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We theoretically investigate how the spin susceptibility of a planar Josephson junction is affected when the
system transits into the topological superconducting state. We show that the magnetic flux and magnetic field
dependence of the spin susceptibility closely maps the phase diagram of the system. In the absence of an external
magnetic flux the system can self-tune into the topological superconducting state by minimizing its free energy.
Self-tuned topological transitions are accompanied by sharp peaks in the spin susceptibility, which can therefore
be used as measurable fingerprints for detecting the topological superconducting state. Away from the peaks, the
amplitude of the spin susceptibility can provide qualitative information about the relative size of the topological
gap. The signatures in the spin susceptibility are robust, even in junctions with narrow superconducting leads,
where critical current minima may no longer serve as an indication of topological phase transitions. The predicted
results could be particularly relevant for future experiments on realization and detection of the topological
superconducting state in planar Josephson junctions.
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Introduction. Topological superconductivity (TS) is a
phase of matter supporting the formation of zero-energy
bound states, referred to as Majorana bound states (MBSs),
which are protected by an energy gap against smooth local
perturbations [1–5]. Since MBS pairs are energy degenerate,
exchanges of MBSs from different pairs are equivalent to the
application of unitary transformations whose form depends
on the topology of the exchange path but not on the path
local details [6–8]. This allows for the realization of robust
qubits and quantum gates with promising applications for
fault-tolerant quantum computing [6–8].

MBSs were predicted to naturally emerge in p-wave su-
perconductors [1,9]. However, TS can also be engineered by
using a conventional s-wave superconductor in proximity to a
material with nontrivial spin structure, typically provided by
spin-orbit coupling (SOC) [10–17] and/or magnetic textures
[18–26]. The proximity-induced superconductivity provides
the necessary particle-hole symmetry, while the SOC makes
possible the realization of odd-in-momentum triplet pairing.
An external magnetic field is then applied in order to break
the time-reversal symmetry.

The experimental detection of a zero-bias conductance
peak (ZBCP) in proximitized nanowires [27–31], atomic
chains [32,33], and planar Josephson junctions (JJs) [34–37]
has provided support for the existence of TS. However,
since ZBCPs may emerge even in the absence of TS and
the measured ZBCP amplitudes remain well below the pre-
dicted universal conductance value of 2e2/h [38–40], the
actual origin of the ZBCPs is not yet conclusive. As an
alternative to ZBCP measurements, minima in the critical
current of JJs, accompanied by phase jumps, have been con-
sidered as signatures of transition to the TS state [41,42].
The correct interpretation of the experimental data imposes
some challenges because other mechanisms (e.g., Fraunhofer

interference, anomalous Josephson effect) may also lead to
critical current minima [43,44]. Furthermore, it has also been
shown that the presence of critical current minima may not
necessarily be associated with transitions between the trivial
and TS states [45] and a further analysis of magnetic and
crystalline anisotropies of the TS state [46,47] may be needed
to better understand the physical origin of the critical current
minima [36]. In spite of the challenges, planar JJs continue
to attract attention due to their experimental feasibility, ver-
satility, and enhanced region of system parameters supporting
the TS state [41,46–60]. Critical current signatures of TS in
one-dimensional geometries, like nanowire junctions, have
also been proposed [61,62].

In this Letter we show that, compared to critical current
measurements, the high sensitivity of the spin susceptibility to
gap closings provides robust and more direct signatures of the
transition of planar JJs to the TS sate. The spin susceptibility
exhibits sharp peaks at transitions between trivial and TS
states. On the other hand, the spin susceptibility value away
from the peaks can be used to identify the magnetic field
strength leading to the largest topological gap.

We consider a magnetic field applied in the plane of the JJ.
Therefore, magnetic orbital effects can be neglected and the
spin susceptibility of the planar JJ becomes proportional to the
magnetic susceptibility. The proportionality no longer holds
when diamagnetic contributions from the top superconductors
become relevant. However, the distinctive peaked behavior of
the spin susceptibility at the topological phase transitions will
still be reflected in the magnetic susceptibility. The magnetic
susceptibility of JJs has previously been investigated both the-
oretically and experimentally [63–70], although not in relation
to TS.

Theoretical model. We consider a planar Josephson junc-
tion (JJ) composed of a 2D electron gas (2DEG) formed in
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FIG. 1. (a) A planar JJ composed of a semiconductor 2DEG in
contact with two superconducting (S) leads. An external magnetic
field is applied along the junction direction. Yellow regions indicate
the localization of MBS (labeled by γ at the ends of the junction).
(b) Position dependence of the effective g factor, g∗. The effective g
factor is maximum in the N region and decays in the S regions.

a semiconductor and subject to an in-plane magnetic field B
[see Fig. 1(a)]. Superconducting regions (S) are induced in the
2DEG by proximity to a superconducting cover, such as Al
or Nb, while the uncovered region remains in the normal (N)
state. The system is described by the Bogoliubov–de Gennes
(BdG) Hamiltonian

H = H0τz − EZ (x) · � + �(x)τ+ + �∗(x)τ− , (1)

where

H0 = p2

2m∗ + V (x) − (μS − ε) + α

h̄
(py�x − px�y), (2)

and �x,y,z and τx,y,z represent Dirac spin and Nambu matrices,
respectively, with τ± = (τx ± iτy)/2. Here p is the momen-
tum, m∗ the electron effective mass, α the Rashba spin orbit
coupling (SOC) strength, and V (x) = (μS − μN )�(WN/2 −
|x|) describes the difference between the chemical potentials
in the N (μN ) and S (μS) regions. The chemical potentials are
measured with respect to the minimum of the single-particle
energies, ε = m∗α2/(2h̄2).

The second contribution in Eq. (1), represents the Zee-
man interaction. For a magnetic field B applied along the
y direction, EZ (x) = [g∗(x)μB/2]B(0, 1, 0)T . Here μB is the
Bohr magneton and g∗(x) is the position-dependent effective
g factor, which may decay in the S-proximitized regions. Here
we consider an effective g factor with a position dependence
given by

g∗(x) =
⎧⎨
⎩

g∗e−|WS−x|/γ , x � WS,

g∗, WS < x � WS + WN ,

g∗e−|WS+WN −x|/γ , x > WS + WN ,

(3)

where g∗ is the effective g factor in the N region and γ

represents the Zeeman field penetration length characteriz-
ing the decay of the effective g factor in the S regions
[see Fig. 1(b)]. Previous works have considered the case
where γ → 0, in which the effective g factor is finite only
in the N region [34,35,41,46], or the limit γ → ∞, in
which the effective g factor is finite and constant over the
whole structure [36,41,45,47]. In what follows we use EZ =
(g∗μB/2)B to denote the Zeeman energy in the N region.
The spatial dependence of the superconducting gap is �(x) =
�ei sgn(x)φ/2�(|x| − WN/2), where φ is the phase difference
across the JJ.

The spin susceptibility tensor is given by χi j = ∂〈Si〉/∂Bj ,
where

〈Si〉 = 1

Z

∑
n

h̄

2
〈n|�ie

−βH |n〉. (4)

Here Z = ∑
n〈n|e−βH |n〉 denotes the partition function, β =

1/(kBT ), and |n〉 are the eigenstates of the BdG Hamiltonian.
Since the magnetic field is applied in the y direction,

we focus on the yy component of the spin susceptibil-
ity tensor. After some mathematical manipulations (see the
Supplemental Material for details [71]), we obtain 〈Sy〉 =
−(h̄/2)∂F/∂EZ , and

χyy = −
(

h̄

2

)(
g∗μB

2

)
∂2F

∂E2
Z

, (5)

where F = −kBT ln Z is the free energy, which in the zero-
temperature limit reduces to

F =
∑
En<0

En = −1

2

∑
n

|En|. (6)

We use a tight-binding Hamiltonian resulting from the
finite-difference discretization of Eq. (1) [71] to compute the
energy spectrum, topological gap, ground-state phase, critical
current, and spin susceptibility. The numerical simulations
of the tight-binding version of the BdG Hamiltonian were
performed by using the Kwant package [72]. We consider
Al/HgTe JJs with the following parameters: m∗ = 0.038 m0

(with m0 the bare electron mass), � = 0.25 meV, and α =
16 meV nm. We consider the three values γ = 1, 102, 104

nm, which correspond to no, partial, and total penetration,
respectively, of the Zeeman interaction into the S region.

Phase-biased JJs. In a phase-biased JJ, the phase difference
between the two S regions is fixed by an external magnetic
flux. The topological gap (i.e., the finite eigenenergy closest
to zero) protecting the MBS, the spin susceptibility, and the
supercurrent are shown in the top, middle, and bottom rows of
Fig. 2. The left, central, and right columns correspond to γ =
1, 102, 104 nm, respectively. The gray-shaded and nonshaded
areas in (a)–(c) represent trivial (i.e., with topological charge
Q = 1) and TS phases (i.e., with topological charge Q = −1)
[71], respectively. As shown in Figs. 2(a)–2(c), when the pen-
etration of the Zeeman interaction into the S regions increases,
the phase diagram dependence on the Zeeman field becomes
stronger, requiring smaller fields to realize the TS state.

A remarkable observation from Fig. 2 is that, unlike the
supercurrent (bottom row), the spin susceptibility (middle
row) greatly resembles the inverse monotonic behavior of the
topological phase diagram (top row). The white-pink contours
in Figs. 2(d)–2(f) corresponding to spin susceptibility peaks
(SSPs) indicate topological phase transitions at gap closings
where the fermion parity of the system changes. Furthermore,
the spin susceptibility can also capture the qualitative behavior
of the topological gap, with smaller amplitudes indicating
larger topological gaps. This makes the spin susceptibility a
very promising measurable quantity for experimental detec-
tion of topological phase transitions in planar JJs.

To better understand the high sensitivity of the spin suscep-
tibility to gap closings, we use a simplified analytical model
for the subgap states of a JJ with translational invariance along
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FIG. 2. Top row: Topological gap as a function of the Zeeman
energy, EZ , and the phase difference φ for penetration lengths γ = 1
nm (a), γ = 102 nm (b), and γ = 104 nm (c). The gray-shaded
and nonshaded areas correspond to topological charge Q = 1 (trivial
state) and Q = −1 (TS state), respectively. Middle row: Same as
in top row but for the spin susceptibility, χyy, normalized to χmax

(the maximum of the spin susceptibility at each value of γ and
Ez). Bottom row: Same as in top row but for the supercurrent, I ,
normalized to its maximum value Imax . The following parameters
were used: WS = 450 nm, WN = 100 nm, a = 20 nm, μS = 1 meV,
and μN = 0.7 meV. The other system parameters are specified in the
text.

the y axis [71]. The energy spectrum as a function of Ez is
shown in Fig. 3(a) for the case of a JJ with Zeeman interaction
only present in the N region and a fixed phase φ = π/2.
The vertical dashed lines indicate the Zeeman energies at
which the fermion parity of the system changes. The first
and second parity changes signal transitions from trivial to
topological and back to trivial phases. Line colors denote the
spin character of a given state, i.e., the expectation value of the

FIG. 3. (a) Energy spectrum at ky = 0 and φ = π/2 as a function
of the Zeeman energy. The line color indicates the expectation value
of the y component of the spin, from antiparallel (blue) to parallel
(red) to the magnetic field. The vertical dashed lines indicate the
topological transitions. (b) Average spin projection along the y axis
for ky = 0, and φ = π/2. The spin susceptibility in (c) has been
normalized to its maximum value, χmax . The results were obtained
by using a simplified analytical model [71] with the following pa-
rameters: WN = 100 nm, a = 5 nm, and μS = μN = 3 meV.

y component of the spin, from antiparallel (blue) to parallel
(red) to the field. When the gap closes, the spin character
of the energy band closest to zero energy changes abruptly
[73]. This results in jumps in the total average spin, as shown
in Fig. 3(b). The jumps in the average spin produce SSPs
[see Fig. 3(c)] at values of EZ at which topological phase
transitions occur.

This behavior is universal, in the sense that it is inde-
pendent of the specific model, level of approximation, and
junction. Indeed, the inclusion of other effects (e.g., self-
consistent treatment of the interrelation between magnetic
field and superconducting gap, magnetic field dependent
phase gradient, etc.) may lead to changes in the topological
diagram, but the spin susceptibility will still exhibit a peak
any time the spin average jumps due to the occurrence of a
gap closing accompanied by a fermion parity change. This
follows directly from combining Eqs. (5) and (6) into [71],

χyy ∝
∑

n

[
δ(En)

(
∂En

∂EZ

)2

+ sgn(En)

2

∂2En

∂E2
Z

]
, (7)

where the presence of the Dirac-delta function anticipates
the existence of SSPs when zero energy states emerge. This
expression also explains the correlation between the topo-
logical gap and the spin susceptibility. The existence of a
sizable topological gap requires the lower (higher) particle-
like (hole-like) energy states to exhibit a concave down (up)
EZ dependence with ∂2En/∂E2

Z < 0 (∂2En/∂E2
Z > 0) away

from the peaks, where the spin susceptibility is dominated by
the contribution involving second derivatives of the eigenen-
ergies En. Therefore, positive (negative) energy states with a
concave down (up) behavior, favorable to the formation of a
sizable topological gap, contribute negatively to the spin sus-
ceptibility. As a result, the spin susceptibility tends to decrease
when the topological gap increases and vice versa.

Phase-unbiased JJs. In the absence of a phase biasing
magnetic flux, the phase difference between the S regions
of the JJ self-adjusts in order to minimize the free energy
of the system. This enables the system to self-drive into the
TS state as Ez is varied, without the need for an external
magnetic flux. This is illustrated in Figs. 4(a)–4(c), where the
ground-state spectrum (i.e., the energy spectrum leading to the
minimum free energy) is shown as a function of EZ , for differ-
ent values of the Zeeman field penetration length (γ = 1, 102,
and 104 nm, respectively). Right after the first gap closing,
indicated by the red dashed line, the JJ transits into the TS
state, where MBSs emerge inside the topological gap. The
second gap closing (marked by the blue dashed line) indicates
a transition from the TS to the trivial state. When the Zeeman
field is present only in the N region the wave functions of
the MBSs localized at opposite ends of the junction overlap,
producing oscillations of the MBS energy [see Fig. 4(a)].
However, as the penetration of the Zeeman field into the S
regions increases, the MBSs become more localized [71], the
wave function overlap becomes negligible, and the MBS zero
energy stabilizes. The topological character of the indicated
gap closings is demonstrated by the topological charge Q,
which as shown in Figs. 4(d)–4(f) flips its sign precisely when
these closings occur (the TS state is realized when Q = −1).
The sign changes of the topological charge are accompanied
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FIG. 4. Top row: Energy spectrum of a phase-unbiased JJ as a
function of the Zeeman energy, EZ , for γ = 1 nm (a), γ = 102 nm
(b), and γ = 104 nm (c). Bottom row: Same as in top row but for
the topological charge (gray line) and the ratio of the spin suscep-
tibility (orange line) to its maximum value χmax . The parameters
used are WS = 450 nm, WN = 100 nm, a = 20 nm, μS = 1 meV, and
μN = 0.7 meV. A JJ of length L = 1 μm was assumed for the energy
spectrum calculations.

by sharp peaks in the spin susceptibility. Therefore the exis-
tence of sharp SSPs can serve as an indication of topological
phase transitions also in phase-unbiased planar JJs. When the
Zeeman field is present in the N region only, the localization
length of the bound states, as well as their penetration in the
S regions, is relatively large [34], leading to rapid oscillations
of the energy states [see Fig. 4(a)]. The oscillatory behavior
in the nontopological phase is well captured by the spin sus-
ceptibility, as shown in Fig. 4(d). Furthermore, when the JJ is
in the TS state, the amplitude of the spin susceptibility serves
as a qualitative measure of the size of the topological gap.
This can be seen in Figs. 4(d)–4(e), where the minimum value
of the spin susceptibility between the first two SSPs roughly
occurs at a Zeeman field at which the largest topological
gap is observed in Figs. 4(a)–4(c). Thus, by measuring the
spin susceptibility one could not only identify the topological
phase transition but also roughly estimate the value of the
magnetic field at which TS is realized with the best topologi-
cal protection.

The existence of minima in the critical current (assumed
to be correlated to jumps in the ground-state phase) was
proposed as a signature of the topological phase transition
[41] and has recently been measured in Al/InAs JJs [36].
However, the ground-state phase is obtained by minimizing
the free energy, while the critical current results from max-
imizing the supercurrent. Therefore, although in some cases
the ground-state phase jumps appear to occur at the same
Zeeman energy at which the critical current minima occur,
this is, in general, not necessarily true. Further, the existence
of ground-state jumps may not even be accompanied by crit-
ical current minima (nor vice versa), especially for junctions
with narrow S regions [49]. In such cases, the existence of
current minima does not necessarily represent a signature of
the topological phase transition. This is illustrated in Fig. 5,
where the topological phase diagram of a planar JJ, together
with the calculated ground-state phase (green line), critical
current (red line), and spin susceptibility (blue line), is de-
picted. The light (dark) gray region with topological charge
Q = −1 (Q = 1) represents the topological (trivial) state. The

FIG. 5. Topological phase diagram indicating the Zeeman field
and phase dependence of the topological charge. The red, green,
and blue lines represent the critical current, ground-state phase, and
spin susceptibility, respectively. (a) System parameters: WS = 300
nm, WN = 40 nm, a = 10 nm, μS = 1 meV, and μN = 1 meV.
(b) System parameters: WS = 100 nm, WN = 100 nm, a = 5 nm, and
μS = μN = 8 meV.

vertical, dashed line indicates the Zeeman field at which the
topological transition occurs. In the example of Fig. 5(a),
the ground-state phase jump and SSP correctly signal the
topological phase transition, while the critical current does
not exhibit any local minimum. In the example of Fig. 5(b),
neither the ground-state phase jump nor the critical current
minimum directly represents a transition from the trivial to
the topological state. However, a SSP still develops at the
topological transition. This demonstrates that compared to
previously used signatures such as phase shifts and critical
current minima, the existence of SSPs constitutes a more
robust indication of topological phase transitions in planar JJs.

The ground-state phase jump in Fig. 5(b) is associated
with a transition between different symmetry subclasses and is
accompanied by a SSP with large amplitude. For phase-biased
JJs, the SSPs with larger amplitudes correspond to topological
phase transitions, while smaller SSPs may signal nontopo-
logical gap closings. However, for phase-unbiased JJs, the
largest SSP results when the ground-state phase jumps [71],
and other smaller SSPs may occur for Zeeman fields where the
topological gap has minima [see Fig. 5(b)]. In any case, as the
Zeeman field is increased, the first SSP is always an indication
of a transition into the topological regime. Complementing
spin susceptibility with phase shift (and/or critical current)
measurements can provide a more complete understanding of
topological transitions, topological gap size, and transitions
between different topological classes.

Conclusions. We have studied the behavior of the spin
susceptibility in planar Josephson junctions with Rashba SOC
and a magnetic field applied along the junction. Our results
show that at topological phase transitions the spin average
exhibits jumps leading to sharp peaks in the magnetic field de-
pendence of the spin susceptibility. In the topological regime,
the amplitude of the spin susceptibility can serve as a qual-
itative measure of the relative strength of the topological
gap. The signatures on the spin susceptibility appear to be
more robust than critical current minima (and ground-state
phase jumps) previously used to identify topological transi-
tions. This is particularly relevant for Josephson junctions
with narrow leads, where critical current minima and phase
shifts may no longer indicate topological transitions while
the spin susceptibility peaks remain a good signature. Our
findings provide a promising direction in the detection and

L100506-4



SIGNATURES OF TOPOLOGICAL TRANSITIONS IN THE … PHYSICAL REVIEW B 104, L100506 (2021)

characterization of topological superconductivity and the
topological gap of planar Josephson junctions.
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