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Optical spectral weight transfer associated with the onset of superconductivity at high-energy scales compared
with the superconducting gap has been observed in several systems such as high-Tc cuprates. While there are
still debates on the origin of this phenomenon, a consensus is that it is due to strong correlation effects beyond
the BCS theory. Here, we show that there is another route to a nonzero spectral weight transfer based on the
quantum geometry of the conduction band in multiband systems. We discuss applying this idea to the cuprates
and twisted multilayer graphene.
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Introduction. Superconductivity is a phenomenon due to
the binding electron pairs near the Fermi level. A natural
expectation is that any physical phenomenon at energy scales
much larger than the pairing gap is unaffected by supercon-
ductivity. However, experiments since the 1990’s have shown
that cuprate superconductors are exceptions. Cuprate super-
conductors showed a change in the optical spectrum even
at an energy scale much larger (about 100 times) than the
pairing gap size during the superconducting transition [1–9].
Since the optical spectral sum over all energies does not
change by the f -sum rule, the decreased (increased) spec-
tral weight at high energies is transferred to (from) low
energies. Underdoped cuprates showed spectral weight trans-
fers from high to low energies [1–10], while overdoped
cuprates showed the opposite [5–9], which was reproduced
in dynamical mean-field calculations [11,12]. The origin of
the superconductivity-induced spectral weight transfer (also
called color change [13,14] or UV-IR mixing [15]) has been
debated for over 20 years and continues up to today [13–18].

The anomalous spectral weight transfer is thought to
be closely related to the exotic pairing mechanism in
the cuprates, beyond the Bardeen-Cooper-Schrieffer (BCS)
theory. For example, an issue discussed intensively is whether
the high-temperature superconductivity in the cuprates is
driven by the interaction energy or by the kinetic en-
ergy [19,20]. In BCS theory, superconductivity decreases the
interaction energy while increasing the kinetic energy. As
the low-energy spectral weight is approximately given by the
minus of the kinetic energy, the superconductivity-induced
spectral weight transfer from low to high energies reported
in overdoped cuprates [6–9] is thought to be explained within
BCS theory. On the other hand, the spectral weight transfer
from high to low energies implies that the kinetic energy of the
conduction electrons is reduced by superconductivity [13,16].
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This led to a proposal that the cuprates are kinetic-energy-
driven superconductors in the underdoped and overdoped
regime [13].

Another related issue is the role of Mottness [15,20].
Recently, Phillips, Yao, and Huang (PYH) [18] studied
superconductivity in doped Mott insulators by adding su-
perconducting pairing to an exactly solvable model due to
Hatsugai and Kohmoto [21]. Interestingly, they obtained a
superconducting state distinguished from the conventional
BCS state. Among the properties of the Mottness-induced
non-BCS superconductivity, one particularly intriguing prop-
erty is the superconductivity-induced spectral weight transfer.
They put the chemical potential on the lower Hubbard band
and calculated the integrated single-particle spectral function
for the lower Hubbard band. Remarkably, the spectral sum
increased when superconductivity sets in, which, by a f -sum
rule stating that the total spectrum sum of the lower and upper
Hubbard band is invariant, indicates that the spectral weight
was transferred from the upper to the lower Hubbard band.
Based on this observation, PYH concluded that Mottness is
the key to the problem of anomalous spectral weight transfer
in cuprate superconductors.

In this Letter, we point out that a superconductivity-
induced optical spectral weight transfer from high to low
energies appears naturally within the multiband BCS theory.
What is central to the problem is instead the so-called quan-
tum geometric effect, which has been considered mostly in
the context of flat-band superconductivity [22–25]. Although
this effect in unconventional superconductors is not so signif-
icant as in flat-band systems, it can be large enough to have
an imprint on experimental observations, as in the cuprates.
Our result shows the importance of quantum geometry in
understanding the exotic properties of unconventional super-
conductors.

Optical f -sum rules. Let us begin by explaining the optical
spectral weight transfer. The optical frequency sum rule states
that the oscillator strength, the spectrum sum of the optical
conductivity tensor over all frequencies, depends only on the
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FIG. 1. A simplified picture of the optical spectrum of metals in the normal and superconducting states. (a) Normal state. Eg represents the
energy of the excitation to the Fermi surface. There may be additional excitation channels to the Fermi surface from lower-energy levels, or
from the Fermi surface to higher-energy levels, both of which we do not show here for simplicity. p and d represent two different electronic
bands. (b) Superconducting state. 2� indicates the superconducting gap. Both (1) intraband and (2) interband spectral weights are lost by the
opening of the superconducting gap, while (3) new electron-hole mixing excitation channels open up.

density of electrons n,

2

π

∫ ∞

0
dωσ ca

1 (ω) = ne2

me
δca, (1)

where σ1 is the real part of the conductivity tensor, −e is
the electron charge, me is the bare electron mass, and δca is
the Kronecker delta. This f -sum rule is independent of the
form of the interactions and the form of the ground state.
Combining this sum rule with the conservation of charge, one
obtains the Ferrel-Glover-Tinkham (FGT) sum rule for the
superfluid weight Dca ≡ (2/π )

∫ 0+

0 dωσ ca
1s (ω), which reads

Dca = 2

π

∫ ∞

0+
dω[σ ca

1n (ω) − σ ca
1s (ω)], (2)

where we use
∫ 0+

0 dωσ ca
1n (ω) = 0, and the subscripts n and s

indicate the normal and superconducting states. The spectral
sum of the optical conductivity tensor is thus an important
factor determining the superfluid response, and this is what we
call the optical spectral weight. The missing spectral weight of
the “regular” optical conductivity (where regular means ω >

0) appears in the superfluid weight.
Optical spectral weight transfer. In conventional supercon-

ductors, the missing spectral weight appears mostly near the
Fermi level (photon energy up to the order of the pairing gap)
because the Drude weight is lost by the opening of the su-
perconducting gap. This is natural given that superconducting
pairing occurs near the Fermi level.

However, we note that, after the electrons at the Fermi
level condense to become Cooper pairs, it requires additional
energy to excite those electrons for any excitation channel to
overcome the binding energy—this is one of the main points
of this Letter. Therefore, a missing spectral weight always
appears for interband transitions also, which may occur at
very high energies [Fig. 1(b)]. Owing to this spectral weight
transfer, even exactly flat bands with zero Drude weight can
have nonzero superfluid weight [22]. This interband superfluid
weight was recently proposed to be relevant in the supercon-
ductivity of flat bands in twisted bilayer graphene [23–25],

although it was not discussed in the context of the spectral
weight transfer.

There are also electron-hole mixing optical excitation
channels generated by superconducting pairing [Fig. 1(b)].
These excitations occur mainly between electrons and
holes originating from different normal-state bands, because
particle-hole-symmetric excitations are usually forbidden by
inversion symmetry in superconductors [26,27]. The emer-
gence of these new excitations transfers the optical spectral
weight from low to high energies, reducing the superfluid
weight.

We use a model of Dirac fermion,

h = h̄vF (kxσx + kyσy), (3)

to show the spectral weight transfer explicitly. Let us note that
an effective model does not satisfy the sum rule Eq. (1) in
general. Instead, the spectrum sum is (2/π )

∫ ∞
0 dωσ ca

1 (ω) =
(e2/h̄2)

∫
k ∂kc∂ka h, which may change by superconductivity

even when the electron density is conserved. The physical
meaning behind this is that the spectral weight may be trans-
ferred from the bands not included in the model. However,
our linearized Dirac model preserves the spectrum sum be-
cause ∂kc∂ka h = 0, such that the spectral sum depends only on
the regularization at the high-energy cutoff �, which is not
affected by superconductivity in the limit of � → ∞. There-
fore, an optical spectral weight transfer occurs only between
the two bands in the model.

The optical conductivity in the normal state is

σ ca
1n (ω) = δca

e2

h

(
	

ω2 + 	2

EF

2h̄
+ π

8

(ω − 2EF )

)
, (4)

where we introduce a finite relaxation rate 	 for the intraband
(Drude) response, while neglecting the relaxation for inter-
band transitions, and 
 is the Heaviside step function. In the
superconducting state with an s-wave gap 2�, it reduces to

σ ca
1s (ω) = π

2
Dcaδ(ω) + δca

e2

h

π

8
F (ω)
(ω − 2

√
μ2 + �2),

(5)
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FIG. 2. Optical conductivity of a Dirac fermion in normal and
superconducting states in two dimensions. (a) Optical conductivity.
Only regular (nonsuperfluid) parts are shown. The red dashed line
and solid blue line correspond to the normal and superconducting
states, respectively. The Drude conductivity is shown with a finite
inverse scattering rate of 	 = 0.01EF for its visual presentation,
while we take the clean limit 	 → 0 to calculate the interband
conductivities. We consider an s-wave gap with � = 0.1EF in the
superconducting state. The inset shows the spectrum of the Dirac
fermion in the normal state. (b) Loss of the interband optical con-
ductivity by the superconducting transition. All conductivities are
calculated at zero temperature.

where

Dca = δca e2

h

EF

h

(
EF

μ

)
, (6)

and the Fermi level EF in the normal state is renormalized to
μ in the superconducting state to preserve the average electron
density, which satisfies the self-consistency equation

E2
F = μ

√
μ2 + |�|2 + |�|2 tan−1 μ√

μ2 + |�|2
, (7)

F (ω) = (kω/ωμ)[
√

�2 + (kω + μ)2 −
√

�2 + (kω − μ)2],
and kω = ω

√
ω2 − 4(μ2 + �2)2/

√
ω2 − (2μ)2 is the

magnitude the momentum where the optical transition occurs.
Figure 2 shows the regular part of the optical conductivity in
the normal and superconducting states. Both intraband and
interband optical conductivities originating from the electrons
near the Fermi level get reduced when those electrons form
Cooper pairs [Fig. 2(a)].

It is worth noting a difference between the intraband
and interband contributions. While all the intraband opti-
cal spectral weight is lost over the gap size 0 < h̄ω < 2�,
the interband weight is lost only partially over the gap size
Eg < h̄ω < Eg + 2�, where Eg = 2EF is the optical interband
spectral gap in the normal state, and EF is the Fermi energy
measured from the Dirac node [Fig. 2(b)]. This is because
new optical transition channels are created at h̄ω ∼ Eg = 2EF

in the superconducting state by the electron-hole mixing,
compensating the loss of the spectral weight in the transition
channels of the normal state. In contrast, electron-hole-mixing
transitions are usually prohibited at the superconducting gap
scale [26–29], such that most of the intraband weight for
h̄ω < 2� transforms to the superfluid weight when 	 � 2�.

The interband contributions arise as corrections of order
(�/EF )2 to the intraband superfluid weight in the clean limit.
This is because the interband optical conductivity is O(Ed−2

F )

such that interband superfluid weight is O(�2Ed−3
F ), while

the intraband contribution is the Drude weight—scaling as
O(Ed−1

F ). In the case of the Dirac model in Eq. (3), an ad-
ditional logarithmic correction appears: The ratio between
interband and intraband contributions is (�/EF )2 log(EF /�)
for small �/EF . As conventional superconductors have a
very small ratio �/EF � 10−4, the interband contribution
is negligible for them. However, unconventional super-
conductors can reach a much higher value of �/EF �
0.1 [30–33], such that the interband contribution is a few
percent.

In disordered systems, the interband contributions are
relatively enhanced [34]. Disorder significantly reduces the
intraband contribution to the superfluid weight when the
disorder-induced broadening h̄	 of the Drude spectrum is
comparable to or larger than the superconducting gap 2�,
because the spectral weight below h̄ω < 2� is reduced
[Fig. 1(b)]. However, the interband contribution is not affected
much by disorder as long as the interband optical spectral gap
is larger than the spectral broadening. Therefore, the interband
contribution is relatively much enhanced for 2� � h̄	 < Eg.

Three-orbital model of the CuO2 plane. Let us apply the
above idea to a model of cuprate superconductors. We con-
sider the three-orbital tight-binding model on the Lieb lattice
[Fig. 3(a)] described by

h = 1spin ⊗
⎛
⎝ εd f (kx ) − f (ky)

f ∗(kx ) εp g(kx, ky)
− f ∗(ky) g∗(kx, ky) εp

⎞
⎠ (8)

in the basis of (↑,↓) spins ⊗ (dx2−y2 , px, py) orbitals, f (k) =
tpd (1 − eika), g(kx, ky) = −tpp(1 − e−ikxa)(1 − eikya), and a is
the lattice constant. We take εd = 0 eV, εp = −2.416 eV,
tpp = 751 meV, and tpd = 1.257 eV, which are proper values
to model the cuprate superconductor HgBa2CuO4 [35]. We
consider the effect of doping by tuning only the Fermi level
EF with other parameters fixed. We first take EF = 1.695 eV,
corresponding to the hole doping x = 1 − n ∼ 0.1 in the
underdoped regime, where n is the number of conduction
electrons per unit cell [Fig. 3(b)].

Figures 3(c)–3(e) show the band structure, Fermi sur-
face, and interband optical conductivity in the normal state.
We neglect the Drude conductivity and focus on the inter-
band contributions. As we do not include correlation effects,
the band structure and optical conductivity differ signifi-
cantly from the experimental observations in high-Tc cuprates.
Here, we only aim to show that spectral weight can be
transferred from high to low energies without correlation
effects.

We consider an orbital-independent pairing function �k =
�d (cos ky − cos kx ), such that the gap of 2�k opens at
the Fermi level. Figure 3(f) shows the reduction of the
interband optical conductivity for �d = 20 meV. Most of
the change occurs at around 4 and 6 eV, which are 100
and 150 times larger than the gap 2�d , respectively. This
change is due to the modification of the excitations to the
Fermi level from the two occupied p orbitals. The corre-
sponding spectral weight transfer up to high-energy cutoff
h̄ωc, SWT(ωc) = (h/e2)(2/π )

∫ ωc

0 dω(σ xx
1n − σ xx

1s ), is shown
in Fig. 3(g) in units of meV. Here, the total spectral weight
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FIG. 3. Superconductivity-induced spectral weight transfer in a model of the CuO2 plane in cuprate superconductors. (a)–(d) Tight-binding
model. (a) Location of px,y and dx2−y2 orbitals on the Lieb lattice. The unit cell is shown as a shaded rectangle. We consider the tight-binding
model on this lattice with hopping up to the next-nearest neighbor Eq. (8). We take on-site energies εd = 0 eV and εp = −2.416 eV and
hopping amplitudes tpp = 751 meV and tpd = 1.257 eV. (b) Hole doping x = 1 − n as a function of Fermi level EF . n is the number of
conduction electron per unit cell. The red and blue curve corresponds to the normal and superconducting states, where �d = 20 meV in the
latter. We take EF = 1.695 eV in (d)–(g). This choice corresponds to hole doping x = 0.1 per unit cell from the half-filled conduction band.
The inset shows δEF = ESC

F − E normal
F needed to preserve the average charge, which changes sign at the van Hove singularity (VHS). (c) Band

structure. (d) Fermi surface of a hole pocket centered at (π, π ). (e) Interband optical conductivity in the normal state. Only the longitudinal
part σ xx = σ yy is shown. The contribution from the intraband Drude conductivity is not included here. (f) Superconductivity-induced reduction
of the interband optical conductivity. We take �d = 20 meV. (g) Spectral weight transfer corresponding to (e). For numerical calculations of
the optical conductivity, we take finite broadening h̄	 = 10 meV for the Lorentzian.

transfer 0.42 meV is comparable to 1 meV observed in the
underdoped regime [5–9].

The spectral weight transfer from high to low energies
occurs for most other doping levels also [Fig. 3(h)]. More-
over, our data reproduce the decrease of the spectral weight
transfer observed in the cuprates as x increases from the
underdoped regime [6–9], although the sign change observed
in the overdoped regime is almost invisible in our model
calculation.

Quantum geometric perspective. The optical spectral
weight transfer—equivalently, by the FGT sum rule, the
interband contribution to the superfluid weight—has an in-
teresting quantum geometric interpretation. The interband
contribution to the superfluid weight is often called a
“quantum geometric” contribution because it appears as the
Fubini-Study metric of the conduction band in the exactly
flat-band limit [22]. Namely, Dca ∝ Re

∫
k Qca, where Qca =∑

n∈flat,m∈remote 〈n|i∂kc |m〉 〈m|i∂ka |n〉 is the Fubini-Study met-
ric of the flat bands. Recent studies by the present
authors [36,37] allow a stronger quantum geometric inter-
pretation that the interband superfluid weight is quantum
geometric even away from the flat-band limit. We showed
that the matrix elements in the interband optical conductivity

tensor have the form of a quantum metric in the normal state,

σ ca(ω) = ωe2

2

∑
m,n

∫
k
δ(Em − En − h̄ω) fnmQmn

ca , (9)

where
∫

k = ∫
dd k/(2π )d in d spatial dimensions, fnm = fn −

fm, and fn is the Fermi-Dirac distribution of the electronic
single-particle state |n〉. Here, Qmn

ca = 〈n|i∂kc |m〉 〈m|i∂ka |n〉 is
the quantum metric for the pair of states |m〉 and |n〉 [37],
which produces the Fubini-Study metric after summed over
m and n. The FGT sum rule then implies that the interband
superfluid weight is related to the quantum metric in the
normal state. For a pairing that is uniform for all orbital de-
grees of freedom, one can see this explicitly in the expression
derived in Ref. [38], which we rewrite in terms of the quantum
metric as

Dca
inter = e2

h̄2

∑
m �=n

∫
k

(
1

Em
− 1

En

)
�2(ξn − ξm)

ξn + ξm
Re[Qmn

ca ], (10)

where ξn = εn − μ, εn is the energy eigenvalue of the state
|n〉 in the normal state, and En = √

ξ 2
n + �2. An orbital-

dependent pairing can complicate the quantitative relation
between quantum geometry and superfluid weight [38] be-
cause then the optical conductivity in the superconducting
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state does not simply depend on the quantum metric in the
normal state. However, even in this case, the geometric per-
spective can still be useful for a qualitative understanding.

Quantum geometry gives fresh insight into the single-band
effective models of the superconductivity-induced spectral
weight transfer. In Ref. [16], Hirsch noted that, if we consider
the nonorthogonality of the atomic orbitals, repulsive inter-
actions need to be included on the bond sites as well as the
atomic sites in the Hubbard model. When superconductivity
occurs, the bond-site interaction increases the total spectral
weight, the sum of the regular and superfluid weight [16].
Such a nonconservation of the spectral sum is allowed in
effective models and is interpreted as the spectral weight
transfer from remote bands, not included in the model. We
can understand the importance of the bond-site interaction
by noting that the spreading of the Wannier function is char-
acterized by the Fubini-Study metric [22,39]. As the optical
spectral weight transfer is characterized by a quantum metric,
intimately related to the Fubini-Study metric, it is also related
to the spreading of the Wannier function. In Hirsch’s model,
atomic orbitals take the role of the Wannier function, so their
overlap due to the spreading is responsible for the spectral
weight transfer.

Discussion. Our general arguments show that the
superconductivity-induced optical spectral weight transfer can
be understood as quantum geometric effects within the multi-
band BCS theory. This is essentially the same phenomenon as
the geometric superfluidity studied previously [22,38]. How-
ever, our approach has practical advantages over the previous
approach as well as conceptual merits in the understanding of
the physics of the cuprates.

Our approach provides a promising way to measure the
geometric contribution to the superfluid weight in flat-band
systems through the superconductivity-induced optical spec-
tral weight transfer. It was theoretically proposed that the
geometric contribution can take a significant portion in flat-
band systems [22,38] such as twisted bilayer [23–25] and
trilayer [31,32] graphene. However, this proposal has not been
tested experimentally. Since the optical spectral gap between
the flat bands and the other bands is an order of 10 meV at the
first magic angle (twisting angle of ∼1.1◦) in twisted bilayer
graphene, the optical spectrum needs to be measured down
to the terahertz scale. This measurement below superconduct-
ing transition temperature Tc ∼ 1 K is currently challenging
but may be possible in the near future. For the trilayer, one
would need to measure the spectrum down to lower energies,
because there will be additional geometric contributions from
the Dirac cones coexisting with the flat bands.

In principle, optically measuring the geometric superfluid
weight requires the knowledge of the optical conductivity at
arbitrarily high photon energies. However, in practice, one can

achieve high precision with a moderate high-energy cutoff.
This is because the quantum metric Qmn

ba can be suppressed for
a large energy difference between m and n bands. To see this,
note from Eq. (10) that Dinter ∼ (�2/EF )

∑
m �=n

∫
k Re Qmn be-

cause the transitions from or to the Fermi level are dominant
contributions. Let us suppose that n is the unique metallic
band, and then the sum

∑
m �=n runs over m only. We have

Qmn
ba = vb

nmva
mn/ω

2
mn ∼ O(ω−2

mn ) for a large energy difference
h̄ωmn, because the interband velocity matrix element va

mn =
〈m|v̂a|n〉 does not diverge for ωmn → ∞. If we consider the
density of states

∫
k

∑
m:ωmn∼ω ∝ ωd/2−1 in d spatial dimen-

sions at ωmn = ω, which is the case for transitions to free
electron states, the contribution at ω is suppressed by a factor
1/ω(6−d )/2 at large ω.

Although we emphasize the role of quantum geometry, we
should also note that disorder and correlation effects need
to be seriously considered to explain all the salient features
appearing in the cuprates. For instance, in the single-particle-
band picture, the spectral weight transfer appears within a
small energy window comparable to the pairing gap for each
transition channel. On the other hand, the spectral weight
transfer in the cuprates occurs over a very broad range of over
an electron-volt scale. The incoherent nature of the electronic
states is crucial for broadening. Also, there is a finite optical
spectral weight between the upper and lower Hubbard bands
in the cuprates. This can lead to a superconductivity-induced
optical spectral weight transfer at the Mott gap scale, larger
than the charge transfer gap. Finally, we note that a concrete
quantum geometric interpretation of the optical conductivity
and superfluid weight has yet to be developed for general
strongly correlated systems.

Note added. Recently, we became aware of a closely re-
lated recent work by Chen and Huang [40]. They also study
superconductivity-induced change in the optical spectrum, al-
though its relation to the superfluid weight is not discussed.
We also became aware of related works by Hazra, Verma, and
Randeria [41,42], where geometric superfluidity is related to
optical conductivity for flat-band systems.
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