, −eδn is the deviation of the electron charge
density from the background equilibrium value. As we will
show below, electric fields induced by δn play a profound role
in suppressing electron convection in 3D. The Coulomb forces
also hinder convection in 2D systems, but their effect is less
dramatic.

It is worth noting that the Coulomb interactions are respon-
sible for both viscosity of the electron fluid and screening
effects. Indeed, it is the microscopic interparticle Coulomb
force that governs the electron-electron scattering and the for-
mation of electron fluid. On the other hand, the Gauss law in
Eq. (6) determines a background electric field, which comes as
an average uncompensated field over macroscopic distances.
This field is induced when the electron fluid is compressed or
expanded locally with respect to the ion lattice.

To investigate the possibility of electron convection, we
follow the same conceptual approach as in conventional flu-
ids (see, e.g., Refs. [55,56]), but amend the hydrodynamic
equations with the Gauss law. As the first step, we find
the steady-state solutions for the temperature profile and the
electric field in the absence of hydrodynamic flow. Then, by
using these solutions as a background, we derive the threshold
criterion for convection.

Steady-state solution without flow. Let us start by deter-
mining the steady-state solution for the electric field and
temperature inside a slab of finite thickness L along the x
direction. For simplicity, we assume that the slab is infinite
along other directions.

Temperature T (x) and the electric potential ϕ(x) take dif-
ferent values on the opposite surfaces of the slab, i.e.,

T (x = 0) = TL, T (x = L) = TR, (7)

ϕ(x = 0) = ϕL, ϕ(x = L) = ϕR. (8)

We employ a perturbation scheme where deviations of all
quantities (denoted by a tilde) are small compared to their
global equilibrium values (denoted by subscript 0), e.g.,
T̃ /T0 � 1, etc. By setting u = 0 in Eqs. (1)–(6), one finds that
the temperature function T̃ (x) is determined by the Laplace
equation, �T̃ = 0. Its solution that satisfies the boundary
conditions (7) reads

T̃ = TL − T0 + TR − TL

L
x. (9)

By taking into account this solution, Eqs. (4) and (6) can be
rewritten as follows:

�μ̃ = 4πe2ñ = q2
TFμ̃ + 4πe2(∂T n)T̃ , (10)

�ϕ̃ = −4πeñ, (11)

where qTF = √
4πe2(∂μn) is the Thomas-Fermi wave vec-

tor. Its explicit expression is given in the Supplemental
Material [57].

By using the equation of motion (1) at u = 0 and requir-
ing the overall charge neutrality of the sample, we obtain
the steady-state expressions for μ̃ and ϕ̃ (see Supplemental
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Material [57]). They reveal that the electric field is nonva-
nishing but screened strongly inside the sample. Also, the
electric charge deviations are small (ñ ≈ 0) in the bulk of
the slab. However, both electric field and charge density are
noticeably nonuniform near the surfaces. Since convection is
determined largely by bulk properties, it is justified to ignore
the inhomogeneity of the electric field and other variables
near the surfaces. Such an approximation simplifies analytical
calculations but should not affect the qualitative results for
sufficiently thick samples.

Convection threshold. To determine the threshold of con-
vection, we consider a hydrodynamic flow in the background
of the screened electric field and the temperature gradient
obtained in the previous section. As in conventional fluids
[55,56], the analysis is simplified by using an analog of the
Oberbeck-Boussinesq approximation. The resulting system,
which is linear in the flow velocity u and the flow-driven
deviations Pu, Eu, nu, μu, and Tu (appearing on top of the
steady-state solution), reads

∇Pu − η�u −
[
ζ + η(d − 2)

d

]
∇(∇ · u)

= −w0u
v2

F τ
− en0Eu − enuẼ, (12)

(u · ∇)w̃ + w0(∇ · u) = 0, (13)

− en0(∇ · u) + σ (∇ · Eu) + σ

e

(
�μu − μ0

T0
�Tu

)
= 0,

(14)

∇ · Eu = −4πenu. (15)

Here, we assumed that the cross-terms containing fluid flow
velocity and the temperature gradient are small compared to
other terms. In addition, we neglected the terms that are of the
second order in steady-state deviations (e.g., ñẼ � n0Ẽ).

The last term on the right-hand side in Eq. (12) and the first
term in Eq. (13) are crucial for driving convection and their
analogs are included in the Oberbeck-Boussinesq approxima-
tion for conventional fluids. Indeed, the term −enuẼ is similar
to the buoyancy force for regular fluids. Recall that buoyancy
is the consequence of an external (e.g., gravitational) force
exerted on a fluid with a density gradient, typically induced by
a temperature difference between the top and bottom surfaces.
In the case of electrons, gravitation has negligible effects and
the role of buoyancy force is played by the electric force
related to the in-medium electric field Ẽ. Therefore, another
key requirement for achieving convection is the nonzero com-
pressibility of the fluid. It is taken into account by the first
term in Eq. (13).

It is very important for the problem under consideration
that, unlike ordinary fluids, expansion and compression of
the electron fluid give rise to strong electric fields. Indeed, in
view of the Gauss law (15), any change of the electric charge
density leads to an electric field. As we will explicitly show
below, this is one of the key factors inhibiting convection
in electron fluids as the energy price for the appearance of
electric fields is very high.

To estimate the threshold for convection, we use the
bulk steady-state solutions, ñ ≈ 0 and Ẽ = Ẽ x̂, which in-

clude both external and induced fields. Then, (u · ∇)w̃ =
ux(∂xw̃) ∝ ux(TR − TL). The explicit expression for (∂xw̃) as
well as the general solutions to Eqs. (12)–(15) are given in the
Supplemental Material [57].

We use a plane-wave ansatz for the hydrodynamic vari-
ables ux, Tu, and μu, e.g.,

Tu = CT eik⊥·r⊥eikxx, (16)

where k⊥ is the wave vector perpendicular to the sur-
face normal. The characteristic equation for the system of
Eqs. (12)–(15) reads [57]

k2

(
k2 + 1

λ2
G

)(
k2 + q2

TF

) − k2
⊥

L4
Ra = 0, (17)

where k2 = k2
⊥ + k2

x . In Eq. (17), we used the following short-
hand notations:

λG =
√

v2
F τη

w0
= √

τηkin, (18)

Ra = L4 e3n0Ẽ (∂xw̃)T0

σw2
0η

[n0(∂T n) − s0(∂μn)]. (19)

Here, λG is the Gurzhi length that quantifies the momentum
relaxation and Ra is the Rayleigh number. In the limit λG →
∞ and qTF → 0, the characteristic equation (17) coincides
with the textbook result for conventional fluids (cf. Ref. [55]).
Convective instability characterized by periodic spatial pattern
of the fluid velocity is realized for real kx and k⊥. This requires
Ra � Ramin, where Ramin is determined from the characteris-
tic equation (17) with wave vectors constrained by boundary
conditions.

To derive the convection threshold Ramin, let us determine
the allowed values of kx in Eq. (17). They follow from the
boundary conditions for Tu and u, i.e.,

Tu(x = 0, L) = 0, ux(x = 0, L) = 0. (20)

For the perpendicular components of velocity u⊥, we employ
the free-surface boundary conditions, which provide the most
conservative estimate of the convection threshold. Indeed, the
no-slip boundary conditions can be considered as a source
of additional dissipation that further inhibits convection; see,
e.g., Ref. [56] for neutral fluids. We found that the free-surface
boundary conditions are satisfied for |kx| = πn/L with n =
1, 2, 3, . . . (see Supplemental Material [57] for details). It is
worth noting, however, that the exact form of the boundary
conditions is not important for our qualitative arguments be-
cause they only determine the allowed values of kx.

The characteristic equation (17) gives the following rela-
tion between the Rayleigh number and wave vector:

Ra = L4

(
k2
⊥ + k2

x

)(
k2
⊥ + k2

x + λ−2
G

)(
k2
⊥ + k2

x + q2
TF

)
k2
⊥

. (21)

This shows that the Coulomb forces and the momentum relax-
ation effects, quantified by qTF and λG, respectively, increase
the minimal value of the Rayleigh number Ramin needed to
achieve convection. In order to determine Ramin, one should
minimize Eq. (21) with respect to the wave vectors allowed
by the boundary conditions, i.e., at kx = π/L. The general
expression for the minimal Rayleigh number at finite λG and
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nonzero qTF is cumbersome (see also Supplemental Material
[57]). Since the Rayleigh number Ra increases with kx, we
can estimate the corresponding lower bound Ra0 (which is
smaller than the actual Ramin) by setting kx = 0 and neglecting
k⊥ compared to qTF and λ−1

G in Eq. (21), i.e.,

Ra0 = L4q2
TF/λ

2
G < Ramin. (22)

It is instructive to mention that qTF 
 π/L and λG � L/π

hold for realistic samples of 3D Dirac and Weyl semimetals
and, therefore, the above estimate is indeed reasonable. To
verify this, let us consider typical parameters for semimetals,
e.g., μ0 = 20 meV, T0 = 25 K, and use the Fermi velocity
vF ≈ 1.4 × 107 cm/s [58]. In this case, one obtains qTF ≈
9.9 × 106 cm−1 by assuming quasiparticles with a 3D rela-
tivisticlike energy spectrum. For such a large Thomas-Fermi
wave vector, one finds that qTF 
 π/L in a wide range of ex-
perimentally achievable samples [59]. As for the momentum
relaxation length, we estimate λG ≈ 0.4 μm at τ = 0.1 ns
and τee = 0.3 ps, which is quite small compared to a typical
thickness of Dirac semimetal slabs.

By using Eq. (22) and the same characteristic parameters
as before, we estimate the lower bound for Ramin as

Ra0 = L4q2
TF/λ

2
G ≈ 6.5 × 1022 L4[cm]. (23)

It is instructive to compare this estimate with the benchmark
result for conventional fluids. By taking λG → ∞ and qTF =
0, we find that the critical value of the Rayleigh number is
reached for kx = π/L and k⊥,min = π/(

√
2L) giving Ramin =

27π4/4 ≈ 657.5.
The enormous value of the lower bound for the minimal

Rayleigh number (23) implies that convection in the electron
fluid is strongly suppressed. Indeed, Eq. (19) gives the follow-
ing estimate for the Rayleigh number in Dirac semimetals:

Ra ≈ 4 × 109 δT

T0
Ẽ

[
V

m

]
L3[cm], (24)

where Ẽ is the in-medium field that includes both external and
induced components, and δT/T0 is the normalized tempera-
ture difference between the slab surfaces. As is easy to see,
the estimate in Eq. (24) is many orders of magnitude smaller
than Ra0 for any reasonable electric field and temperature
gradient available in experiments. Thus, in agreement with
the heuristic arguments, convection is ruled out for 3D Dirac
semimetals.

The minimal Rayleigh number Ramin as a function of the
slab width L is presented by solid lines in Fig. 1 for the three
fixed values of the chemical potential: μ0 = 1 meV (red),
μ0 = 10 meV (blue), and μ0 = 50 meV (green) [60]. As we
see, the minimal Rayleigh number needed for convection is
enormous for macroscopic samples. It approaches the value in
conventional fluids, i.e., Ramin = 27π4/4, only for extremely
thin slabs. In the same figure, the shaded regions show the
ranges of realistic estimates for the Rayleigh number obtained
from Eq. (24) by assuming rather conservative values δT � T0

and Ẽ � 10 V/m. It is clear that the realistic values of the
Rayleigh number are many orders of magnitude smaller than
Ramin required for convection.

Graphene. In view of the great interest in electron hydrody-
namics in graphene, let us reexamine whether the convective

FIG. 1. Solid lines show the minimal Rayleigh number needed
for convection. The realistic Rayleigh numbers achievable in Dirac
semimetals are shown by the shaded regions. Dashed lines show
the Rayleigh number (24) calculated for δT = T0 and Ẽ = 10 V/m.
The Gurzhi length is λG ≈ 0.4 μm and the values of the Thomas-
Fermi wave vector are qTF ≈ 2 × 106 cm−1 at μ0 = 1 meV, qTF ≈
5.2 × 106 cm−1 at μ0 = 10 meV, and qTF ≈ 2.4 × 107 cm−1 at
μ0 = 50 meV.

instability is possible in the 2D case. While the electron
convection in graphene was already studied in Ref. [49], the
effects of the Coulomb forces and the momentum dissipation
were not taken into account. The screening effects in gated
graphene can be treated in the “gradual channel” approxima-
tion [61,62] (see also Ref. [21]). In this approximation, the
induced electric field is given by

Eu = e

C
∇nu, (25)

where C = ε/(4πLg) is the capacitance per unit area, ε is the
dielectric constant, and Lg is the distance to the gate. The
minimum Rayleigh number is determined similarly to the 3D
case considered above, but the Gauss law (15) is replaced
by Eq. (25) (for details, see Supplemental Material [57]). We
obtain

Ra = L4

(
k2
⊥ + k2

x

)2(
k2
⊥ + k2

x + λ−2
G

)
(1 + Q2)

k2
⊥

, (26)

where Q = √
e2(∂μn)/C. For Tu ∝ sin (kxx), the boundary

conditions are satisfied for |kx| = πn/L and n = 1, 2, 3, . . ..
As in the 3D case, the Coulomb forces and momentum re-
laxation increase the minimal Rayleigh number needed to
achieve convection.

Quantitatively, the effects of the Coulomb forces are much
weaker in 2D. This is also supported by numerical esti-
mates. Indeed, by using typical parameters for graphene,
i.e., vF = 1.1 × 108 cm/s, μ0 = 100 meV, T0 = 100 K, Lg =
100 nm, and ε = 1, we estimate Q ≈ 6.6 (see Supple-
mental Material [57] for details). Therefore, the Coulomb
forces increase Ramin only by about an order of magni-
tude. The momentum relaxation effects, on the other hand,
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are very important. We estimate λG ≈ 2.6 μm at τ = 0.1 ns
and τee = (h̄2v2

F /e4)(h̄μ0/T 2
0 ) ≈ 0.2 ps. The corresponding

minimal value of the Rayleigh number is

Ramin ≈ 2.7 × 106 (27)

at L = 100 μm. This is almost four orders of magnitude larger
than the benchmark value 27π4/4. The Rayleigh number for
graphene is estimated as

Ra ≈ 4.4 × 107 δT

T0
Ẽ

[
V

m

]
L3[cm]. (28)

Our estimate suggests that in order to exceed the minimal
Rayleigh number (27), centimeter-sized graphene samples are
needed when the total electric fields are of the order of 1 V/m.

Thus, the momentum relaxation significantly inhibits con-
vection in 2D systems too. The effect of the Coulomb forces,
however, is less pronounced compared to the case of 3D
Dirac semimetals. This situation resembles the role of the
Coulomb forces in the spectrum of plasmons. Indeed, the plas-
mon dispersion relation is gapped in 3D due to the efficient
screening of electric charge oscillations. On the other hand,
in 2D systems the spectrum of plasmons remains gapless in
the gradual channel approximation, where the Coulomb forces
only enhance the plasma velocity.

Summary. In this Letter, we showed that the convective
instability is strongly inhibited in the electron fluid in 2D and
3D Dirac and Weyl semimetals. We identified the following
two major inhibitors: (i) the Coulomb forces and (ii) the mo-
mentum relaxation effects due to scattering on impurities and
phonons. Both are unavoidable and play a critical role in the
charged electron fluid in semimetals. For realistic parameters
in 3D Dirac and Weyl semimetals, the effect of the Coulomb

forces dominates over the momentum relaxation and leads to
an extremely large convection threshold. In 2D systems such
as graphene, the key role is played by the momentum relax-
ation that increases the minimum Rayleigh number needed
for convection. The corresponding threshold values are a few
orders of magnitude larger than in conventional fluids. Our
findings imply that the electron fluid convection is unlikely to
be realized in Dirac and Weyl semimetals.

While we focused on the fluid of electron quasiparticles
with an isotropic relativisticlike dispersion relation, similar
arguments should apply to systems with anisotropic and even
nonrelativisticlike dispersion relations, although the quantita-
tive details will be different. For example, the critical value of
the Rayleigh number may be different along different crystal
directions for materials with anisotropic spectra. Because of
the crucial role of the Coulomb forces, we speculate that
fluids made of neutral quasiparticles such as magnons (if
their hydrodynamic regime is realized [63,64]) promise to be
better candidates for convection in solid-state materials. It is
tempting to suggest that phonon fluids [2,65–68] might also
demonstrate convective instability. It is not clear, however,
whether the analogy with conventional fluids is complete and
the equivalent of buoyancy forces is present.
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