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Strong slowing down of the thermalization of solids interacting in the extreme near field
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When two solids at different temperatures are separated by a vacuum gap they relax toward their equilibrium
state by exchanging heat either by radiation or by phonon or electron tunneling, depending on their separation
distance and on the nature of materials. The interplay between this exchange of energy and its spreading through
each solid entirely drives the relaxation dynamics. Here we highlight a significant slowing-down of this process
in the extreme near-field regime at distances where the heat flux exchanged between the two solids is comparable
or even dominates over the flux carried by conduction inside each solid. This mechanism, leading to a strong
effective increase in the system thermal inertia, should play an important role in the temporal evolution of the
thermal state of interacting solid systems at nanometric and subnanometric scales.
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The relaxation of bodies in mutal interaction which are
initially prepared in two different thermal states is an im-
portant problem in physics from both a fundamental [1–10]
and a practical point of view [11–17]. When these bodies
are separated by a vacuum gap this relaxation is mediated
by radiative heat exchange or by tunneling of heat carri-
ers (phonons, electrons, excitons, etc.). Usually the system
evolves toward a state of equipartition of energy and uniform
temperature by maximizing its entropy [18]. This corresponds
to an evolution of all particles inside the system toward the
same average energy through various interaction mechanisms
even if their initial energies are very different. This evolu-
tion is well described for classical systems by the Boltzmnan
equation for the probability density of particles, over all their
possible states in the phase space.

In this paper we investigate the relaxation dynamics of
systems exchanging heat in a strong-interaction regime. To
explore this thermalization process we consider two solids out
of thermal equilibrium which exchange heat through a nano-
metric or subnanometric vacuum gap in the transition domain
between the radiative and the conductive regime [19–21] also
called the extreme near-field regime. In this range of sepa-
ration distance energy exchange competes or even dominates
[22,23] with respect to the conductive heat transport within
the bodies themselves. In this regime of strong interaction we
demonstrate that counterintuitively the relaxation time of the
system is dramatically extended compared to a weak-coupling
situation and demonstrate that the relaxation time of the sys-
tem towards thermal equilibrium is dramatically extended.

To address this problem let us consider two identical solid
films as sketched in Fig. 1. When the heat transport inside
these films is governed by a simple diffusion process the spa-
tiotemporal evolution of the film temperature can be obtained
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by solving the energy balance equation

ρC
∂Tk (z, t )

∂t
= −∇ · [κ∇Tk (z, t )] + P j→k (z, t ), (1)

where ρ denotes the mass density of the films, C their specific
heat capacity, κ their thermal conductivity, and P j→k (z, t ) the
power density received locally by one film from the opposite
one. This power density, as expected, depends implicitly on
the entire temperature profiles Tk (z, t ) at each time t . It is
clear that the time evolution of the temperature depends on
the interplay between the inner transport mechanism and the
heat exchange between the two films. When the flux carried by
conduction within the films dominates with respect to the flux
exchanged between the two films, the temperature profiles
stay uniform at any time within each film and then the two
temperatures obey the equation

ρC
dTk

dt
= P j→k[Tj (t ), Tk (t )], (2)

where now P j→k[Tj (t ), Tk (t )] corresponds to the total power
(per unit volume) transferred from film j to film k, a function
of the two temperatures Tj and Tk at time t . Close to ther-
mal equilibrium the right-hand side of this equation can be
expressed in terms of the radiative thermal conductance

G = lim
�T →0

φ j→k[Tk (t ) + �T, Tk (t )]

�T
, (3)

where φ j→k is the net flux (per unit area) received by film k.
This allows us to recast Eq. (2) in the form

ρCL
dTk

dt
= −G[Tk (t ) − Tj (t )]. (4)

If we assume (see Fig. 1) that body 2 is in contact with a
thermostat at constant temperature T2, the only temperature
varying in time is T1, which simply evolves as

T1(t ) = T1(0) exp(−t/τ ), (5)
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FIG. 1. Sketch of the system. Two solid films out of thermal
equilibrium having temperatures T1(z, t ) and T2(z, t ) are separated by
a vacuum gap of thickness d . They relax by exchanging heat either
by radiation or by phonon or electron tunneling, depending on the
separation distance and the nature of the materials. This transmitted
energy is spread out through the films thanks to a diffusion process.

where T1(0) is the initial value of the temperature of slab
1, and τ = ρCL/G denotes the relaxation time. Hence we
see that one way to slow down the thermalization process
consists in reducing the coupling strength between the two
films, encoded in the conductance G. In the following, we
show that a strong slowing-down of the relaxation process can
also be observed in some situations when the energy exchange
between the two films is strongly coupled to the conduction
mechanism within each one of them.

To demonstrate this result let us first consider the relaxation
of two polar films separated by a gap of nanometric thickness.
At this separation distance the films interact only by radiation
through the tunneling of evanescent photons [24]. The radia-
tive power density P j→k

r dissipated in film k at point z and
associated with the sources in the other body can be calculated
from the average monochromatic flux of the Poynting vector
at this point, 〈Sk (z, ω)〉 = 2 Re〈Ek (z, ω) × Hk∗(z, ω)〉, as

P j→k
r (z) = −

∫ ∞

0
dω ∇ · 〈Sk (z, ω)〉, (6)

where 〈.〉 denotes the statistical averaging. According to
fluctuational-electrodynamics theory [25], for isotropic media
and neglecting nonlocal effects, the Poynting vector reads

〈Sk
n (z, ω)〉 = i

ω2

c2
ηn jl

×
∫

sources
dz′ε′′(z′, ω)�[T (z′), ω]GEE

j,l G
HE∗
n,l ,

(7)

where the integral extends over all source points. In Eq. (7),
ηn jl denotes the n jl component of the Levi-Civita tensor,

�(T, ω) = h̄ω/[e
h̄ω

kBT − 1] is the mean energy of a Planck
oscillator at temperature T , ε′′ the imaginary part of the
permittivity in the emitting body, and GEE = GEE (z, z′) and
GHE = GHE (z, z′) are the full electric-electric and electric-
magnetic dyadic Green tensors [26] at frequency ω, taking
into account all scattering events within the system between
the emitter and the point where energy is dissipated.

As recently established [23] the radiative power dissipated
through a polar film from its surface is typically reduced by
one order of magnitude through a distance of a few nanome-
ters from the vacuum gap, so that the radiative transfer can
reasonably be assumed to be purely surfacic. In this case, by
assuming the thermal conductivity independent of the position
and the temperature and by introducing the auxiliary functions
Fk (z, t ) = Tk (z, t ) − T2, the energy balance equation can be
recast in the form

ρCL
∂Fk (z, t )

∂t
= −κ L

∂2Fk (z, t )

∂z2
+ Gr Fk (z, t ), (8)

where in this scenario the conductance between the two films
reduces to the radiative conductance Gr , defined as

Gr =
∫ ∞

0

dω

2π

d�(T, ω)

dT

∑
p

∫ ∞

0

dk‖
2π

k‖ Tp(ω, k‖, d ), (9)

where k‖ is the modulus of the component of the wave vector
parallel to the exchange surface and p is the state of po-
larization. Here Tp(ω, k‖, d ) denotes the energy transmission
coefficient for the mode (ω, k‖) in polarization p between the
films, which can be expressed in terms of the reflection and
transmission coefficients rip and tip of the two slabs as [24]

Tp(ω, k‖, d ) =
⎧⎨
⎩

(1−|r1p|2−|t1p|2 )(1−|r2p|2−|t2p|2 )
|Dp|2 , ck‖ < ω,

4 Im(r1p)Im(r2p)e−2|kz |d

|Dp|2 , ck‖ > ω,

(10)

kz being the z component of the wave vector and Dp = 1 −
r1pr2pe2ikzd the Fabry-Pérot factor of the cavity.

As for the initial conditions, we impose F1(z, 0) = �T
and F2(z, 0) = 0, which correspond to the fact that the initial
temperature profiles in the two slabs are uniform [T1(z, 0) =
T2 + �T and T2(z, 0) = T2]. Concerning the boundary con-
ditions, we set F2(L + d, t ) = 0, fixing the temperature at
T2 for the edge of the right slab in contact with the ther-
mostat, while ∂zF1(−L, t ) = 0 imposes a vanishing flux at
each instant at the left end of the first slab (adiabatic
boundary condition). Note that this condition is based on
the fact that the interactions in the far-field regime with
the bath are negligible when the distance d between the
slabs is in the near-field regime. Moreover, we impose two
further boundary conditions, ∂zF1(0, t ) = −Gr/κ[F1(0, t ) −
F2(d, t )] and ∂zF2(d, t ) = −Gr/κ[F1(0, t ) − F2(d, t )], ensur-
ing the flux continuity between the two slabs. The solutions of
the partial differential equations, (8), read

F1(z, t ) = 8�T
∞∑

n=1

sin xn cos2 xn

4xn + sin(4xn)

× cos
[xn(z + L)

L

]
exp

[
− x2

nκ

ρCL2
t
]
,

F2(z, t ) = −8�T
∞∑

n=1

sin2 xn cos xn

4xn + sin(4xn)

× sin
(xnz

L

)
exp

[
− x2

nκ

ρCL2
t
]
,

(11)

L100305-2



STRONG SLOWING DOWN OF THE THERMALIZATION OF … PHYSICAL REVIEW B 104, L100305 (2021)

FIG. 2. Time evolution of the average temperature of the hot
film in a system made of two coupled polar films of thick-
ness L = 100 μm separated by a vacuum gap of thickness d =
1 nm. The black (red) solid curve shows the evolution for
SiO2 (SiC) coupled films. The black (red) dashed curves show
the evolution predicted by the PvH theory (perfectly conduct-
ing solids). The initial temperature of the cold film is T2 =
300 K and the initial temperature difference is �T = 100 K. The
mass density, the specific heat, and the thermal conductivity of
SiC and SiO2 are ρSiC = 3200 kg · m−3, CSiC = 600 J · kg−1 · K−1,
ρSiO2 = 2650 kg · m−3, CSiO2 = 680 J · kg−1 · K−1, κSiC = 120 W ·
m−1 · K−1, and κSiO2 = 1.2 W · m−1 · K−1.

where xn are the solutions of the transcendental equation
x tan 2x = 2GrL/κ . We can associate each term with a partial
relaxation time τn = ρCL2/(x2

nκ ). It can be easily shown that
x1 < xn and thus τ1 > τn for all n � 2, so that the first term
in these series is the dominant one for large t . The ratio GL/κ

quantifies the relative importance of the radiative and conduc-
tive transport [for two silicon carbide (SiC) films this ratio is
1.1, while it increases to 312.5 for two silica (SiO2) films].
The appearance of the ratio GL/κ as a key parameter allows
us to anticipate a reduction of the effect when reducing the
slab thickness L or when increasing the separation distance d
(coupling strength) between them (see Supplemental Material
[27]).

When the heat transport by conduction is much more ef-
ficient than the transport by radiation, the temperature within
each film is almost uniform at any time. In this case the solu-
tion of Eq. (8) is similar to that of Eq. (4) and the temperature
profile is the same as the one predicted by the Polder and van
Hove (PvH) theory of radiative heat transfer between perfectly
conducting solids. However, the situation radically changes
when the magnitude of radiative heat transfer is comparable
to or even larger than the heat transfer by conduction within
the films. In Fig. 2 we compare the time evolution of the
mean temperature T 1(t ) = (1/L)

∫
T1(z, t )dz inside the left

(hot) slab obtained by solving Eq. (1) by means of a finite-
difference method [27] to the predictions from the PvH theory
for SiC and SiO2 films. It can be noted that the deviation
between the two temperature profiles is more pronounced for
two SiO2 slabs compared to SiC slabs. As anticipated previ-
ously, this is due to the fact that the thermal conductivities
of SiC and SiO2 samples are strongly different. The relatively
small conductivity of SiO2 leads to a strong deviation from the

FIG. 3. Temperature profile as a function of time in the hot
film of a system made of two coupled polar films of thickness
L = 100 μm. Dashed lines correspond to the temperature predicted
by the PvH theory. (a) SiC films separated by a 1-nm-thick vacuum
gap. (b) The same configuration with SiO2 films.

PvH predictions. Moreover, as shown in the inset in Fig. 2,
we see that the time evolution of T 1 − T2 is exponentially
decaying as predicted by the analytical solution, (11), and the
decay rate of the temperature corresponds to the relaxation
time τ1. Note also that the comparison in the inset of the
solution of Eq. (8) with the exact solution of Eq. (1) obtained
using a finite-difference method demonstrates that the near-
field radiative transfer is indeed a surface phenomenon. As
shown in the inset in Fig. 2, the relaxation dynamics is more
than one order of magnitude slower when the near-field heat
transfer is comparable to the conductive transfer inside the
films, showing that the coupling acts as an additional source
of thermal inertia. Actually, at the macroscopic level the cou-
pling mechanism tends to increase the thermal inertia of the
system by decreasing its effective diffusivity Dn = x2

nκ/(ρC).
At a more microscopic level, the power dissipated by photons
inside the atomic lattice is comparable to or even larger than
the one dissipated by phonons, thus leading to a longer relax-
ation time.

As far as the temperature profile is concerned, we see in
Fig. 3 that it differs from the uniform profile, especially when
the radiative transfer dominates with respect to the conductive
transport, as in the configuration of coupled SiO2 films. As we
can see, a nonnegligible temperature profile appears through
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the slab because of the diffusion process in both materials.
Although the heat spreads inside the films by conduction, the
temperature profiles are, of course, not linear because of the
interplay between the diffusion process and the near-field heat
transfer. For SiC films we also show (dashed lines) the value
TPvH of the (uniform) temperature predicted by the PvH model
at the same moments, while for SiO2 this comparison has been
omitted since in this case the two relaxation processes take
place at two very different time scales, as shown in Fig. 2.
Indeed in this case, after only 0.2 ms the hot film is already
thermalized according to the predictions of PvH theory, while
a hundredfold longer time is required when the near-field ra-
diative heat exchange is competing with the diffusion process.

So far we have limited ourselves to a transfer between the
two solids mediated by photon tunneling. We now consider
the thermalization process in the case of two metallic films
interacting through electron tunneling. In fact, it has been
recently shown [28] that in this scenario the flux carried
by electrons at subnanometric distances surpasses by several
orders of magnitude the flux carried by photons and can there-
fore surpass the conductive (phononic) flux inside the metals.
The electronic thermal conductance due to electron tunneling
can be easily calculated using the effective potential barrier
associated with the vacuum gap between the two metals. For
two identical metals without bias voltage applied through the
system the effective potential is a simple rectangular barrier
and the transmission probability T (Ez, d ) at distance d of
electrons of normal energy Ez through this barrier reads [29]

T (Ez, d ) = 4Ez(Ez − V )

4Ez(Ez − V ) + V 2 sin2(k2z(Ez,V )d )
, (12)

where k2z(Ez,V ) = √
2me(Ez − V )/h̄ denotes the normal

components of the wave vector inside the gap (me being the
electron mass) and the barrier height is written here as V (d ) =
VeV(d ) + EF , EF being the Fermi energy (EF = 5.53 eV for
gold) and VeV a distance-dependent function for which the
data taken from [30] have been fitted from DFT calcula-
tions with the log-scale law VeV(d ) = V0 ln(1 + d/1 Å) (V0 =
1.25 eV for gold). It follows that the heat flux carried by elec-
trons by the tunneling effect can be calculated by summing
over all energies Ez in the direction normal to the surface. This
allows us to define the electronic heat conductance as

Ge =
∫ ∞

0
dEzEz

∂N (Ez, T )

∂T
T (Ez, d ), (13)

where N (Ez, T )dEz, with N (Ez, T ) = mekBT
2π2 h̄3 ln[1 +

exp(−(Ez − EF )/kBT )], denotes the number of electrons
in the metal at temperature T with a normal energy between
Ez and Ez + dEz across a unit area per unit time.

This conductance can reach values about six orders of
magnitude larger than Gr for gold films at separation distances
of a few angstroms [28]. In the presence of electron tunnel-
ing, the energy-balance equation, (8), remains valid, provided
that the permutation Gr ↔ Ge is made. For two gold films,
the ratio GeL/κ equals 2.1, 306.5, and 871 for separation
distances d = 5 Å, d = 2 Å and d = 1 Å, respectively. This
suggests a strong effect of the coupling mechanism on the
relaxation dynamics. In Fig. 4 we compare the time evolution
of the average temperature profile for the hot film in a system
of two gold films with and without coupling between heat

FIG. 4. Time evolution of the average temperature of the hot
film in a system made up of two coupled gold films of thickness
L = 100 μm at subnanometric distances and comparison with the
temperature evolution (dashed curves) without coupling. The initial
temperature of the cold film is T2 = 120 K and the initial temperature
difference is �T = 160 K. The gold mass density is ρ = 19 300 kg ·
m−3 and its specific heat capacity is C = 128 J · kg−1 · K−1.

conduction and heat transfer by electron tunneling. Unlike
polar films interacting by radiation, here the relaxation process
toward thermal equilibrium is much faster, by two orders of
magnitude. But more interesting is the impact of coupling
on the relaxation time. At a distance d = 5 Å (GeL/κ = 2.1)
this difference between the scenarios with and those without
coupling is relatively modest and the coupling slows down the
thermalization process by a factor of approximately 2. On the
other hand, at closer separation distances this slowdown be-
comes remarkable, reaching about three orders of magnitude.
Note that for these distances the temporal evolutions of the
average temperatures are almost indistinguishable (solid red
and black curves) since the xn in solution (11) of the energy-
balance equation, (8), are really close to the asymptotic value
(i.e., large value of GeL/κ).

In conclusion, we have demonstrated a strong impact of the
interplay between the heat transfer in the extreme near-field
regime between two solids and the heat spreading mecha-
nism by conduction inside these media. When the thermal
conductance of heat exchange through the separation gap is
comparable to or dominates the conductance associated with
the diffusive process inside the solids, the thermalization of
these media is greatly slowed down. In this case the relaxation
time can be longer even by several orders of magnitude than
in the classical situation where conduction is the dominant
mechanism. This effect should play an important role in the
fields of active thermal management at nanoscale, pyroelec-
tric energy conversion in the extreme near-field regime, and
nanoscale heat engines or for the Boolean treatment of in-
formation with heat at nanoscale. In this preliminary work
we were limited to the study of the relaxation process by
assuming that the optical response of materials is local. In
further works the role of the nonlocal behavior of this response
in the relaxation dynamics will have to be studied.

P. B.-A. acknowledges discussions with S.-A. Biehs of Carl
von Ossietzky Universität, Germany.
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