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Quantum size effects in the magnetic susceptibility of a metallic nanoparticle
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We theoretically study quantum size effects in the magnetic response of a spherical metallic nanoparticle
(e.g., gold). Using the jellium model in spherical coordinates, we compute the induced magnetic moment and
the magnetic susceptibility for a nanoparticle in the presence of a static external magnetic field. Below a critical
magnetic field the magnetic response is diamagnetic, whereas above such field the magnetization is characterized
by sharp, steplike increases of several tenths of Bohr magnetons, associated with the Zeeman crossing of energy
levels above and below the Fermi sea. We quantify the robustness of these regimes against thermal excitations
and finite linewidth of the electronic levels. Finally, we propose two methods for experimental detection of the
quantum size effects based on the coupling to superconducting quantum interference devices.
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Metal clusters lie in between the realms of bulk metals
and atoms [1,2]. Determining the size at which the metallic
behavior arises is not easy as it depends on which physical
quantity one uses to define “metallicity.” Some properties,
such as the crystal structure or average bonding distances,
converge to bulk values surprisingly quickly and, in the case
of, e.g., the electron density, even for clusters of less than 200
atoms [3]. By contrast, clear deviations from bulk values are
found in other properties for much larger nanoparticles. Two
notable examples are the large charging energy of nanoscopic
metal clusters [4] and the size-dependent optical absorption
in plasmonic nanoparticles [5]. Many of these phenomena
stem from the nanoscale spatial confinement of the electronic
wave functions. The resulting, atomlike discrete energy level
structure gives way, as the particle size increases, to a bulklike
quasicontinuum band structure. In the intermediate regime,
the response of metallic structures can still show evidence
of finite energy gaps or correlations between different levels.
Such quantum size effects have a strong impact in, among
others, the electric conductance through metallic nanobridges
[6], or the temperature and magnetic field dependence of the
specific heat in, e.g., Pd clusters [7].

In this Letter we study quantum size effects in the mag-
netic response of a spherical metallic nanoparticle and discuss
their experimental observation. Motivated by previous theo-
retical approaches based on the simplest picture of spinless
free electrons [8–10], which have been applied to explore
the orbital magnetism [9,11] of metallic clusters, we describe
the nanoparticle using the jellium model. This model is sim-
ple enough to allow for a numerically exact solution, while
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complex enough to successfully describe quantum size effects
such as, e.g., the minima in ionization potential of Na and K
clusters with full electronic shells [12,13]. The jellium model
is a particularly good description for high-density materials
with free-electron-like conduction bands dominated by s or-
bital electrons, especially alkali metals [14]. Since the high
reactivity of these metals makes nanoclusters only available
in jets [13], we focus on Au nanoparticles whose equilibrium
magnetic response is easier to observe experimentally. Gold
combines a simple electronic structure, dominated by the
outer 6s1 orbitals [15] with excellent chemical stability. The
jellium model provides a good description for gold whereby
relativistic effects (e.g., spin-orbit coupling) can be safely
neglected [16,17]. Furthermore, Au nanoparticles with well
controlled and homogeneous sizes and shapes can be chem-
ically synthesized, stored in the form of colloids for long
periods of time [5,18,19], and individually transferred to an
on-chip location (e.g., above a magnetic sensing device to
measure their magnetic response) with the tip of an atomic
force microscope [20].

We consider a rigid, spatially fixed metallic nanosphere of
radius R in the presence of a homogeneous magnetic field
B(r) = B0ez. We describe its internal electronic degrees of
freedom using the jellium model [14,21,22], i.e., we describe
the particle as an ensemble of N free electrons under the
influence of a positively charged background, whose effect is
to create an infinite spherical potential well of radius R for the
electrons. The only material-dependent free parameter within
this model is the electronic density N/V ≡ 3N/(4πR3), usu-
ally given through the Wigner-Seitz radius rs ≡ R/N1/3 [14].
The Hamiltonian of the nanoparticle within this model is
given by Ĥ = Ĥ0 + ĤB. The first term describes the dynamics
of its electrons for B0 = 0, namely, Ĥ0 = ∑N

i=1 p̂2
i /(2me) +

U�(|r̂i| − R) with U → ∞. Here �(x) is the Heaviside
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step function, me the electron mass, and r̂i = (x̂i, ŷi, ẑi ) and
p̂i the position and momentum operator vectors of the ith
electron. As Ĥ0 is spherically symmetric we choose a single-
particle eigenstate basis {|nlms〉} composed by eigenstates
of the orbital and spin angular momentum operators, i.e.,
[l̂2, l̂z, ŝz]|nlms〉 = h̄[h̄l (l + 1), m, s]|nlms〉 with n ∈ N, l ∈
N0, m ∈ Z with |m| � l , and s = ±1/2, respectively. Impor-
tantly, the corresponding eigenenergies, given by Enl = E0u2

ln

with E0 ≡ h̄2/(2meR2) and uln the nth zero of the spherical
Bessel function of the first kind of order l (see Supplemental
Material [23] for details), are highly discretized due to the
electronic confinement within the nanoparticle [1,4,21,24].
The term of the Hamiltonian describing the effect of the
homogeneous magnetic field reads [16,23]

ĤB = h̄ωL
L̂z + 2Ŝz

h̄
+ 1

2
meω

2
Lρ̂2, (1)

where ωL ≡ eB0/(2me), e > 0 is the fundamental charge,
L̂z ≡ ∑

i l̂z,i, Ŝz ≡ ∑
i ŝz,i, and ρ̂2 ≡ ∑

i(x̂
2
i + ŷ2

i ). We are
interested in the regime of nanometer-size particles and mod-
erate B fields (η ≡ eB0R2/h̄ � 1), which allows us to treat
the second term of Eq. (1) perturbatively [23]. We consider as
unperturbed eigenstates the single-particle eigenstates of Ĥ0,
namely, |nlms〉, which are also eigenstates of the first term
in Eq. (1). The eigenenergies up to first order in perturbation
theory are hence given by

Enlms

E0
= u2

ln + η(m + 2s) + η2

4R2
〈nlms|ρ̂2|nlms〉. (2)

The effect of the homogeneous magnetic field is thus to lift
degeneracies in analogy with the Zeeman effect and to add a
small diamagnetic energy to all eigenstates.

We are interested in the induced magnetic dipole of the
sphere, given by the operator [25]

m̂ = −μB

h̄

N∑
i=1

(r̂i × [p̂i + eA(r̂i )] + 2ŝi ), (3)

where μB ≡ h̄e/(2me) is the Bohr magneton and A(r) the
electromagnetic vector potential. Owing to the symmetry of
the system, the expected value of Eq. (3) for a thermal state of
Ĥ at temperature T is parallel to the homogeneous magnetic
field, i.e., 〈m̂〉 = mzez with

mz = −μB

( 〈L̂z〉
h̄

+ 2
〈Ŝz〉

h̄
+ eB0

2h̄
〈ρ̂2〉

)
. (4)

The first two terms contribute to the paramagnetic response
of the system, as states with negative orbital and spin angular
momenta are energetically favored [see Eq. (2)]. Conversely,
the third term in Eq. (4) corresponds to a diamagnetic
contribution.

Evaluating Eq. (4) requires calculating expected values of
single-particle operators of the form [14]

〈Ô〉 =
∑
nlms

n̄nlms(T )〈nlms|o(r̂, p̂, ŝ)|nlms〉. (5)

Here n̄nlms(T ) ≡ fFD(Enlms, μ, T ) is the mean thermal occu-
pation of the electronic level |nlms〉, with fFD(E , μ, T ) =
(1 + exp[(E − μ)/(kBT )])−1 the Fermi-Dirac distribution
and kB the Boltzmann constant. The chemical potential μ is
defined implicitly via

N =
(

R

rs

)3

=
∑
nlms

n̄nlms(T ). (6)

At T = 0 it defines the Fermi energy EF ≡ μ(T =
0), whereby n̄nlms(T = 0) = �(EF − Enlms). To accurately
model the physical conditions in the experimental proposal
below, the number of electrons N is assumed fixed. Thus, to
compute observables from Eq. (5), one first needs to solve
Eq. (6) to obtain the (N, T, B0)-dependent chemical potential
μ(T, N, B0). Even in the simplest case T = B0 = 0, this is
an involved task as it requires one to determine, for a given
value of N (i.e., for a given radius R), the lowest N single-
particle eigenenergies Enlms. This is difficult in practice for
two reasons. First, the small size of the particle discards a
continuum limit approach. Second, the spherical boundary
conditions result in eigenenergies Enlms which, as opposed
to other cases (e.g., cubic box boundary conditions [8–10])
do not obey an absolute ordering rule, as the zeros of the
spherical Bessel functions are interlaced in a complex way.
In other words, no absolute rule exists to determine which of
two arbitrary zeros, uln and ul ′n′ , is the largest. As shown in
detail in [23], we have developed a numerical algorithm that
allows us to solve Eq. (6) exactly at T = 0, and numerically
with arbitrary precision at T 
= 0, for the range of nanoparticle
sizes we are interested in (R � 40 nm).

The induced dipole moment mz, Eq. (4), is shown in
Fig. 1(a) as a function of external field B0 for a gold nanoparti-
cle (rs = 3a0 with a0 the Bohr radius) with radius R = 7.5 nm
at three different temperatures. The induced moment shows
two distinct behaviors delimited by a critical field B0 = B∗, to
be defined and analyzed below. At fields B0 < B∗ the response
is diamagnetic, mz ∝ −B0, whereas at large enough fields
B0 > B∗ the magnetic moment not only starts to increase with
B0, but does so in quantized jumps of several tens of Bohr
magnetons, equivalent in magnitude to sudden flips of several
tenths of electronic spins at once. This quantized behavior is
more pronounced at zero temperature [red line in Fig. 1(a)],
and gradually smears away upon increasing T . Note that the
transition from decreasing to increasing behavior in mz, at
B0 = B∗, remains for higher temperatures.

The magnetic response of the nanosphere shown by
Fig. 1(a) can be understood from the single-particle eigenen-
ergies in Eq. (2). At T = B0 = 0, the electronic ground state
corresponds to the states with the lowest N eigenenergies
being occupied, and fulfills 〈L̂z〉 = 〈Ŝz〉 = 0 [26]. When a
magnetic field B0 is applied, the zero-field eigenenergies be-
come nondegenerate, as states with different values of m and
s experience a Zeeman splitting [see Eq. (2)]. At weak fields
B0 < B∗ these energy shifts are small, and states above and
below the original Fermi level remain well separated. The
ground state is thus the same as at zero field, resulting in a
diamagnetic response mz = −B0μBe〈ρ̂2〉/(2h̄) [see Eq. (4)].
Conversely, at strong enough fields B0 > B∗, the Zeeman-split
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FIG. 1. (a) Induced magnetic dipole moment mz [Eq. (4)] in a
nanoparticle with radius R = 7.5 nm as a function of applied mag-
netic field B0, and at temperatures T = 0 (red), 20 mK (blue), and
70 mK (yellow). (b) Magnetic susceptibility χ [Eq. (7)] as a function
of B0 and T for the same nanoparticle as above. The dashed lines
indicate the critical field B∗ and temperatures T1 and T2 (see main
text for details). The colored arrows indicate the values of T shown
in panel (a). All panels correspond to gold (rs = 3a0).

states originally above and below the Fermi level start to
overlap, and the ground state changes abruptly when a pre-
viously occupied state |n1, l1, m1, s1〉 becomes empty while
a previously empty state |n2, l2, m2, s2〉 becomes occupied.
As a result, the induced magnetic dipole moment sharply
changes by an amount μB[(m2 + 2s2) − (m1 + 2s1)], typi-
cally of many Bohr magnetons due to the high values of
the orbital quantum numbers l and m near the Fermi level.
Since |s| � 1/2, the effects of the spin degree of freedom
are negligible in comparison, as expected [27]. At higher
temperatures, the field-induced modification of the ground
state is still present but the sharp changes in mz become less
appreciable as the mean occupation number of states above
and below the Fermi level is no longer 0 or 1 but given by the
smoother function n̄nlms(T ). We remark that both the sudden
slope change at B0 = B∗ and the steplike behavior of mz are
quantum size effects as they stem from the discrete character
of the single-electron energy levels Enl ∝ R−2 and the Pauli
exclusion principle.

In order to further characterize the magnetic response of
the nanosphere, we compute the point-particle magnetic sus-
ceptibility [16], which we define as

χ ≡ μ0

V

∂mz

∂B0
, (7)

with μ0 the vacuum permeability. We display χ in Fig. 1(b)
as a function of temperature T and applied field B0. The mag-

FIG. 2. (a) Critical fields and temperatures (B∗, T2) (red) and
(	B∗, T1) (blue) as a function of electron number N (lower axis) or
particle radius R (upper axis). Solid lines show the fit to a power law.
(b) Zero-temperature magnetic susceptibility [Eq. (7)] of a nanoparti-
cle with R = 3.7 nm as a function of applied field B0 and linewidth of
the single-electron levels γ . (c) Magnetic susceptibility as a function
of temperature T for γ = 0 and the same nanoparticle as in (b). All
panels correspond to gold (rs = 3a0).

netic response shows different regimes as a function of T and
B0, delimited by three critical parameters, namely, B∗, T1, and
T2. The critical field B∗, already introduced above, can now be
rigorously defined as the field at which the first energy level
crossing occurs at T = 0. This corresponds to the first sharp
peak in the susceptibility χ in the low-temperature regime
T → 0. Furthermore, we define two critical temperatures as
T1 ≡ 35μB(	B∗)/(2kB) and T2 ≡ 35μBB∗/(2kB), where 	B∗
is the separation between B∗ and the magnetic field at which
the second level crossing occurs at T = 0, namely, the second
susceptibility peak at T → 0. As shown by Fig. 1(b), the
critical temperature T1 corresponds to the temperature above
which the steplike behavior of the magnetic response disap-
pears due to thermal effects. Finally, at temperatures above T2,
the Fermi-Dirac distribution reaches out far above the Fermi
level and the discretization of the electronic levels becomes
irrelevant, resulting in a magnetic response monotonically
dependent on B0.

The various susceptibility regimes described above re-
main for a wide range of particle sizes R, as demonstrated
in [23] where we provide identical figures as Fig. 1(b) for
R = 4, 5, 9, and 14 nm. However, the critical parameters B∗,
T1, and T2 decrease with increasing particle size, as shown by
Fig. 2(a), where we display B∗ and 	B∗ calculated exactly as
a function of particle size (left axis) and the corresponding
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T1 and T2 (right axis). The dependence on the radius R is
not smooth since the Fermi level changes abruptly with the
radius, but is well fitted by a power dependence R−α , with
α = 2.66 ± 0.62 and α = 3.94 ± 0.99 for B∗ and 	B∗, re-
spectively. These values of α reflect a quantum size effect
as they can be related to the size dependence of the energy
spacing between electronic levels, E0 ∝ R−2, and the fact that
the maximum available values for the quantum numbers l, m
increase with increasing particle size. The decrease of the
critical parameters with the particle size hinders, for too large
particles, the experimental observation of the exotic magnetic
response shown by Fig. 1(a).

The magnetic response predicted by our ideal model of
isolated, noninteracting electrons is expected to remain in
realistic experimental conditions. Deviations from our model
could stem from electron-electron or electron-phonon inter-
actions, surface roughness, or interactions with the particle
substrate, among others. We describe the effect of all these de-
viations through the addition of a phenomenological linewidth
γ to each electronic level [14,28]. Specifically, we weight
the original occupation n̄nlms(T ) of each single-particle state
|nlms〉 with a Lorentzian function, i.e., we modify such occu-
pation to

n̄γ

nlms(T ) ≡
∫ ∞

−∞

dE

π

γ fFD(E , μ, T )

γ 2 + (E − Enlms)2
, (8)

which can be integrated analytically. The magnetic suscepti-
bility is shown in Fig. 2(b) for a sphere of R = 3.7 nm as a
function of B0 and of the linewidth γ normalized to the elec-
tronic energy scale for this radius, E0 = 2.8 meV. The peaks
in the susceptibility remain for γ � 10−2E0, where individual
energy levels are well resolved. The diamagnetic response at
B0 < B∗ remains visible way beyond this linewidth range. The
presence of a finite linewidth at T = 0 has, as expected, a very
similar qualitative effect as a finite temperature [see Fig. 2(c)
for comparison].

The quantum size effects shown in this work can be ex-
perimentally observed with ultrasensitive magnetic sensors.
Here we propose two alternative experimental approaches
based on YBa2Cu3O7−δ (YBCO) nanoscopic superconducting
quantum interference devices (nanoSQUIDs) [30,31], which
offer a spin sensitivity of ∼10μB/Hz1/2 (at 1 MHz) and
can operate at magnetic fields up to ∼1 T [29,32]. In both
approaches the signal from the sample is modulated at fre-
quency f ∼ 10–100 kHz in order to exploit the maximum
sensitivity of the nanoSQUID, and the dc magnetic field B0

is applied parallel to the nanoSQUID loop and perpendic-
ularly to the plane of the Josephson junctions so that no
magnetic flux is coupled to them. In the first approach [inset
Fig. 3(a)] the nanoparticle is attached to a cantilever and its
distance to the nanoSQUID oscillates. This enables lock-in
detection of the resulting modulated magnetic flux through
the nanoSQUID, whose amplitude is given by  = φcmz(B0)
with φc the coupling factor [29]. As evidenced by Fig. 3(a), for
typical values R = 10 nm, T = 10 mK, and optimum values
φc = 10 n0/μB, with 0 the magnetic flux quantum, the
flux experiences steps of ∼3 μ0. In the second approach

13

16

19

22

25

0

3

6

9

12

FIG. 3. Experimental proposal using a nanoSQUID. (a) The flux
induced by a nanoparticle attached to an oscillating cantilever is
proportional to the induced magnetic moment mz, Eq. (4). (b) An
ac current through the nanoSQUID generates an ac magnetic field
at the nanoparticle position, the resulting flux being proportional to
the magnetic susceptibility χ , Eq. (7). In both panels we quantita-
tively estimate the signal for R = 10 nm, T = 10 mK, and typical
nanoSQUIDs [29].

[inset Fig. 3(b)] the particle experiences the oscillating ex-
ternal magnetic field bac = b sin(2π f t ) (b � B0) created by
an ac current circulating through the nanoSQUID. The flux
through the nanoSQUID contains an ac component which de-
pends only on the excitation signal (and can be compensated
electrically) plus an ac component, ac(t ) =  sin(2π f t ),
whose amplitude  = V bφcμ

−1
0 χ (B0) is now proportional to

the susceptibility χ [Eq. (7)]. As shown in Fig. 3(b), for the
same typical parameters as above and for b = 5.8 mT [33],
the flux shows peaks of amplitude 6–12 μ0. Both experi-
mental approaches are feasible as the expected signal exceeds
the flux noise floor of YBCO nanoSQUID sensors, S1/2

 ∼
0.5 μ0/Hz1/2 at f = 100 kHz [32].

In conclusion, we have theoretically predicted strong
quantum size effects on the ground-state magnetization and
magnetic susceptibility of gold nanoparticles of sizes up to
tenths of nanometer, which lie within the measurement ca-
pabilities of state-of-the-art magnetic sensing techniques at
cryogenic temperatures. An interesting outlook of our work
consists in studying the thermalization of the electron gas
after a deviation from equilibrium. This could shed light into
the predicted exotic internal energy equilibration in isolated
nanoscopic systems [34,35].
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