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Symmetry-controlled singlet-triplet transition in a double-barrier quantum ring
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We engineer a system of two strongly confined quantum dots to gain reproducible electrostatic control of
the even-electron spin at zero magnetic field. Coupling the dots in a tight ring-shaped potential with two tunnel
barriers, we demonstrate that an electric field can switch the electron ground state between a singlet and a triplet
configuration. Comparing our experimental cotunneling spectroscopy data to a full many-body treatment of
interacting electrons in a double-barrier quantum ring, we find excellent agreement in the evolution of many-body
states with electric and magnetic fields. The calculations show that the singlet-triplet energy crossover, not found
in conventionally coupled quantum dots, is made possible by the ring-shaped geometry of the confining potential.
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The ability to engineer electron spin states is key for a
wide range of applications, from sensing to quantum compu-
tation [1-3]. It is also important for developing a microscopic
understanding of the role that magnetic impurities play in
electron transport [4]. Configurations involving several spins,
such as spin-singlet and triplet states, have provided new ways
to operate spin qubits [5-7], and to gain new insight to, for
example, quantum criticality [8], and Cooper pair transport in
Josephson junctions [9,10].

The possibility to distinguish individual spin states de-
pends on their energy splitting. While it can be controlled
with magnetic fields (Zeeman effect), electrostatic tuning is
of interest for fast and selective operations. However, achiev-
ing full electrostatic control over the electronic structure and
spin of a nanoscale system, such as a quantum dot (QD), is
a challenging endeavor [11,12]. The typically large orbital
separation in QDs often leads to a stable spin-singlet ground
state (GS). In the case of orbital degeneracy, the Coulomb re-
pulsion between the electrons may instead favor a spin-triplet
GS due to its antisymmetric spatial wave function (Hund’s
rule). A triplet GS has been observed in QDs with either
symmetric or very weak confinement such as in GaAs 2DEGs
[13-17], a Cgp molecule [8], carbon nanotubes [18,19], and
quasi-one-dimensional (1D) ring potentials [20,21]. Reports
on electrostatically induced singlet-triplet GS transitions are
however only a handful. They hitherto rely on gate-induced
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shifts of orbital state energies or tunneling probabilities
[8,15,17,19,21,22], which are difficult to engineer in a
single QD.

Double QDs (DQDs) provide a more direct way to control
the confining potential and the spin states of a few inter-
acting electrons. In the case of even electron numbers, the
singlet-triplet energy splitting Ar_s = Er — Ejg, given by the
energy difference of the triplet (7") and singlet (S) states, can
be tuned by the interdot tunnel coupling [23,24]. However,
delocalization of the electrons favors a spin-singlet GS in a
conventional DQD, and A7_g is therefore positive [25].

In this Letter we show that a DQD shaped like a quantum
ring can have a spin-triplet ground state for electron numbers
N = 4j, where j is an integer, and that the ground state spin
can be manipulated by electric fields. We investigate a system
based on InAs nanowires where epitaxial barriers confine
electrons to a thin disk. Using cotunneling spectroscopy, we
show that a symmetry-breaking [26] electric field induces
a triplet-singlet ground state transition, which is reproduced
among many samples and electron configurations. We confirm
the experimental results with a full many-body calcula-
tion of Coulomb-interacting electrons in a double-barrier
quantum ring.

The few-electron spin states reside near the surface of a
disk-shaped zinc-blende (ZB) section of an InAs nanowire,
strongly confined between two wurtzite (WZ) sections acting
as tunnel barriers, as illustrated in Fig. 1(a). Tuning a pair
of side gates (VL, Vr) and a global back gate Vg allows us
to change the confinement potential such that two QDs are
created which are parallel coupled to source and drain. Thus,
the number of confined electrons can be controlled down to
the last electron [24,27-29]. A magnetic field with magnitude
B is applied in the (y, z) plane with angle 6 to the z axis.
Hence, with the ZB disk in the (x, y) plane, for 8 = 0 the field
is aligned parallel (B))) to the long axis of the nanowire, and
for 6 = 7 /2 it is perpendicular to it (B ).
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FIG. 1. (a) Illustration of the device and the formation of two
quantum dots near the nanowire surface. (b) Conductance G as a
function of side-gate voltages (V., Vx) for Device-1 (Vg = 0.3 mV).
The electron number on each quantum dot is labeled by the charge
configuration tuple (Nef;, Nrigh;)- The red (dashed) arrow indicates
detuning from the (4,4) the (2,6) charge configuration of the DQD.

The conductance G as a function of side-gate voltages
W and Wi for Device-I is shown in Fig. 1(b). The parallel
DQD behavior manifests itself in a characteristic honeycomb
pattern [30], where we can label the number of electrons
on the left and right QD by the charge configuration tuple
(NVieft> Nrighe ). We first investigate spin states involved in trans-
port in the (3,5) honeycomb. The gate voltages are optimized
such that the two QDs of the DQD system are coupled at
two locations, resulting in a quantum ring structure with two
tunnel barriers, as demonstrated in Ref. [31]. The focus of that
work was understanding the behavior of single spins, whereas
we here investigate few-body spins where interactions are
important.

Figure 2(a) shows differential conductance dI/dVy as
a function of source-drain voltage V4 and magnetic fields
B) and B;. Due to the large charging energy and orbital
level spacings, all transport features are related to (inelas-
tic) cotunneling, involving excited states of the same charge
configuration (3,5). At B = 0 we observe conductivity due to
cotunneling at Vg = 0, as well as the onset of an additional
cotunneling pathway due to an excited state at Vg & 0.6 mV.
Supported by the calculations shown in Figs. 3(c) and 3(d),
we identify the GS at B =0 as a spin triplet (7'), and the
first excited state as a spin singlet (S). Independent of the
B-field direction, the triplet GS spin-splits with increasing
magnetic field. However, the energy gap to the singlet excited
state increases with increasing B, while it decreases with
By. Consequently, S becomes the GS at B, ~ 360 mT, and
three triplet states (74, Ty, 7—) are observed as excited states.
An in-plane rotation of a fixed-magnitude magnetic field can
therefore result in a periodic change of the N = 8 electron GS
as shown for B = 0.5 T in Fig. 2(b).

Figure 2(c) shows the bias-dependent differential conduc-
tance when detuning the DQD from the (4,4) to the (2,6)
charge configuration, as indicated by the red dashed arrow
shown in Fig. 1(b). We find that Ay;_g is independent of
detuning in the (3,5) regime, confirming that the singlet and
triplet states are composed of the same charge configuration.

We now turn to a theoretical explanation of the singlet
and triplet states and their magnetic-field dependence. Except
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FIG. 2. (a) dI/dVy versus Vi in the center of the (3,5) honey-
comb structure as a function of B, and Bj. A singlet-triplet splitting
Ar_s =~ —600 peV is extracted at B = 0. The ground state and the
excited states (visible as lines marking abrupt changes in dI/dVy)
are labeled based on the theoretical data in Fig. 3. (b) d1/dVy, versus
Vi as a function of B-field direction for B = 0.5 T. (d) dI/dVy
versus Vg as a function of detuning along the red dashed gate vector
[shown in Fig. 1(b)] for B=0T.

for magnetic fields close to zero, the ring-shaped DQD states
behave qualitatively similar to those of a simple quantum ring
without tunnel barriers. Assuming noninteracting electrons,
they would be distributed between states of orbital angular
momentum [, for the case of a ring. For N = 8, the lowest
energy triplet state has a closed-shell core with six electrons
(two electrons with each I, = —F, 0, and /), plus one electron
with [, = —2h and one with 2/i. Hence, the triplet state has to-
tal angular momentum L, = 0. The lowest energy singlet state
has the same closed-shell core as the triplet one but instead
two electrons of opposite spins with /, = —2/ and thus in total
L, = —4h. By increasing B), the singlet therefore decreases in
energy relative to the triplet. Because of the azimuthal symme-
try and the orbital degeneracies, a similar behavior is expected
for N =4j. Such a simple model provides an intuitive un-
derstanding of the observed magnetic field dependence of the
singlet and triplet states. It has previously been employed to
describe even-electron states in carbon nanotubes [32].
However, this simple picture gives no indication to the
magnitude of Ar_g. It also does not capture the effects
from the two barriers within the ring, such as the reduc-
tion in L, at small B. Experimentally we also find that a
spin-triplet GS requires odd electron numbers in each of the
QDs in addition to N = 4j. In order to explain these find-
ings, and the electrostatic tuning of the ground state spin,
we performed a full many-body study of Coulomb interacting
electrons in a double-barrier quantum ring. The N = 8§ elec-
tron system in the (3,5) regime is modeled using a structured
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FIG. 3. (a) Sketch of the one-dimensional ring potential at zero
detuning. (b) Optimized ring potential and single-particle density
distribution p as a function of azimuthal coordinate ¢. (c) Eigenstate
energies as a function of B, and By;. (d) Energy difference between
the ground and excited states. Note that the transition from 7, to 7
(green dashed line) requires two spin flips which is not possible in a
single cotunneling process.

(one-dimensional) ring confinement with radius R = 23 nm
in the (x,y) plane. In particular, we consider two potential
barriers opposite to one another, effectively creating a double
half-ring geometry, see Fig. 3(a). An in-plane electric field is
controlled by the side-gate potential V. The resulting effective
confinement potential is approximated as V = Vj| cos(¢)|? +
Vg cos(¢ — ¢,). Here ¢ is the azimuthal angular coordinate,
Vo is the barrier height, the exponent g determines the bar-
rier width, and ¢, specifies the direction of the electric field
relative to the position of the barriers. In a homogeneous
magnetic field, the kinetic momentum of the electrons equals
P + €A, where p is the canonical momentum, and e is the
elementary charge. Here, with the usual Coulomb gauge,
we write A = (B x r)/2 where r is the position vector. For
the one-dimensional confinement, we regularize the electron-
electron Coulomb interactions and retrieve the eigenenergies
and eigenstates to the system from the diagonalization of the
full many-body Hamiltonian, using the configuration interac-
tion (CI) method [11] (see the Supplemental Material [33]).
We assume an effective electron mass m* = 0.023m, (where
m, is the bare electron mass), a relative permittivity €, =
15.15, and an effective electron spin g factor of g¢;, = 10.
The parameters of the confinement V are adjusted to match
the experimental observations. In particular, for B = 0 the
many-body ground state has on average three electrons in one
half-ring and five in the other, see Fig. 3(b). Note that here

we choose ¢, = 7 /2, such that the confinement is symmetric
about the y axis.

The evolution of the eigenstates calculated as a function of
B and B is shown in Fig. 3(c). In line with their magnetic-
field behavior, we label the states as spin singlet (S) and spin
triplet (7), as introduced previously. At B = 0, the system has
a degenerate spin-triplet GS, and obeys Hund’s rule. Exposing
the DQD to a magnetic field, we note three separate effects,
see Fig. 3(c): (i) There is a lifting of the spin degeneracy of
the triplet ground state, which occurs regardless of the orien-
tation of the magnetic field. (ii) The diamagnetic term gives
an overall shift of energies. (iii) When the field is oriented
with B|, there is an additional and complicated dependence
of the energy levels on the magnetic field strength, where
certain states show a larger change in their energy than oth-
ers. In particular, the lowest-energy singlet state decreases
its energy with B due to a significant orbital angular mo-
mentum, and becomes the GS for B); > 375 mT. However,
the system’s orbital angular momentum L, is not a conserved
quantity, i.e., for a single state its average angular momentum
L, changes with increasing B); due to the barriers in the ring.
At the same time, also the kinetic, potential and interaction
energy contributions vary with Bj;. The interplay between
these contributions results in a more complex magnetic field
dependence, such as the flat dispersion of the lowest-energy
singlet state for small magnetic fields (indicating that L, = 0),
which stands in contrast to a simple ring confinement (see the
Supplemental Material [33]).

To facilitate the comparison with the experimental mea-
surements in Fig. 2(a), we also plot the excitation energies
relative to the GS energy in Fig. 3(d). We note that the model
does not include spin-orbit interaction, which explains the ex-
act singlet-triplet crossing in contrast to the avoided crossing
observed experimentally.

In the following we show how the GS can be tuned from
triplet to singlet by an electric field. In Figs. 4(a)—4(c) we
plot the conductance of Device-II as a function of Vi, and Vg,
for three different back-gate voltages. The side-gate voltages
were here adjusted to keep the same charge configuration
(3,5). Transport as a function of Vg and B) in the center
of the honeycomb (marked with red crosses) is shown in
Figs. 4(d)-4(f). Similarly to Device-I, a triplet GS can be
observed at zero magnetic field for Vgg = 1 V as shown in
Fig. 4(d). Decreasing Vg results in a round-off of the corners
of the honeycomb structure, as shown in Figs. 4(b) and 4(c)
for Vgg = 0 V and Vgg = —0.3 V, and the evolution of states
with B)| exhibits a clearly modified behavior [Figs. 4(e) and
4(f)]. The GS at B =0 in Fig. 4(e) is a singlet, and the
first excited state is a triplet which splits into three states for
B > 0. Further decreasing the back-gate voltage increases the
singlet-triplet splitting Ar_g in Fig. 4(f).

To confirm the observed transition from a triplet to a sin-
glet GS, we accordingly modify the ring potential V defined
above, and again address the problem from the theoretical
perspective. In particular, in Fig. 4(g) we show that Ar_g
can be controlled by ¢,, i.e., by changing the direction of
the electric field relative to the position of the barriers. The
amplitude of Vj is also adjusted to ensure that three electrons
always remain in one half-ring and five in the other, i.e., to
mimic the experimental configuration. Clearly, for ¢, = 7 /2,

L081409-3



HEIDI POTTS et al.

PHYSICAL REVIEW B 104, L081409 (2021)

(d)

24 22 A6

Vag =0 V.

X

A

22 -18 -14 1.0

G
(e%h)

0.50 0.55 0.60 0.65 0.70 0.75
P /T

22-18-14 -1.0
Ve (V)

-40
0

ddv,,

102

(e2/h)

4

05

8
0.5 1 15 0 0 02 04 06 08

@/ B, (T)

FIG. 4. (a)—(c) Conductance as a function of side-gate voltages for Device-Il at Vgg = 1, 0, and —0.3 V (Vg = 0.24 mV). (d)-(f) dI/dVy
versus Viq in the center of the honeycomb as a function of B), for the same Vi values as in (a)—(c). Ar_g increases from —340 to 70 to 250 ueV.
(g) Calculation of A7_g as a function of the angle ¢, of the electric field relative to the barrier positions. (h) Ring potential and single particle
density distribution as a function of the azimuthal coordinate ¢ for ¢, = 0.757. (i) Energy difference between ground and excited states as a

function of By,

where the confining potential is symmetric along the y axis, a
spin-triplet many-body ground state is obtained (see also the
discussion of Fig. 3). Increasing ¢, effectively enhances one
of the barriers (and reduces the other one) and results in a less
negative Ar_g. Above the angle ¢, = 0.717, a spin-singlet
many-body ground state appears. The confinement potential
and the evolution of the states as a function of B)| for ¢, =
0.75m are shown in Figs. 4(h) and 4(i). We note that the lowest
energy singlet has L, < 0O at large B fields despite the asym-
metry in barrier transmission. This is very different from the
case of a DQD coupled only in one location for which L, = 0
for all states. A good qualitative agreement is found between
the calculation in Fig. 4(i) and the experimental observation
in Figs. 4(e) and 4(f). We emphasize that the favoring of the
spin-singlet state can also be qualitatively understood from
the natural orbitals of the system. In particular, at ¢, = 77 /2
there are three orbitals with occupation numbers (n) ~ 2 (i.e.,
each orbital occupied by two electrons of different spin) and
two with (n) ~ 1. Here the singly occupied orbitals are each
largely localized within a single half-ring. An increase in @,
however, leads to delocalized orbitals. The possibility for two
electrons of different spin to instead occupy one of these
spatial orbitals reduces the energy of the singlet state and here
drives the transition from a triplet to a singlet. (See also the
Supplemental Material [33].)

In summary, we have shown how to realize a strongly
confined quantum system for which the electron spin con-
figuration can be electrostatically controlled between singlet
and triplet. The results are reproduced in several devices,
fulfilling N = 4 and with an unpaired spin in each QD. The
controllability is a consequence of combining the properties
of a ring and a DQD. For a pure ring geometry and for the
considered electron numbers, a triplet ground state originates
from Hund’s rule at zero magnetic field. For a standard DQD,
however, a singlet is preferred as a consequence of the lack
of azimuthal symmetry. A full many-body treatment of the
interacting electron system confirmed a GS transition when
increasing the size of one of the two tunneling barriers and
thereby transforming the ringlike geometry to a DQD-like
one. The ability to tune the spin configuration of the ground
state at zero magnetic field electrically makes such quantum
ring structures an unique platform for spin-based applications.
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