
PHYSICAL REVIEW B 104, L121103 (2021)
Letter

Topological quantum many-body scars in quantum dimer models on the kagome lattice
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We present a class of quantum dimer models on the kagome lattice with full translational invariance that
feature a quantum many-body scar state of analytically known entanglement properties within their spectra.
Using exact diagonalization on lattices of up to 60 sites, we show that nonscar states conform to the eigenstate
thermalization hypothesis. Specifically, we show that energies are distributed according to the Gaussian ensemble
expected of their respective symmetry sector, illustrate the existence of the scar from bipartite entanglement
properties, and demonstrate revival phenomena in studies of fidelity dynamics.
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Introduction. Properties of strongly interacting quantum
systems away from equilibrium are attracting a lot of atten-
tion in contemporary condensed matter theory. Progress in
experiments [1–5] now allows for the preparation and study
of quantum many-body systems that are well isolated from
the environment, thereby giving access to nonequilibrium
phenomena. One such phenomenon is given by the so-called
quantum many-body scar states that were recently identified
to be responsible for the unusual dynamics unexpectedly ob-
served in one-dimensional Rydberg atom systems [1,6–8].

Progress concerning theoretical studies poses an interest-
ing and challenging task since the widely employed statistical
mechanics tools fail to capture and describe relevant prop-
erties in out-of-equilibrium systems, e.g., the concept of the
eigenstate thermalization hypothesis (ETH) breaks down. The
ETH [9–13] postulates that generic closed quantum many-
body systems exhibit ergodicity. Nowadays it is widely known
that there are several important exceptions to this paradigm
including but not limited to strong ergodicity breaking many-
body localized states [14–16] and weak ergodicity breaking
quantum many-body states [6–8,17–24], where only a finite
number of eigenstates, the scar states, break ergodicity while
the majority of states respects the ETH.

In this Letter, we focus on the latter case. Multiple
possible scenarios are being investigated in the current
literature. Progress has predominantly been made in one-
dimensional systems such as the celebrated PXP model
[6–8,19–21,24–27] realized in the Rydberg atoms experiment
[1]. Further advances were made by analytically construct-
ing scar eigenstates [17,18] in Affleck-Kennedy-Lieb-Tasaki
(AKLT) spin chains [28] and in the fractional quantum Hall
thin-torus limit [27]. Recently, a few two-dimensional (2D)
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systems have come under investigation [22,23,29]. The litera-
ture currently offers several possible scenarios with respect to
the mechanism giving rise to the quantum scar phenomenon,
ranging from proximity to integrability [20], “embedded”
SU(2) dynamics [19,30], and magnon condensation [24]. At
present, there seems to be a scarcity of models on two-
dimensional lattices with translational invariance and isolated
quantum many-body scars that are numerically well docu-
mented in terms of level statistics, entanglement entropy, and
equilibration dynamics. Indeed, numerical studies are often
limited by the size of the configuration space involved, par-
ticularly so in higher dimensions. In the present Letter, we
examine a simple strategy to introduce an analytically known
scar state given any class of frustration-free Hamiltonians,
of which there are many examples in the literature. Given
this, we focus on quantum dimer models for their relatively
moderate (though still exponential) scaling between system
size and Hilbert space dimension. Though generalization is
straightforward, we will focus on the kagome lattice, which
unites several advantages in this context: Favorable Hilbert
space size scaling (2(lattice sites)/3), analytically accessible en-
tanglement properties of the scar state, and a large number
of natural parameters per unit cell [31]. We also note that
dimer-related models in the kagome geometry have recently
been argued to offer an attractive route to the experimental
realization of exotic physics [32].

Our main results are as follows: (i) Following a gen-
eral strategy, we construct a class of quantum dimer models
on the kagome lattice containing quantum many-body scar
states in their spectrum that provably violate the ETH, having
subvolume entanglement. (ii) Making use of the favorable
Hilbert space scaling of kagome dimer models, we numeri-
cally demonstrate that the remaining states in the spectrum
thermalize by analyzing their level statistics and entanglement
entropy. We further study fidelity dynamics, demonstrating
the presence of scar states in the spectrum and their effects
on thermalization.
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TABLE I. A list of all eight possible type loops surrounding the
central hexagon within a star-shaped cell, up to rotational symmetry.
Including all possible rotations of each type, there are 32 distinct
loops. Each dimerization realizes exactly one of these 32 loops,
where the links of the loop alternate between occupied and unoc-
cupied, yielding two possible realizations via dimers for each loop.
The hexagons shown in Fig. 1(a) are surrounded by loops of the types
shown in the last column.

Quantum dimer models. Rokhsar and Kivelson introduced
quantum dimer models (QDMs) [33] for the sake of capturing
the essential topological features of the short-ranged variety
of Anderson’s resonating valence bond states in a model that
is tractable. Originally designed to advance the understanding
of high-temperature superconductors, quantum dimer models
have played an increasing role in describing new and unusual
emergent phenomena in many-body systems [34–38]. This
includes, in particular, studies on many-body localization in
constrained systems [16]. We now proceed by summarizing
some key features of the quantum dimer model on the kagome
lattice introduced by Misguich et al. [36], before introducing a
variant of this model that displays quantum many-body scars
in its spectrum.

The QDM is defined on a Hilbert space of distinct or-
thonormal states that represent the allowed hard-core dimer
coverings of the lattice such that each site participates in ex-
actly one dimer between nearest neighbors. The Hamiltonian
is then defined by local matrix elements between dimer states,
where we distinguish “potential” terms V that are diagonal
in the dimer basis and associate an interaction energy with
various local arrangements of dimers, and “kinetic” terms t
that facilitate a local rearrangement of a small number of
dimers. This Letter solely focuses on the kagome lattice where
all local interactions take place within 12-site star-shaped cells
(Table I).

Graphically, the Hamiltonian is presented as

(1)

Gray bonds indicate occupancy by dimers. In the above, we
sum over all 12-site star plaquettes of the lattice. All kinetic
terms execute “resonance moves” along one of 32 loops con-
tained within the star, such that occupied links alternate along
the loop, and the move changes the occupancy along the loop
(cf. Table I). It is easy to see that each dimer covering results
in precisely one such move being possible per star [36]. The
potential terms associate an energy with the associated loop.

For toroidal topology, i.e., periodic boundary conditions
(PBCs), dimer configurations can be classified according to
winding numbers Wx and Wy. Dimer configurations with
different winding numbers are thought of as belonging to dif-
ferent topological sectors and cannot be connected by the local
resonance moves of dimers. To determine the winding number
Wx (Wy) one considers a horizontal (vertical) line around the
torus which intersects the links. Wx (Wy) is then the parity of
the number of dimers intersected.

The special choice t1 = · · · = t32 = V1 = · · · = V32 > 0 is
an instance of a Rokhsar-Kivelson (RK) point. Here, the
ground state is the equal amplitude superposition of all

admissible dimer coverings,

|�〉 =
∑

D

|D〉, (2)

where for PBCs the sum may be restricted to one topological
sector, thus leading to a fourfold ground state degeneracy.
On the kagome lattice, this RK point lies in the interior of
a Z2 topological phase [36,39,40] and is fully integrable [36],
owing to the fact that the sums of the operators in (1) asso-
ciated with any given star will commute for different stars.
Furthermore, for the kagome lattice, the entanglement entropy
of the states (2) can be analytically calculated and shown to
display area-law entanglement entropy [41].

The scar kagome dimer model. The goal of this Letter is
to design a system made of dimer degrees of freedom on the
kagome lattice that admits quantum many-body scar states in
its spectrum. We begin by observing that the states (2) are
annihilated by the Hamiltonian (1) not only at the special
integrable point ti = Vi = 1, but whenever ti = Vi. This is so
because each local term associated with ti = Vi annihilates
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Eq. (2). Moving away from the integrable point while pre-
serving ti = Vi destroys the integrability [all eigenstates except
Eq. (2) will not be known analytically], but preserves the fact
that Eq. (2) is an exact zero energy mode. For positive ti = Vi,
all associated local operators thus have a common ground state
in Eq. (2). This is then also the ground state of H , the latter
being the sum of these local operators. It is then common to
call H a frustration-free Hamiltonian.

The following strategy is expected to work generally
for frustration-free Hamiltonians (though not always while
preserving all symmetries): We introduce ti = Vi ≡ αi, and
choose the αi different and not all of the same sign. Equation
(2) is still a zero mode of the resulting Hamiltonian, but it is
not a ground state, but rather a state somewhere in the middle
of the spectrum. We establish that this state is a true quantum
many-body scar by observing the following properties. First,
the state itself satisfies area-law entanglement, despite being
highly excited. This is usually inferred from the fact that it is
the ground state of some local Hamiltonian, and it is analyti-
cally provable for the kagome lattice state (2) considered here
[41]. We further show numerically that the surrounding states
in the energy spectrum behave “generically,” i.e., have much
larger entanglement entropy (expected to be the volume law
in the thermodynamic limit), and satisfy the expected level
statistics appropriate to the respective symmetry sector they
lie in. This in particular means that the Hamiltonian is not
“special” in the sense of integrability.

Explicitly, we introduce a scar dimer model Hamiltonian
as follows,

(3)

The sums in (3) go over all 12-site kagome stars and over
all 32 loop coverings. D� and D� represent the dimerizations
associated with loop �. We could easily follow the strat-
egy described above while preserving all lattice symmetries.
However, the level statistics we are interested in make sense
only within symmetry sectors, as there is no level repulsion
rule between different sectors. To avoid an overabundance of
symmetry sectors, we preserve only translational symmetry
by choosing

α� = C +
∑

l∈loop

sin(5 · φl + δ), (4)

which simulates the influence of a substrate with fivefold
rotational symmetry. Here, l refers to the link labels defined
in the caption of Fig. 1 along with the associated angles φl .
We choose C = −0.05 to make dimer loops with inversion
symmetry contribute, and δ = 0.1 to render the mirror axes of
the “substrate” different from those of the lattice.

Level statistics. While the scar state of the model and
its properties are analytically under control, we proceed by
numerically investigating the genericity of its other levels. We
focus on (translational) symmetry sectors with time-reversal
symmetry, which contain the scar state. Figure 2(a) shows
the distribution of energy eigenvalues for a 60-site kagome
lattice with PBCs, within the zero-momentum sector that has
the scar state located roughly in the middle of the spectrum
[see Fig. 2(b)]. Here, we work within the (Wx,Wy) = (0, 0)

FIG. 1. (a) A possible dimer covering and the analogous arrow
representation first introduced by Zeng and Elser [42]: The number
of incoming arrows at each triangle must be even (0 or 2), and dimers
are associated with links between two incoming arrows. (b) Labeling
convention for the links of the 12-site star-shaped cells of the kagome
lattice. The 12-site kagome star consists of a total of 18 links. We
label each link by a number l such that its angle bisector from the
midpoint of the hexagon makes the angle φl = π l/12 (l “skips”
multiples of 4) with the x axis, as shown.

topological sector and use an unfolding technique to bin the
data (cf., e.g., Ref. [43]). One observes that the distribu-
tion is well described by the Gaussian orthogonal ensemble
(GOE), as expected for generic real matrices. This can be
quantified further as follows [44,45]. Introducing level spac-
ings sn = En − En−1, one defines quantities rn = sn/sn−1 and
r̃n = min(rn, 1/rn). With this, we find the average of the quan-
tities r̃n over all symmetry-inequivalent time-reversal invariant
momentum sectors within the (Wx,Wy) = (0, 0) topological
sector to be 〈r̃〉 = 0.5333. This is quite close to the exact
value of r̃GOE = 0.5359 [12], and markedly different from
the corresponding value r̃Poisson = 0.3863 [44] for the Pois-
son distribution. The average rn value tends to require larger
samples owing to the possibility of small denominators, but
at 〈r〉 = 1.7626 is likewise very close to the exact value of
rGOE = 1.7781. Had we at least retained inversion symmetry,
all symmetry sectors would be described by real matrices,
and one would expect to find similar values in all sectors.
However, with inversion being absent, there are time-reversal
noninvariant momentum sectors in this model, not containing
the scar state (2), which, for sufficiently generic models, can
be expected to be described by the Gaussian unitary ensem-
ble. To test this, we carried out the analogous analysis for
these sectors, finding r̃ = 0.5996 and r = 1.3709, again very
close to the exact values r̃GUE = 0.602 66 and rGUE = 1.3607.
These findings lend strong support to the hypothesis that the
majority of the high-energy states in the spectrum of Hamil-
tonian (3) are ergodic, i.e., they thermalize.

Entanglement entropy. To complement the above findings,
we calculate bipartite entanglement entropy for all states of
the scar-containing symmetry sector (fixing also the topo-
logical sector) for a 48-site kagome lattice with PBCs. By
their definition, quantum many-body scar states belong to
the bulk of the spectrum while simultaneously violating the
ETH, i.e., they fail to thermalize and display low (subvolume)
entanglement behavior. In contrast, generic high-energy states
do thermalize and exhibit a volume-dependent entanglement
behavior. We find that this contrast is starkly displayed already
on the 48-site lattice, which we cut into two 24-site ribbons
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FIG. 2. (a) Distribution of energy levels for the time-reversal invariant zero momentum, (Wx,Wy ) = (0, 0) topological sector, which
contains a scar state (2). The inset shows the 60-site kagome lattice (with the unit cell shaded) used in the calculation. An unfolding
technique using 4378 groups containing 12 energies each has been used for binning the data (cf., e.g., Ref. [43]). The resulting data closely
resemble a GOE distribution (solid curve), indicating that almost all states thermalize. (b) The von Neumann entanglement entropy for all
states within the zero-momentum sector of topological winding numbers (0,0) for a 48-site kagome lattice, bipartitioned into two 24-site
“ribbons” (inset). The scar state has SvN = 7 and is marked by a blue star. Thermalizing eigenstates of similar energy are well separated
and have SvN ≈ 10. (c) Overlap O(t ) = |〈φ(0)|φ(t )〉| for a special initial configuration |φrecur〉 [see (d)], both for the original Hamiltonian and
deformations parametrized by γ (see text). Pronounced recurrence phenomena are observed, clearly distinct from a typical initial configuration
(|φtherm〉, shown in blue), where the overlap decays rapidly. (d) The special, nonthermalizing initial configuration |φrecur〉 along with the typical,
thermalizing state |φtherm〉 discussed in (c). Other nonthermalizing initial configurations are related to the one shown here by lattice symmetries.

wrapping around the torus [Fig. 2(b), inset]. For simplicity, in
doing so we regard the arrows of the Zeng-Elser representa-
tion of permissible dimerizations of the kagome lattice as the
physical local degrees of freedom [Fig. 1(b)]. For the ribbon
described, whose boundary passes eight unit cells on each
side, and in the presence of the topological sector constraint,
one may show that the (base 2) von Neumann entanglement
entropy, SvN = −∑

w w log2 w, where the sum goes over the
eigenvalues w of the reduced density matrix, equals 7. Here,
the sum goes over the eigenvalues of the local density matrix
of the ribbon. Figure 2(b) clearly shows that the scar state
(blue star) is isolated from the rest of the spectrum (purple
dots) in terms of its much lower entanglement as compared to
the surrounding bulk energy eigenstates. This establishes the
state (2) as a bona fide quantum many-body scar.

Additional scars and fidelity dynamics. Multiple features
in Fig. 2(b) suggest the presence of additional scars in the
spectrum that, while less removed from the continuum of
eigenstates than Eq. (2), are nonetheless distinct in their
entanglement properties. We test this hypothesis by study-
ing fidelity dynamics. Figure 2(c) shows the overlap O(t ) =
|〈φ(0)|φ(t )〉| for different initial states |φ(0)〉 and their time-
evolved counterparts, |φ(t )〉. All initial states are chosen to be

simple product states of dimers. While for most such initial
configurations, the overlap O(t ) rapidly decays to zero [the
“thermalizing” state |φtherm〉 in Fig. 2(d)], some special initial
states show remarkable recurrence oscillations. This is, in
particular, true for the initial configuration |φrecur〉 shown in
Fig. 2(d) and configurations related to that by lattice symme-
tries (even though the latter are not symmetries of Hscar). It
is clear that the scar state (2) cannot by itself be responsi-
ble for the observed oscillations of |φrecur〉: Being the equal
amplitude superposition of all dimer basis states, it does not
render any particular basis states special. Moreover, the oscil-
lations displayed by the special initial states require multiple
isolated eigenstates at different energies to have exceptional
overlaps with these initial states. The observed phenomenol-
ogy is indeed highly consistent with the presence of multiple
scars [6,7,24,29,46–48]. Moreover, we find that it is stable
toward small perturbations that remove the existence of an RK
eigenstate: To this end, we increase the Vi terms [as defined in
Eq. (1)] of Eq. (3) by a fraction γ relative to the ti terms: As
shown in Fig. 2(c), the recurrence phenomena and associated
oscillations easily survive an increase by 20%.

Conclusion. We investigated a general approach to turn-
ing classes of frustration-free lattice Hamiltonians into ones
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containing isolated quantum many-body scars in their spec-
trum while retaining most or all symmetries. In addition,
the introduction of disorder is straightforward, as is the gen-
eralization to other lattices. We applied this strategy to a
two-dimensional quantum dimer model on the kagome lattice,
retaining full translational symmetry. We demonstrated that
this model contains an exactly known quantum many-body
scar with analytically accessible entanglement properties. We
established that the remainder of the eigenstates and energy
spectrum exhibit no “fine-tuned” behavior. Specifically, for a
60-site kagome lattice, we showed that bulk energies conform
to the Gaussian ensembles expected for their respective sym-
metry sectors, and we calculated von Neumann entanglement
entropies for all states within the scar sector of a 48-site
kagome lattice, exposing the scar’s isolated character. Due
to their quality of being numerically manageable on fairly
large-size lattices, quantum dimer models of the type consid-

ered here should become a fertile playground for investiga-
tions of this kind. Indeed, the existence of revival phenomena
stable toward generic perturbations suggests that the large
parameter space of the class of models given here will prove
fruitful for further studies of equilibration processes in 2D
lattice models. Lastly, the original, frustration-free quan-
tum dimer model stabilizes a Z2 topological phase. This
lends a topological character to our scar states. It will be
of interest to contrast this with the universality class of the
ground state of our model, which is currently unknown.
We are hopeful that these observations will stipulate further
investigation.
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