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So far, topological band theory has been discussed mainly for systems described by eigenvalue problems.
Here, we develop a topological band theory described by a generalized eigenvalue problem (GEVP). Our
analysis elucidates that non-Hermitian topological band structures may emerge for systems described by a
GEVP with Hermitian matrices. The above result is verified by analyzing a two-dimensional toy model where
symmetry-protected exceptional rings (SPERs) emerge although the matrices involved are Hermitian. Remark-
ably, these SPERs are protected by emergent symmetry, which is unique to the systems described by the GEVP.
Furthermore, these SPERs elucidate the origin of the characteristic dispersion of hyperbolic metamaterials which
is observed in experiments.
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Introduction. After the discovery of topological insulators,
topological band structures have been studied as one of the
central issues in condensed-matter systems [1–16]. In these
systems, robust gapless modes emerge around the boundary
due to topological properties in the bulk [17]. In addition,
the topological band theory is also applicable to semimetals
which host robust band touching in the bulk [18–25]. For
instance, the Chern number can be assigned to the gapless
points in the bulk of Weyl semimetals, which elucidates novel
transport properties [19–22]. Mathematically speaking, these
topological band structures are described by a standard eigen-
value problem with a Hermitian matrix.

Recently, the topological band theory has been extended to
non-Hermitian systems [26–38] which are described by the
standard eigenvalue problem with a non-Hermitian matrix.
The platforms of the non-Hermitian topological band theory
are extended even beyond quantum systems such as photonic
crystals with gain or loss [39–42], electric circuits [43–46],
mechanical metamaterials [47,48], and so on. Remarkably,
the non-Hermiticity of such systems enriches topological
properties. For instance, non-Hermitian systems may host
exceptional points where both the real- and imaginary parts
of the energy bands touch [49–54]. It has also been eluci-
dated that the symmetry of non-Hermitian systems results in
symmetry-protected exceptional rings (SPERs) [55–57] and
symmetry-protected exceptional surfaces (SPESs) [56,58–60]
in two and three dimensions, respectively, although preserving
the relevant symmetry requires fine tuning.

Along with the above development of the topological
band theory, recent studies have revealed that several systems
are described by generalized eigenvalue problems (GEVPs)
[61–63]. The above progress of topological band theory im-
plies the presence of novel topological phenomena unique to
GEVPs. Unfortunately, however, most of the previous works
focus on the case where the problem is reduced to the ordinary

Hermitian systems. Thus, for systems described by GEVPs, a
further development of a topological band theory remains a
crucial issue to be addressed.

In this Letter, we discuss the topological band theory for
systems of a GEVP with Hermitian matrices. Our analysis
elucidates that such systems may exhibit non-Hermitian topo-
logical phenomena protected by emergent symmetry. As an
example, we demonstrate the emergence of SPERs for a sys-
tem described by a GEVP with Hermitian matrices. Notably,
no fine-tuning is necessary to realize these SPERs because
they are protected by emergent symmetry. This property is
unique to systems described by the GEVPs. Furthermore, the
SPERs with emergent symmetry explain the origin of the
hyperbolic dispersion of hyperbolic metamaterials (HMMs)
[64–78].

So far, SPERs and SPESs have been reported for non-
Hermitian systems described by the standard eigenvalue
problem. We would like to stress, however, that SPERs and
SPESs described by the GEVP with Hermitian matrices do not
require fine tuning in order to preserve the relevant symmetry,
which is a striking difference with respect to ordinary SPERs.

Generalized eigenvalue problem with Hermitian matrices.
Here, we analyze a general theory of a GEVP with Hermitian
matrices describing non-Hermitian topology. Specifically, we
elucidate that a complex band structure may emerge despite
the Hermiticity of matrices. We also show that generalized
eigenenergies form pairs due to emergent symmetry.

Let us consider the band theory described by a GEVP,
which is defined as [79]

Hψ = ESψ. (1)

Here, H and S are Hermitian matrices, E are generalized
eigenvalues, and ψ are generalized eigenvectors [80]. Un-
less otherwise noted, generalized eigenvalues and generalized
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eigenvectors are simply referred to as eigenvalues and eigen-
vectors in this Letter.

In the following, we show that, when H and S are indefi-
nite, E can be complex in spite of the Hermiticity of H and S.
Without loss of generality, we assume that S is diagonalized.
Here, matrix S can be decomposed as

S = S′�S′, (2)

with S′ = diag(
√|β1|, . . . ,

√|βn|), � = diag[sgn(β1), . . . ,
sgn(βn)], and βi being eigenvalues of matrix S. sgn(βi ) takes
the sign of βi. When S is indefinite, � is not proportional
to the identity matrix. Here, we define φ and H̃ as φ = S′ψ ,
H̃ = S′−1HS′−1. Because of the relation � = �−1, Eq. (1) is
rewritten as

H�φ = Eφ, (3)

with H� = �H̃ . The matrix H� is non-Hermitian, and eigen-
values E are complex. Noticing the Hermiticity of H̃ and �,
we can find emergent symmetry; H� satisfies the relation

�−1H�� = H†
�, (4)

which is known as pseudo-Hermiticity. Therefore, eigenval-
ues E are real or form complex-conjugate pairs [81–83] (for
details, see Sec. I of the Supplemental Material [84]). We
note that the indefiniteness of H and S is essential for the
complex band structure; either H or S is definite, eigenvalues
are always real [85].

In the above, we have shown that the system described by
the GEVP with Hermitian matrices may exhibit a complex
band structure. The emergence of the complex band structure
can be understood by mapping the GEVP to the standard
eigenvalue problem [86]. We stress, however, that such a map-
ping yields pseudo-Hermiticity as emergent symmetry, which
is a significant difference from ordinary systems described by
the standard eigenvalue problem with a non-Hermitian matrix.

Symmetry-protected exceptional rings in a two-band model.
We have seen that systems described by the GEVP with Her-
mitian matrices have complex eigenvalues. In the following,
we specifically analyze a two-band model to demonstrate
SPERs, a unique topological band touching of non-Hermitian
topological bands.

Here, we consider a two-band model of the honeycomb
lattice [see Fig. 1(a)]. We note that such a model described by
2 × 2 Hermitian matrices is the minimal model to investigate
the SPERs. The GEVP of the model is written as(

mL v fk

v f ∗
k −mL

)
ψ = E

(
1 + mR 0

0 1 − mR

)
ψ, (5)

with the hopping v. Here, mL and mR are real [87]. The
eigenvalues (eigenvectors) are denoted by E (ψ). fk is defined
as fk = (1 + eik·t1 + eik·t2 ) with t1, t2, and t3 being vectors
connecting neighboring sites [see Fig. 1(a)]. Here, we take the
matrix in the left-hand (right-hand) side of Eq. (5) as H (S).

Now let us discuss the band structure. Eigenvalues of this
model are described by

E = E0 ±
√

M2 − |gk|2, (6)

with E0 = [mL/(1 + mR) − mL/(1 − mR)]/2, M = [mL/(1 +
mR) − mL/(1 − mR)]/2, and gk = (v fk)/(1 − m2

R)1/2. Details
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FIG. 1. (a) Sketch of the honeycomb lattice model and its Bril-
louin zone. The gray (orange) dashed lines describe the unit cell (first
Brillouin zone). t1, t2, and t3 are vectors connecting neighboring
sites. These vectors are defined as t1 = (0,−1), t2 = (−√

3, 1)/2,
and t3 = (

√
3, 1)/2. (b) The dispersion relation of overlapped hon-

eycomb lattice model with mL = 0, mR = 0. v is fixed at 1. Dirac
points at K and K ′ points are denoted by arrows. (c) [(d)] The real
(imaginary) part of the dispersion relation of overlapped honeycomb
lattice model with mL = 0.3, mR = 1.1. SPERs (red ring) based on
the GEVP emerges around the K and K ′ points.

of the analysis are provided in Sec. II of the Supplemental
Material [84]. In the following, we discuss the band structure
for three cases: (i)|mR| < 1, (ii) |mR| > 1, and (iii) |mR| = 1.
We note that in cases (i), (ii), and (iii), matrix S is definite,
indefinite, and not invertible, respectively.

We start with case (i) where the model shows Dirac cones
at K and K ′ points [see Fig. 1(b) which is obtained for mL = 0
and mR = 0]. Here, the band structure has a mass gap with
nonzero mL and mR for |mR| < 1.

Next, we discuss the case (ii). Figures 1(c) and 1(d)
show the band structure for mL = 0.3 and mR = 1.1. In
these figures, we can find the SPERs where both of the
real and the imaginary parts show band touching around
the K and K ′ points. The topological characterization of
SPERs can be done by computing the zeroth Chern number
N0 Ch, which is the number of negative eigenvalues of Hermi-
tian matrix �(H� − Eref ) with Eref = 1.57, � = diag(1,−1),
and

H� =

⎛
⎜⎝ mL/|1 + mR| v fk/

√∣∣1 − m2
R

∣∣
−v f ∗

k /

√∣∣1 − m2
R

∣∣ mL/|1 − mR|

⎞
⎟⎠.

Specifically, inside (outside) of the ring, the zeroth Chern
number takes N0 Ch = 2 (1) which topologically protects
the non-Hermitian band touching. We note that the above
SPERs are protected by the emergent symmetry; they are
robust against perturbations preserving the Hermiticity of H
and S and translational symmetry. For case (iii) (i.e., for
mR = 1), S is not invertible, and one of the eigenvalues
diverges.
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FIG. 2. (a) A sketch of the HMM consist of a metallo-wire structure. (b), (c) The real and imaginary parts of the dispersion relation of
Eq. (7), respectively. In these panels, red lines indicate the SPERs. (d) Zeroth Chern number on the ω = 0 plane. (e) Hyperbolic dispersion with
ε̃xx = −0.36 and ω̃ = ωa/2πc = 0.071 (blue solid line) and elliptic dispersion with ε̃xx = 0.1 (green dashed line). (f) Dispersion relation with
square of the dimensionless frequency for kxa = π . Data denoted by blue solid line are obtained for ε̃xx = −0.36, ε̃yy = 0.54, and μ̃zz = 1.
Data denoted by orange solid line are obtained for ε̃xx = −0.36 + i0.016, ε̃yy = 0.54 + i0.025, and μ̃zz = 1. We note that the data of the blue
line are almost the same as those of the orange line. The red dashed line indicates the dimensionless frequency in which the parameter takes the
above value. The black dashed line is to guide the eye. (g) The exceptional surface in three-dimensional HMMs with the zeroth Chern number.

In the above, we have demonstrated the emergence of
SPERs for the system described by a GEVP with 2 × 2
Hermitian matrices. Intriguingly, the topology of SPERs is
protected by emergent symmetry. Here, we stress that, for
the emergence of SPERs, the indefiniteness of both matri-
ces H and S are essential. Although the overlap matrix S
cannot be indefinite for quantum systems described by the
Schrödinger equation, it can be indefinite for optical systems
[88]. In the following, we apply the above results to an optical
system.

Application to hyperbolic metamaterials. The SPERs
described by the GEVP elucidate the origin of the experimen-
tally observed hyperbolic dispersion of the HMMs.

The HMMs are optical metamaterials with extreme
anisotropy. One of the examples is a system of a metallo-
wire structure [Fig. 2(a)]. In this case, the permittivity for the
x-direction (permittivity for the y- and z-directions) satisfies
εxx < 0 (εyy > 0 and εzz > 0) [89].

In these optical systems, the band structure is described by
Maxwell equations; eigenvalues (eigenvectors) correspond to
angular frequencies (electromagnetic field).

Here, we consider the two-dimensional system whose
permittivity and permeability are anisotropic. In this case,
electromagnetic modes are separable to the TM modes and
TE modes. The former is defined as E = (0, 0, Ez )T and H =
(Hx, Hy, 0)T while the latter is defined as E = (Ex, Ey, 0)T

and H = (0, 0, Hz )T . Here, the electric (magnetic) field is
denoted E (H).

The Maxwell equations of the TE modes are given by⎛
⎜⎝

0 −ky kx

−ky 0 0

kx 0 0

⎞
⎟⎠

⎛
⎜⎝

Hz

Ex

Ey

⎞
⎟⎠ = ω

⎛
⎜⎝

μzz

εxx

εyy

⎞
⎟⎠

⎛
⎜⎝

Hz

Ex

Ey

⎞
⎟⎠,

(7)

with permittivity ε and permeability μ. We have assumed
that the electromagnetic wave is a normal mode which is
proportional to exp(ik · r − iωt ).

The eigenvalues of Eq. (7) are given by

ω0 = 0, ω± = ±
√

k′2
x − k′2

y , (8)

with k′
x = kx/

√
εyyμzz and k′

y = ky/
√|εxx|μzz. Eigenvectors of

each eigenvalue are given by

vω0 =

⎛
⎜⎝

0

1

ky/kx

⎞
⎟⎠, vω± = εyy

kx

⎛
⎜⎝

ω±
ky/εxx

1

⎞
⎟⎠. (9)

We discard the eigenvector vω0 because it does not satisfy
Gauss’s law. We also discard the eigenvector vω− in the region
|k′

x| < |k′
y|, in which vω− is amplified because Im(ω−) < 0. In

the case of |k′
x| = |k′

y|, eigenvectors satisfy vω0 = vω+ = vω−
and all eigenspaces coalesce [90].

As a first step to discuss the topological origin of the hy-
perbolic dispersion, let us show the emergence of the SPERs
in this system. The emergence of SPERs can be confirmed in

L121105-3



ISOBE, YOSHIDA, AND HATSUGAI PHYSICAL REVIEW B 104, L121105 (2021)

the band structure of Eq. (7) [see Figs. 2(b) and 2(c)]. These
data are computed for ε̃xx = −0.36, ε̃yy = 0.54, and μ̃zz = 1
which are obtained in Ref. [78]. ε̃ and μ̃ indicate relative
permittivity and relative permeability, respectively. At ω = 0,
in the regions where the condition |k′

x| > |k′
y| is satisfied, the

eigenvalues become real. In contrast, for regions where the
condition |k′

y| > |k′
x| is satisfied, the eigenvalues become pure

imaginary. The real and imaginary parts of the eigenvalues
become zero on the |k′

x| = |k′
y| lines. This line corresponds to

the SPER in the lattice system. In HMMs, SPERs separate
the metallic region and nonmetallic region. These SPERs are
robust for perturbation without breaking the Hermiticity of
the Maxwell equation because of the topological nature (see
below).

The emergence of the above SPERs explains the ori-
gin of the hyperbolic dispersion of HMMs. At ω = 0, the
isofrequency surface forms the straight lines correspond-
ing to SPERs. Increasing ω from zero, the structure of the
isofrequency surface continuously changes into a hyperbolic
structure which is observed in experiments [see blue solid line
of Fig. 2(e)]. These results explain that SPERs are the origin
of the hyperbolic dispersion of HMMs. We note that, for
εxx > 0, εyy > 0, and μzz > 0, the hyperbolic dispersion is not
observed [see green dashed line of Fig. 2(e)], corresponding
to the absence of the SPERs.

At ω = 0, topological characterization of the metallic re-
gion and the nonmetallic region of the HMMs is done by
computing the zeroth Chern number N0 Ch [56]. Figure 2(c) in-
dicates the zeroth Chern number on the zero-frequency plane.
� denotes the pseudo-Hermitian operator, and H� denotes the
pseudo-Hermitian matrix (for more details, see Sec. III of the
Supplemental Material [84]). The zeroth Chern number takes
N0 Ch = 2 in the nonmetallic region and takes N0 Ch = 1 in the
metallic region.

We also expect that the square-root dispersion is one of
the experimental signatures of SPERs. Here, prior to the
experimental observations, we provide theoretical data by ap-
proximating that ε and μ are independent of ω. The blue line
in Fig. 2(f) indicates the square of dimensionless frequency
[91] for ε̃xx = −0.36, ε̃yy = 0.54, and μ̃zz = 1, which are
obtained by Ref. [78]. In Ref. [78], microwaves around 8
[GHz] are used. Near the EP, the dispersion of the square of
dimensionless frequency is linear. The dashed line indicates
the dimensionless frequency at which the permittivity and the
permeability take the above values. Therefore, we expect to
be able to observe the linear dispersion with the square of the
frequency experimentally around the dashed line. The above
band structures exist out of a light cone. As the experimental
method observe out of the light cone, the attenuated total

reflection (ATR) method is employed [92–94]. We note that,
for more quantitative prediction, the frequency dependence of
ε and μ should be taken into account. Such theoretical works
are desired prior to the experimental observation.

Finally, we note that, when these HMMs are treated
as three-dimensional systems, SPESs form a cone struc-
ture in three-dimensional momentum space. Figure 2(g)
shows the SPES when the z-direction is the anisotropic axis.
These SPESs also explain the characteristic dispersion of
three-dimensional HMMs (for details, see Sec. IV of the Sup-
plemental Material [84]).

In the above, we have applied topological band theory
to HMMs, which explains the origin of the experimentally
observed hyperbolic dispersion of these systems. Decreasing
ω from a finite value to zero, the hyperbolic dispersion asymp-
totically changes to SPERs. These SPERs emerging at ω =
0 separate the metallic region from the nonmetallic region
due to the indefiniteness of the Maxwell equation describing
HMMs.

Previous works have analyzed non-Hermitian band struc-
tures of HMMs [42]. We stress, however, that SPERs and
SPESs described by the GEVP reveal the origin of the ex-
perimentally observed hyperbolic dispersion of HMMs.

Conclusion. In this Letter, we have investigated the systems
described by the GEVP with Hermitian matrices. Our analysis
has elucidated that non-Hermitian topological band structures
emerge in spite of the Hermiticity of the matrices. For the
non-Hermitian topological band structure, the indefiniteness
of matrices appearing on the left- and right-hand sides is
essential. Remarkably, these SPERs are protected by emergent
symmetry; any fine-tuning is not necessary to preserve the
symmetry as long as H and S are Hermitian, which is a
striking difference of ordinary SPERs.

Furthermore, the above SPERs described by the GEVP
reveal the origin of the hyperbolic dispersion of HMMs which
is observed in experiments. In HMMs, SPERs separate the
momentum space into the metallic region and the nonmetal-
lic region. Because a hyperbolic isofrequency surface has
been observed by angle-resolved reflection spectrum mea-
surements, we also expect that the square-root dispersion of
SPERs can be observed, which is unique to dispersion of
SPERs.

Acknowledgments. We thank Satoshi Iwamoto, Shun Taka-
hashi, and Atsushi Kubo for fruitful discussions. This work
is supported by JSPS Grant-in-Aid for Scientific Research
on innovative Areas “Discrete Geometric Analysis for Ma-
terials Design”: Grant No. JP20H04627. This work is also
supported by JSPS KAKENHI Grants No. JP17H06138, and
No. JP19K21032.

[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[3] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).
[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[5] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[6] Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).

[7] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,
1757 (2006).

[8] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,
L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766
(2007).

[9] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[10] L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).

L121105-4

https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1148047
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.74.195312


TOPOLOGICAL BAND THEORY OF A GENERALIZED … PHYSICAL REVIEW B 104, L121105 (2021)

[11] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[12] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[13] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[14] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. Ludwig, New J.

Phys. 12, 065010 (2010).
[15] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 81,

159901(E) (2010).
[16] A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett.

102, 146805 (2009).
[17] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[18] S. Murakami, New J. Phys. 9, 356 (2007).
[19] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,

Phys. Rev. B 83, 205101 (2011).
[20] K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84, 075129

(2011).
[21] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205

(2011).
[22] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett.

107, 186806 (2011).
[23] D. Kurebayashi and K. Nomura, J. Phys. Soc. Jpn. 83, 063709

(2014).
[24] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.

90, 015001 (2018).
[25] M. Koshino and I. F. Hizbullah, Phys. Rev. B 93, 045201

(2016).
[26] K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Phys. Rev. B

84, 205128 (2011).
[27] M. Sato, K. Hasebe, K. Esaki, and M. Kohmoto, Prog. Theor.

Phys. 127, 937 (2012).
[28] S.-D. Liang and G.-Y. Huang, Phys. Rev. A 87, 012118 (2013).
[29] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori,

Phys. Rev. Lett. 118, 040401 (2017).
[30] Y. Xu, S.-T. Wang, and L.-M. Duan, Phys. Rev. Lett. 118,

045701 (2017).
[31] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
[32] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa,

and M. Ueda, Phys. Rev. X 8, 031079 (2018).
[33] S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802

(2018).
[34] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev. X

9, 041015 (2019).
[35] T. Yoshida, K. Kudo, and Y. Hatsugai, Sci. Rep. 9, 16895

(2019).
[36] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P. Xue,

Nat. Phys. 16, 761 (2020).
[37] L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, and P. Xue, Phys.

Rev. Lett. 126, 230402 (2021).
[38] V. M. Vyas and D. Roy, Phys. Rev. B 103, 075441 (2021).
[39] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick,

S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, Nature
(London) 525, 354 (2015).

[40] K. Takata and M. Notomi, Phys. Rev. Lett. 121, 213902 (2018).
[41] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L.

Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and
I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019).

[42] J. Hou, Z. Li, X.-W. Luo, Q. Gu, and C. Zhang, Phys. Rev. Lett.
124, 073603 (2020).

[43] T. Hofmann, T. Helbig, F. Schindler, N. Salgo, M. Brzezińska,
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C. H. Lee, A. Bilušić, R. Thomale, and T. Neupert, Phys. Rev.
Research 2, 023265 (2020).

[44] T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling,
L. Molenkamp, C. Lee, A. Szameit, M. Greiter, and R.
Thomale, Nat. Phys. 16, 747 (2020).

[45] T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale,
Phys. Rev. Lett. 122, 247702 (2019).

[46] T. Yoshida, T. Mizoguchi, and Y. Hatsugai, Phys. Rev. Research
2, 022062(R) (2020).

[47] T. Yoshida and Y. Hatsugai, Phys. Rev. B 100, 054109 (2019).
[48] C. Scheibner, W. T. M. Irvine, and V. Vitelli, Phys. Rev. Lett.

125, 118001 (2020).
[49] H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402

(2018).
[50] V. Kozii and L. Fu, arXiv:1708.05841.
[51] T. Yoshida, R. Peters, and N. Kawakami, Phys. Rev. B 98,

035141 (2018).
[52] A. A. Zyuzin and A. Y. Zyuzin, Phys. Rev. B 97, 041203(R)

(2018).
[53] Y. Michishita, T. Yoshida, and R. Peters, Phys. Rev. B 101,

085122 (2020).
[54] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, Prog.

Theor. Exp. Phys. 2020, 12A109 (2020).
[55] J. C. Budich, J. Carlström, F. K. Kunst, and E. J. Bergholtz,

Phys. Rev. B 99, 041406(R) (2019).
[56] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, Phys.

Rev. B 99, 121101(R) (2019).
[57] P. Delplace, T. Yoshida, and Y. Hatsugai, arXiv:2103.08232.
[58] R. Okugawa and T. Yokoyama, Phys. Rev. B 99, 041202(R)

(2019).
[59] H. Zhou, J. Y. Lee, S. Liu, and B. Zhen, Optica 6, 190 (2019).
[60] K. Kimura, T. Yoshida, and N. Kawakami, Phys. Rev. B 100,

115124 (2019).
[61] F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904

(2008).
[62] S. Raghu and F. D. M. Haldane, Phys. Rev. A 78, 033834

(2008).
[63] R. Shindou, R. Matsumoto, S. Murakami, and J.-I. Ohe,

Phys. Rev. B 87, 174427 (2013).
[64] D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405

(2003).
[65] D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye,

Appl. Phys. Lett. 84, 2244 (2004).
[66] Y. Liu, G. Bartal, and X. Zhang, Opt. Express 16, 15439 (2008).
[67] A. Fang, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79,

245127 (2009).
[68] A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photonics

7, 948 (2013).
[69] V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, Opt.

Express 21, 15048 (2013).
[70] P. Shekhar, J. Atkinson, and Z. Jacob, Nano Convergence 1, 14

(2014).
[71] L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, Prog.

Quantum Electron. 40, 1 (2015).
[72] Z. Guo, H. Jiang, and H. Chen, J. Appl. Phys. 127, 071101

(2020).
[73] M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and

E. E. Narimanov, Appl. Phys. Lett. 94, 151105 (2009).
[74] J. Kanungo and J. Schilling, Appl. Phys. Lett. 97, 021903

(2010).

L121105-5

https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1063/1.3149495
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevB.81.159901
https://doi.org/10.1103/PhysRevLett.102.146805
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.84.075129
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.7566/JPSJ.83.063709
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevB.93.045201
https://doi.org/10.1103/PhysRevB.84.205128
https://doi.org/10.1143/PTP.127.937
https://doi.org/10.1103/PhysRevA.87.012118
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1038/s41598-019-53253-8
https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/10.1103/PhysRevLett.126.230402
https://doi.org/10.1103/PhysRevB.103.075441
https://doi.org/10.1038/nature14889
https://doi.org/10.1103/PhysRevLett.121.213902
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/PhysRevLett.124.073603
https://doi.org/10.1103/PhysRevResearch.2.023265
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1103/PhysRevLett.122.247702
https://doi.org/10.1103/PhysRevResearch.2.022062
https://doi.org/10.1103/PhysRevB.100.054109
https://doi.org/10.1103/PhysRevLett.125.118001
https://doi.org/10.1103/PhysRevLett.120.146402
http://arxiv.org/abs/arXiv:1708.05841
https://doi.org/10.1103/PhysRevB.98.035141
https://doi.org/10.1103/PhysRevB.97.041203
https://doi.org/10.1103/PhysRevB.101.085122
https://doi.org/10.1093/ptep/ptaa059
https://doi.org/10.1103/PhysRevB.99.041406
https://doi.org/10.1103/PhysRevB.99.121101
http://arxiv.org/abs/arXiv:2103.08232
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1364/OPTICA.6.000190
https://doi.org/10.1103/PhysRevB.100.115124
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevB.87.174427
https://doi.org/10.1103/PhysRevLett.90.077405
https://doi.org/10.1063/1.1690471
https://doi.org/10.1364/OE.16.015439
https://doi.org/10.1103/PhysRevB.79.245127
https://doi.org/10.1038/nphoton.2013.243
https://doi.org/10.1364/OE.21.015048
https://doi.org/10.1186/s40580-014-0014-6
https://doi.org/10.1016/j.pquantelec.2014.10.001
https://doi.org/10.1063/1.5128679
https://doi.org/10.1063/1.3115145
https://doi.org/10.1063/1.3462311


ISOBE, YOSHIDA, AND HATSUGAI PHYSICAL REVIEW B 104, L121105 (2021)

[75] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I.
Kretzschmar, and V. M. Menon, Science 336, 205 (2012).

[76] R. Starko-Bowes, J. Atkinson, W. Newman, H. Hu, T. Kallos,
G. Palikaras, R. Fedosejevs, S. Pramanik, and Z. Jacob, J. Opt.
Soc. Am. B 32, 2074 (2015).

[77] S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’brien, D. N.
Neshev, Y. S. Kivshar, and X. Zhang, Nat. Commun. 7, 11329
(2016).

[78] W. Ji, X. Zhou, H. Chu, J. Luo, and Y. Lai, Phys. Rev. Mater. 4,
105202 (2020).

[79] An example of a system described by the GEVP is a photonic
system as we see below. Quantum systems are described by the
standard eigenvalue problem. For such systems, applying the
ordinary topological band theory is more appropriate.

[80] This matrix S naturally appears in photonic systems.
[81] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).
[82] A. Mostafazadeh, J. Math. Phys. 43, 2814 (2002).
[83] A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002).
[84] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.104.L121105 for complex conjugate eigen-
values of a pseudo-Hermitian matrix, details of a two-band
model, computation of the zeroth Chern number for the HMM,
and SPES and three-dimensional hyperbolic dispersion.

[85] When S is a definite matrix, � is the identity matrix, and Eq. (1)
is transformed to the Hermitian standard eigenvalue problem
by taking φ = S′ψ , H̃ = S′−1HS′−1, and H̃φ = Eφ, where H̃
is Hermitian matrix. Thus, E are always real. In the case of
indefinite S and definite H , we can show that E are real by
considering the GEVP in the opposite direction.

[86] Consider open quantum systems described by the non-
Hermitian eigenvalue problems. If the non-Hermitian Hamil-
tonian preserves the pseudo-Hermiticity [see Eq. (4)] for such
systems, we can mathematically map the non-Hermitian eigen-

value problem to the GEVP. We note, however, that we mainly
focus on photonic systems which are essentially described by
the GEVP.

[87] For photonic systems, mL (mR) denotes the imbalance of the
permittivity (permeability) between sublattices.

[88] The matrix S of quantum systems is given by 〈φi|φ j〉. This
matrix is always positive definite. On the other hand, the matrix
S of photonic systems is given by 〈φi|ε|φ j〉 (〈φi|μ|φ j〉), where
ε (μ) is the permittivity (permeability). Since ε (μ) can be
negative, the matrix S of photonic systems can be indefinite.

[89] Electromagnetic waves attenuate with negative ε. This is be-
cause electrons in the metal screen the electric field. These
electrons lose the energy due to the resistance in the metal,
which results in the imaginary-part of the ε. However, our
calculation indicates that the small imaginary part of ε does not
significantly change the band structure [see Fig. 2(f)], meaning
that the imaginary-part is negligible.

[90] In the region of |k′
x| = |k′

y|, S−1H is written as

S−1H (k′
x = k′

y ) =
⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠,

which is non-diagonalizable.
[91] We note that the square-root dispersion survives even when

the imaginary parts of ε and μ are taken into account [see the
orange line of Fig. 2(f)].

[92] A. Otto, Optical Properties of Solids, New Developments, edited
by B. O. Seraphin (North-Holland, Amsterdam, 1976), p. 677.

[93] E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135
(1968).

[94] M. Futamata, Appl. Opt. 36, 364 (1997).

L121105-6

https://doi.org/10.1126/science.1219171
https://doi.org/10.1364/JOSAB.32.002074
https://doi.org/10.1038/ncomms11329
https://doi.org/10.1103/PhysRevMaterials.4.105202
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1461427
https://doi.org/10.1063/1.1489072
http://link.aps.org/supplemental/10.1103/PhysRevB.104.L121105
https://doi.org/10.1515/zna-1968-1247
https://doi.org/10.1364/AO.36.000364

