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Phantom Bethe excitations and spin helix eigenstates in integrable periodic and open spin chains
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We demonstrate the existence of a special chiral “phantom” mode with some analogy to a Goldstone mode
in the anisotropic quantum XXZ Heisenberg spin chain. The phantom excitations contribute zero energy to
the eigenstate, but a finite fixed quantum of momentum k0. The mode exists not due to symmetry principles,
but results from nontrivial scattering properties of magnons with momentum k0 given by the anisotropy via
cos k0 = �. Different occupations of the phantom mode lead to energetical degeneracies between different
magnetization sectors in the periodic case. This mode originates from special string-type solutions of the Bethe
ansatz equations with unbounded rapidities, the phantom Bethe roots (PBRs). We derive criteria under which
the spectrum contains eigenstates with PBRs, both in open and periodically closed integrable systems, for
spin-1/2 and higher spins, and discuss the respective chiral eigenstates. The simplest of such eigenstates, the
spin helix state, which is a periodically modulated state of chiral nature, is built up from the phantom excitations
exclusively. Implications of our results for experiments are discussed.
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Interacting quantum spin systems are a vibrant research
field as fascinating kinds of order are realized with rather
complex order parameters or of topological nature. Even the
spin-1/2 XXZ chain, despite its long history and being one
of the best studied paradigmatic models in quantum statistical
mechanics [1], remains a source of inspiration and fascinating
new progress. This model is integrable and in principle allows
for the calculation of objects that in generic systems are usu-
ally not accessible in the thermodynamic limit. Among the
relatively recent results the discovery of a set of quasilocal
conserved quantities [2] with strong implications on the the-
ory of finite-temperature quantum transport [3] and successes
in the calculation of finite-temperature correlation functions
[4,5] are exciting achievements.

In this Letter we are interested in the phenomena of
anisotropic quantum spin chains requiring the understand-
ing of energetical degeneracies in uncharted territory. A first
example is the physics of so-called spin helix states (SHS)
(4) which show sharp local polarization with respect to site-
dependent axes. These states are routinely created, and widely
used in coherent experimental protocols [6–8]. SHS can also
be generated as nonequilibrium steady states via a dissipative
quantum protocol [9–11] or via controlled local boundary
dissipation. Remarkably, the needed boundary dissipation is
of the type which allows the system to retain, partly, its inte-
grability [12].

The eigenvalue degeneracies of isotropic quantum spin
chains are well understood on the basis of the su(2) symme-
try algebra. Simple eigenstates that are fully polarized with
respect to any axis form a multiplet of degeneracy N + 1 for
the spin-1/2 chain of length N .

The high degeneracy of this ferromagnetic multiplet can
alternatively be explained by magnon excitations with a soft

Goldstone mode at wave number k = 0. Contrary to the usual
situation when all magnons carry different momenta, this pre-
cise k = 0 mode can be occupied up to N times.

A z anisotropy of the spin exchange interaction lifts the
high degeneracy, leaving just two degenerate eigenstates with
spins fully polarized in the +z or −z direction. The su(2)-
type degeneracies can be restored by the so-called “quantum
deformation” Uq[su(2)] of the symmetry algebra [13–15], in-
volving special possibly non-Hermitian boundary terms.

Remarkably, an analog of a Goldstone mode scenario can
happen in periodic spin systems with z-exchange anisotropy,
namely a multiple occupation of a single mode can occur,
but now with a nonzero wave vector k0 fine-tuned to the
system’s anisotropy Jz/Jx = � via cos k0 = �. The corre-
sponding excitation can be created at zero energetic cost. As
in the isotropic case, the possibility of multiple occupations
of the same zero-energy phantom mode leads to the high
degeneracy. Unlike in the isotropic case, the eigenstates form
a multiplet of degenerate chiral states carrying finite current.

Excitations with momentum mode ±k0 were discussed in
Refs. [16–21] for accounting for the energetical degeneracies
of the spin-1/2 XXZ chain and related systems. For certain
systems with commensurable values of k0, extended symme-
try algebras are realized and the completeness of the Bethe
ansatz has been investigated [17–21].

In our Letter we show why a macroscopic occupation of
precisely ±k0 becomes possible, despite magnons of the wave
number k0 having nontrivial scattering. These states are real-
ized by nonstandard string-type solutions of the Bethe ansatz
equations with infinite rapidities. The Bethe ansatz equations
for singular roots are satisfied with a universal choice for their
arrangement (11), which makes them effectively “disappear”
from the set of Bethe ansatz equations. For this reason we call
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the roots with infinite rapidities phantom Bethe roots and the
respective excitations phantom excitations.

We find phantom Bethe roots in other integrable systems
including open quantum systems and also for higher spins.

Finally, we find that the role of the fully polarized eigen-
states in the isotropic case is taken, in anisotropic systems,
by simple but rather nontrivial chiral states, the spin he-
lix states. The SHS have ballistic current and a harmonic
modulation (with period 2π/k0) of transversal magnetization.
Remarkably, the SHS are created with exclusively phantom
excitations, both in open and in periodic spin chains.

Factorized eigenstates at commensurate values of
anisotropy. We consider the XXZ spin-1/2 Hamiltonian for
periodic and open boundary conditions. For the periodically
closed chain we have

HXXZ =
N∑

n=1

hn,n+1(�),

hn,n+1(�) = J
[
σ x

n σ x
n+1 + σ y

n σ
y
n+1 + �

(
σ z

nσ z
n+1 − I

)]
, (1)

with boundary conditions �σN+1 ≡ �σ1. For convenience we put
J = 1 throughout this Letter. For the open chain we have

HXXZ =
N−1∑
n=1

hn,n+1(�) + �hl �σ1 + �hr �σN , (2)

with boundary fields �hl and �hr on the first and on the last sites.
In both cases a shift −J� in the nearest-neighbor interaction
(1) is added for convenience. Both models (1) and (2) are
integrable and solvable via Bethe ansatz methods [22–24]. We
parametrize the anisotropy � of the exchange interaction as
� = cos γ or � = cosh η with η = iγ .

We want to construct factorized eigenstates of the Hamil-
tonians and introduce for each site the qubit state

|y〉 =
(

1

ey

)
. (3)

The qubit state (3) with y = f + iF corresponds to
a fully polarized spin-1/2 pointing into the direction
�n = (sin θ cos F, sin θ sin F, cos θ ) with tan θ

2 = e f . A site-
factorized state, the so-called spin helix state (SHS) [9,10]

|SHS(y0, ϕ)〉 = |y0〉1|y0 + iϕ〉2 · · · |y0 + i(N − 1)ϕ〉N , (4)

with the subscripts indicating the site number, with uniformly
increasing angles on some offset y0, becomes an eigenstate
of the XXZ Hamiltonian if (i) the increase ϕ of the angle is
identical to ±γ , the parameter of the anisotropy � = cos γ ,
and (ii) the boundary conditions can be accounted for. The
parameter ϕ is real (imaginary) for easy plane (easy axis)
anisotropy corresponding to a state with a uniformly increas-
ing azimuthal (polar) angle.

The bulk interaction of the XXZ Hamiltonian applied to
any SHS state (4) results in 0 due to the “divergence” relation

h(�)|y〉 ⊗ |y + iγ 〉 = |y〉 ⊗ (κσ z|y + iγ 〉)

− (κσ z|y〉) ⊗ |y + iγ 〉, (5)

where κ = i sin γ . For the periodic model (1), the SHS will
be an eigenstate if the periodic closure condition γ N = 2πm
with integer m is satisfied.

FIG. 1. Components of local magnetization 〈σ x
n 〉, 〈σ y

n 〉, 〈σ z
n 〉 for

SHS/phantom Bethe states vs site number n, for the easy plane
(upper panel) and the easy axis case (lower panel), indicated with
black, red, and blue points, respectively. Upper panel: SHS (4) with
increasing azimuthal angle, the phantom Bethe eigenstate of (2)
or (1) for |�| < 1. Parameters: ϕ = γ = 2π/19, y0 = iγ + 1/

√
3.

Curves connecting points serve as a guide for the eye. Lower panel:
SHS (4) with increasing polar angle, the phantom Bethe eigenstate
of (2) for � > 1. Parameters: iϕ = η = 2π/19, y0 = iπ/6 + Nη/2.

This can only happen for anisotropy |�| � 1.
For the open chain condition (ii) on the boundary can be

satisfied not only in the case |�| � 1, but also for |�| > 1.
For |�| > 1 we may use expression (4) with the replacement
ϕ = iη which results in a spin helix state with fixed azimuthal
angle and uniformly increasing polar angles. The eigenstate
condition is fulfilled, if the boundary interactions hl = �hl �σ1

and hr = �hr �σN satisfy

hl |y0〉 = κ σ z|y0〉 + λ−|y0〉, (6)

hr |yN−1〉 = −κ σ z|yN−1〉 + λ+ |yN−1〉, (7)

where yN−1 = y0 + i(N − 1)γ , and λ± are some boundary-
dependent constants. The energy eigenvalue is E = λ− + λ+.
Note that in the open chain case a condition on the anisotropy
� as in the periodic case is absent and ϕ in (4) can be real or
imaginary.

Although having the same algebraic form, the SHS for the
easy plane and easy axis cases have rather different physical
properties as visualized in Fig. 1. Note that we call by the
SHSpolar the SHS (4) for the easy axis case.
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The factorized SHS state is after the ferromagnetic state
the simplest eigenstate of XXZ spin chains. Yet the SHS (4)
is quite nontrivial, and describes a “frozen” spin precession
around the z axis with period 2π/ϕ (see Fig. 1). Due to the
chiral nature, the SHS carries a remarkably high magnetiza-
tion current, finite in the thermodynamic limit,

〈 jz〉SHS = 〈4i(σ+
n σ−

n+1 − H.c.)〉SHS = ±2
sin γ

cosh2(Re[y0])
,

where the sign ± corresponds to the choice ϕ = ±γ in (4).
Remarkably, the SHS (4) with an adjustable wavelength can
be realized in cold atom experiments [6,7].

The very existence of an eigenstate (4) for the periodic
spin chain, characterized by periodic modulations in the mag-
netization profile, seems to contradict the U (1) symmetry:
XXZ eigenvectors split in blocks with well-defined values of
the global magnetization Sz = ∑

n σ z
n and expectation values

〈σ+
n 〉 = 〈σ−

n 〉 = 0 vanish, and so do 〈σ x
n 〉 = 〈σ y

n 〉 = 0.
This paradox is resolved by the energetical degeneracy of

eigenstates with different values of the total magnetization Sz.
We will show that a superposition of states from different
blocks yields the state (4) which is not an eigenstate of the
operator Sz.

Phantom Bethe roots at commensurate anisotropies in pe-
riodic XXZ chains. The eigenstates and eigenvalues are given
in terms of rapidities μ j ( j = 1, 2, . . . , n) whose total number
n may take any value out of 0, 1, . . . , N . For any solution of
the Bethe ansatz equations (BAEs)

sinhN (μ j − iγ /2)

sinhN (μ j + iγ /2)
=

n∏
l �= j

sinh(μ j − μl − iγ )

sinh(μ j − μl + iγ )
, (8)

there is an eigenstate with energy and total momentum

E = −
n∑

j=1

e(μ j ), K =
n∑

j=1

k(μ j ), (9)

with single particle energy and momentum defined by

e(μ j ) = 4 sin2 γ

cosh(2μ j ) − cos γ
, eik(μ) = sinh

(
μ + i γ

2

)
sinh

(
μ − i γ

2

) . (10)

The Bethe eigenvector �μ1,...,μn = B(μ1) · · · B(μn)|0〉 is ob-
tained by the application of magnon creation operators B(μ j )
to the reference state |0〉 = |↑↑ . . . ↑〉 of fully polarized spins
[23,25].

Definition. We shall call a Bethe root μp satisfying (8), a
phantom Bethe root, if it does not give a contribution to the
respective energy eigenvalue (9), i.e., if Re[μp] = ±∞. The
next Lemma affirms that such phantom Bethe roots do exist:

Lemma 1. For anisotropy γ = 2πm/N with integer m there
exist the following “phantom” solutions of the BAE (8) for
any given n = 1, 2, . . . , N ,

μp = ±∞ + iπ
p

n
, p = 1, 2 . . . , n. (11)

These distributions remind us of the string solutions to the
Bethe ansatz equations. Note, however, that (11) holds for any
finite system size N with a total number n of roots equidis-
tantly distributed with separation π/n. Note that our Lemma

describes the precise arrangement of the infinite roots appear-
ing in Refs. [1–6]. Upon introducing a finite magnetic flux
respectively twisted boundary conditions, the roots become
finite while the imaginary parts stay close to the values of
Lemma 1. This is relevant for the dependence of the energy
as function of the twist and has important consequences for
the transport properties [25].

Proof. Assume μ j = ±μ∞ + iπ j/n, where μ∞ has a large
real part which we let to ∞ when evaluating the left-hand
side (LHS) of the Bethe ansatz equations. As γ = 2πm/N the
LHS of (8) becomes LHS → e∓iγ N = 1. On the right-hand
side (RHS) the term μ∞ drops out, leaving finite differences
μ j − μl = iπ ( j − l )/n. Denoting ω = eiπ/n, we have

RHS j =
n∏

l = 1
l �= j

ω j−le−iγ − ω−( j−l )eiγ

ω j−leiγ − ω−( j−l )e−iγ

=
n−1∏
l=1

ωle−iγ − ω−leiγ

ωleiγ − ω−le−iγ

=
n−1∏
l=1

ωle−iγ − ω−leiγ

−ω−leiγ + ωle−iγ
= 1.

Here, we used that the set of ω j−l with l = 1, . . . , n (and �= j)
is identical to the set of ωl with l = 1, . . . , n − 1 as we have
ωn = −1. �

Phantom Bethe vectors for periodic chains. The Bethe vec-
tors corresponding to the phantom Bethe root (PBR) solution
(11), under the conditions of Lemma 1, can be constructed
as described below (10). The two signs ± in (11) corre-
spond to different Bethe vectors which upon normalization
reads

|±, n〉 = 1

n!
√(N

n

)
N−1∑

l1,...,ln=0

e±iγ (l1+···+ln )σ−
l1

· · · σ−
ln

|0〉,

n = 0, 1, . . . , N. (12)

Each multiplication by a B(μ j ) operator adds a quasiparticle
with momentum k(μ j ) and zero energy. Within the standard
picture [23,24] quasiparticles obey a “Fermi rule”: All k(μ j )
are usually different. This property is violated for phantom
Bethe roots μp for which all k(μp) are exactly the same:
Either k(μp) = +γ ≡ k0 or k(μp) = −γ ≡ −k0 depending
on the sign of the singular part in (11). The repeated action
of B generates “phantom” Bethe states (12) with “quan-
tized” momenta ±nγ and zero energy for all magnetization
sectors n, yielding the degeneracy of the eigenvalue E = 0
between different sectors. Note that the E = 0 state is not a
ground state of (1), which is obtained by filling the Fermi
sea with quasiparticles giving negative energy contributions
to (9). The dimension of the degenerate subspace is deg =
2(N − 1) + 2 = 2N since the states |+, n〉, |−, n〉 for n =
1, 2, . . . , N − 1 are linearly independent and for n = 0, N
the states |+, n〉, |−, n〉 coincide. The degeneracy between
sectors with different magnetization leads to eigenstates with
periodic modulations in the density profile. Indeed, the SHS
(4) with positive chirality and ϕ = +γ = 2πm/N �= π is a
linear combination of phantom Bethe states |+, n〉, and SHS
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(4) with opposite chirality ϕ = −γ is a linear combination of
|−, n〉,

|SHS(y0,±2πm/N )〉 =
(

N

n

)1/2 N∑
n=0

ey0n|±, n〉 (13)

(see Supplemental Material [25] for the proof). Finally, note
that the states (12) are chiral, which is evidenced by the
nonzero expectation values of the magnetization current [25],

〈±, n| jz|±, n〉 = ±8n(N − n)

N (N − 1)
sin γ , (14)

reaching its maximum of order | jz| → 2 sin γ for n = N/2.
Mixtures of regular and phantom excitations for the periodic

XXZ model. Here, we show that phantom Bethe roots can
appear alongside the usual finite Bethe roots, for other special
values of the anisotropy.

Let us assume that within a sector of n0 flipped spins,
there exists a BAE solution with n phantom Bethe roots
μ1, . . . , μn and the remaining r = n0 − n Bethe roots are
regular. We denote the regular roots as x1, . . . , xr where x j =
μn+ j . Let us consider separately the BAE (8) subsets for
phantom μp and for regular x j . Substituting (11) in (8) we
obtain

eiγ (N−2r) = 1, (15)

since each factor of the RHS containing a mixed pair μp, x j

contributes a term exp(2iγ ). The product over factors of the
RHS involving two phantom roots results in +1 precisely as
in Lemma 1. The criterion (15) fixes the anisotropy parameter

while the BAE subset for regular roots simplifies to

sinhN (x j − iγ /2)

sinhN (x j + iγ /2)
= e±2iγ n

r∏
l = 1
l �= j

sinh(x j − xl − iγ )

sinh(x j − xl + iγ )
,

for all j = 1, . . . , r (see also Refs. [19,20]). This has the
structure of the BAE of a twisted XXZ chain, because of the
presence of a constant phase factor. The signs ± match those
in (11).

Phantom excitations in the open XXZ chain. The energy
of Hamiltonian (2) is given by (9) with an additional offset,
E = ∑N

j=1 e(μ j ) + E0, where

E0 = − sinh η(coth α− + coth α+ + tanh β− + tanh β+),
(16)

where the boundary fields hl,r are parametrized as

�h = sinh η

sinh α± cosh β±
(cosh θ±, i sinh θ±,∓ cosh α± sinh β±),

and + (−) corresponds to the right (left) field. The Bethe roots
μ j satisfy BAEs of a somewhat bulky form [25–28]. After
some algebra [28] we find that if

±(θ+ − θ−) = (2M − N + 1)η + α− + β− + α+ + β+
mod 2π i, (17)

is satisfied with some integer M = 0, 1, . . . , N − 1, each
set of N Bethe roots contains n phantom Bethe roots of
type (11), where n takes one of two values n+ = N −
M and n− = M + 1 [28,29]. The remaining N − n Bethe
roots x j (= μn+ j ) are regular and satisfy the reduced
BAEs,

G±
(
x j − η

2

)
sinh2N

(
x j + η

2

)
G±

( − x j − η

2

)
sinh2N

(
x j − η

2

) =
N−n±∏
l = 1
l �= j

sinh(x j − xl + η)

sinh(x j − xl − η)

sinh(x j + xl + η)

sinh(x j + xl − η)
, j = 1, . . . , N − n±, (18)

G±(u) =
∏
σ=±

sinh(u ∓ ασ ) cosh(u ∓ βσ ),

while the total eigenvalue has contributions from the regular
Bethe roots only. We would like to note that (16) holds lit-
erally for case n = n+. For n = n− the +E0 contribution in
(16) is to be replaced by −E0 (see Ref. [28]). We find that
the BAE (18) for n = N − M describes dim G+

M = ∑M
m=0

(N
m

)
Bethe states, while the remaining 2N − dim G+

M eigenstates
are contained in the other, complementary BAE set for n =
M + 1 [28,29]. Unlike in the periodic setup, where some
Bethe eigenstates contain PBR modes, and other eigenstates
are fully regular, in open systems, satisfying criterion (17), all
2N eigenstates include phantom Bethe roots. Remarkably, the
condition (17) appears in Refs. [30–33] as a condition for the
application of the algebraic Bethe ansatz. The BAE set (18)
coincides with that found by an alternative method [30,31,33].

Now we focus on the simplest Bethe states, cor-
responding to all Bethe roots being phantom, n+ = N ,

the respective energy given by E0 (16). We demonstrate
that such “phantom” Bethe states are spin helix states
(4) with appropriately chosen parameters. The phantom
Bethe states for mixtures of phantom and regular Bethe
roots can be also obtained explicitly and show chiral
features [28,29].

Phantom Bethe states: Open XXZ chain. Easy plane regime
|�| < 1. It is straightforward to verify that the SHS (4),
with ϕ = γ , Re[y0] = β−, and phase Im[y0] = π + iα− +
iθ− (note that α−, θ− are imaginary and β− = −β+ are real
to ensure the Hermiticity of H), is an eigenstate of H . In-
deed, one can check that (6) and (7) are satisfied with λ± =
− sinh η(coth α± − tanh β±), so that this SHS is an eigen-
vector of (2) with eigenvalue λ− + λ+, which coincides with
the phantom Bethe vector eigenvalue E0 (16). For the mag-
netization profile of this SHS, see Fig. 1, top panel. Unlike
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for the periodic chain, here the eigenvalue E0 is generically
nondegenerate.

Simplest experimental setup. Using our results, long-lived
SHS can be obtained in experiments where effectively one-
dimensional spin-1/2 XXZ chains with tunable anisotropy
are realized [6,7]. A spin helix of the form (4) with an ad-
justable wavelength is created within cold atom setups by
applying a magnetic field gradient in the z direction on an
array of initially noninteracting qubits polarized along the x
axis (see Methods of Ref. [6] for details). To make the SHS
an eigenstate of the XXZ Hamiltonian, the wavelength Q
of the spin helix and the z-anisotropy � must be related as
� = cos Qa, where a is the lattice constant. Indeed, under this
choice an SHS of type (4) |SHS±〉 := |SHS(iF0,±Qa)〉 will
remain invariant in the bulk and change initially only at the
boundaries, since

N−1∑
n=1

hn,n+1(�)|SHS±〉 = ∓i sin Qa
(
σ z

1 − σ z
N

)|SHS±〉,

as follows from (5). The ends of the spin chain will thus play
the role of defects, and the state in the bulk will be altered
only by propagation of the information from the boundaries.
Thus the state can be destroyed only after times of order t =
Na/vchar, where vchar is the sound velocity, N is the number of
spins, and a is the lattice constant. For example, in Refs. [6,7],
the process of the expansion of the defect in the bulk can be
monitored. On the other hand, if the SHS period does not
match the anisotropy � �= cos Qa, then the initial SHS will
be destroyed after times of order t = a/vchar. On one hand, the
effect is robust (with respect to the phase of the helix and chain
length N), and on the other hand, it is sensitive with respect to
the matching condition for the anisotropy �. This sensitivity
can be used as a benchmark for calibrating the anisotropy or
the wavelength of the produced SHS, or both.

Phantom Bethe states: Easy axis � = cosh η > 1. The
SHS of the form (4) with y0 = iπ − θ− + α− + β− satisfies
(6) and (7) with κ → − sinh η and λ± = − sinh η(coth α± +
tanh β±). Consequently, state (4) is an eigenstate of H with
eigenvalue λ+ + λ− = E0. Thus, state (4) is a phantom Bethe
vector. It describes spins on the lattice with fixed azimuthal

angle and changing polar angle along the chain (see Fig. 1,
lower panel). Unlike the “azimuthal” spin helix state (4), the
“polar” SHS carries no spin current, 〈 jz〉SHSpolar = 0.

Discussion. We have described a scenario of excitations in
integrable systems, namely phantom excitations with phantom
Bethe roots corresponding to unbounded rapidities. The exis-
tence criterion for these states is formulated and depends on
the boundary conditions of the system. Under this criterion a
certain subset of Bethe roots is located at infinity with rela-
tive positions at equidistant points. This resembles a perfect
thermodynamic Bethe ansatz (TBA) string, but is of entirely
different nature.

For models with periodic boundaries the PBRs are respon-
sible for degeneracies between sectors with different total
magnetization, and lead to factorized spin helix eigenstates at
anisotropies given by (15). Also for the open XXZ model the
PBR related eigenstates are spin helix states with a winding
polarization vector, in the easy plane regime, and the “polar
angle” version of the latter, in the easy axis regime. Our results
can be used for the generation of stable spin helix states in
experimental setups realizing XXZ chains [6,7].

While our discussion was restricted to the XXZ model, the
presence of phantom Bethe roots, due to their simple ana-
lytic form (11), can be easily established in other integrable
models, e.g., in the periodic spin-1 Fateev-Zamolodchikov
model [34–36], and arbitrary spin s generalizations [37–40]
(see Supplemental Material [25]). It would be interesting to
search for PBR analogs in intrinsically non-Hermitian inte-
grable models, e.g., Refs. [41,42].
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