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Vacuum anomalous Hall effect in gyrotropic cavity
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We consider the ground state of an electron gas embedded in a quantum gyrotropic cavity. We show that
the light-matter interaction leads to a nontrivial topology of the many-body electron-photon wave function
characterized by a nonzero Berry curvature. Physically, this manifests as the anomalous Hall effect, appearance
of equilibrium edge/surface currents, and orbital magnetization induced by vacuum fluctuations. Remarkably,
closed analytical expressions for the anomalous Hall conductivity and macroscopic magnetization are obtained
for the interacting many-body case.
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Recent advances in nanotechnology allowed for the in-
crease in the effective light-matter coupling to the limit when
the border between the condensed matter theory and quan-
tum optics becomes completely blurred. Since the pioneering
work of Hopfield in 1958 [1], it has been anticipated that
the light-matter interaction would lead to the emergence of
hybrid quasiparticles—polaritons, which inherit properties of
both photonic and matter excitations. Since then, polaritons
were studied in a vast majority of systems ranging from the
single atoms and molecules to superconductors [2] and the
emergent fields of cavity (CQED) and waveguide (WQED)
quantum electrodynamics [3,4] explore the fundamental quan-
tum properties of the polaritons as well as the novel quantum
information processing protocols exploiting these structures.

Until recently, most of the WQED and CQED setups
could be adequately described within the rotating wave ap-
proximation (RWA). Under RWA the light-matter coupling
Hamiltonian contains only terms preserving the total number
of excitations. As a consequence, the ground state of the
system is comprised of a photonic vacuum and the material
ground state and remains unaffected by the light-matter in-
teraction. The RWA is applicable whenever the ratio of the
characteristic energy of the light-matter coupling g and the
photonic excitation energy � is negligible, g/� � 1, and
remains an absolutely adequate approximation in most of
conventional cavity systems with the photonic excitations in
the optical range � ∼ 1 eV. However, for the last decade, a
plethora of cavity designs where the ratio g/� could reach
and even exceed 0.1 have been demonstrated for the op-
tical [5], terahertz [6], and microwave [7]. The pioneering
experiments boosted the interest in the so-called ultrastrong
coupling (USC) regime of the light-matter interaction [8].

In the USC regime, the terms in the light-matter coupling
Hamiltonian which do not preserve the total number of ex-
citations can no longer be neglected. The ground state then
becomes a mixture of the matter and photonic degrees of

freedom and is characterized by nonzero values of the matter
and photon occupation numbers. This may lead to substan-
tial modifications of the material ground state and opens a
new route to the versatile control over the material properties
via the ultrastrong coupling with the cavity electromagnetic
field vacuum fluctuations, which has been recently termed
cavity QED materials engineering [9]. The emergent effects
range from the modification of chemical reactions [10–16] to
cavity-mediated superconductivity [17–20] and other cavity-
mediated phase transitions [21–25]. The case of the spatially
uniform vacuum field is particularly attractive since it allows
for the exact analytical solutions for a wide class of prob-
lems. On the other hand, some cavity-mediated transitions,
e.g., superradiance, are forbidden for the spatially uniform
field [26] (while allowed for spatially varying cavity modes
[27]). Moreover, there is still no definite answer as to whether
cavity-mediated corrections to the ground state of a material
are extensive quantities and thus can affect macroscopic ob-
servables. Recently [28], it was showed that this is not the
case for a collection of N two-level atoms inside a single-
mode cavity: the cavity-mediated corrections to macroscopic
observables depend only on the effective coupling of a single
two-level system to the cavity and thus vanish in the thermo-
dynamic limit.

Here, we study an electron gas confined inside a gyrotropic
(or chiral) cavity. The gyrotropy results in the energy splitting
of the right- and left-circularly polarized modes. We show
that vacuum fluctuations of an electromagnetic field in such
a cavity induce the ground-state orbital magnetization of the
electron gas, and derive the corresponding anomalous Hall
conductivity of the system.

While our results are quite general, for definiteness, we
consider a two-dimensional electron gas (2DEG) inside a
Fabry-Perot cavity of width D as shown in Fig. 1. The interior
of the cavity is vacuum ε0 = 1 and the mirrors are modeled
by half spaces of a ferromagnetic metal characterized the
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FIG. 1. Geometry of the structure. Two-dimensional electron gas
is placed inside a Fabry-Perot cavity with ferromagnetic mirrors.
The magnetization of the mirrors splits the energies of the circularly
polarized cavity modes, which splitting induces the anomalous mag-
netization of 2DEG.

effective permittivity tensor ε̂,

ε̂ =
⎛
⎝ ε 4iπσH/ω 0

−4iπσH/ω ε 0
0 0 ε

⎞
⎠, (1)

where ε < 0 is the diagonal permittivity. The off-diagonal
conductivity σH is proportional to magnetization and respon-
sible for the gyrotropy. We omit the frequency dispersion of ε

and σH as well as material losses inside the cavity mirrors. The
equation for photon eigenmodes in the cavity can be obtained
using standard transfer matrix method [29] and reads

tan(ωD/2c) = κ±, (2)

where κ± = √|ε| ± εH and εH = 4πσH/ω. The modes corre-
sponding to plus and minus sign are right- and left-circularly
polarized modes, respectively. Equation (2) has an infinite
number of solutions which correspond to the eigenfrequencies
in the cavity. In the physically relevant case of |ε| � 1, the
lowest eigenfrequencies are given by ω± = �0 ± 4σH/|ε|3/2,
where �0 = c

D (π − 2/
√|ε|).

The permittivity of Eq. (1) translates to the following
expression for the energy of electro-magnetic field in the gy-
rotropic cavity: EEM = E (0)

EM + 1
2c2

∫
d3rσH (z)[Ȧ × A], where

E (0)
EM corresponds to the cavity with σH = 0. We then quan-

tize the system in the basis of eigenstates related to E (0)
EM ,

and truncate the basis to the two lowest-energy states, which
are degenerate and characterized by orthogonal linear polar-
izations. The x- and y-components of the vector potential
operator then read

Âx,y(z) =
√

h̄c2

2V �0
(âx,y + â†

x,y)φ(z) =
√

h̄c2

V �0
q̂x,yφ(z), (3)

where V = SD is the mode volume, S is the cavity area, and
φ(z) is the normalized mode profile. Operators âx,y are the
conventional bosonic annihilation operators. By noticing that

the time derivative of the vector potential Ȧx,y is proportional
to the canonical momentum π̂x,y, which satisfies [q̂i, π̂ j] =
iδi j , we obtain the following Hamiltonian of electromagnetic
field in the gyrotropic cavity:

HEM = h̄�0(â†
x âx + â†

y ây + 1) + ih̄
(â†
x ây − â†

yax )

= h̄�0

2
π̂2 + h̄
π̂(ez × q) + h̄�0

2
q2, (4)

where in the limit of |ε| � 1 the gyration parameter 
 =
4σH/|ε|3/2. This limit corresponds to the small skin depth
of the EM field in the mirrors, and since 
 is proportional
to skin depth, in this limit 
 � �0. This Hamiltonian yields
two circularly polarized modes with energies reproducing the
eigenfrequencies of the classical problem. Equation (4) shows
that in a gyrotropic cavity the photons are mapped to the
excitations of a harmonic oscillator rotating at the frequency

 or, equivalently, of an oscillator subjected to an effective
magnetic field Beff = 2
/�0.

The Hamiltonian of the electron gas coupled to the cavity
photons is given by

He =
N∑

i=1

[(
p̂i − e

c Â
)2

2m
+ U (ri ) + 1

2

∑
j �=i

Vri−r j

]
, (5)

where N is the number of electrons, U is the external confining
potential, Vri−r j is the direct electron-electron interaction, and
the light-matter interaction is described by a minimal coupling
to Â of Eq. (3). The total electron-photon Hamiltonian is given
by the sum H = HEM + He.

In the following we concentrate on the ground state of
a homogeneous 2DEG with a large area S, such that the
density n = N/S remains finite even in the limit S, N → ∞.
Bulk properties of such systems are customarily addressed
by setting U (r) = 0 and imposing periodic boundary condi-
tions, thus making the problem formally translation invariant.
Further, we assume, as usual, that the spatial dependence of
the relevant electromagnetic mode functions can be omitted,
which corresponds to the dipole approximation. After these
simplifications it can be immediately noticed that the cavity
field couples only to the center-of-mass (COM) degree of
freedom of the electron gas. Moreover, the COM and the
relative motions become separable. In is convenient to per-
form this separation in terms of the scaled COM coordinate
R = 1√

N

∑
i ri and its conjugate momentum, P̂ = 1√

N

∑
i p̂i.

The total Hamiltonian then reads

H = Hrel + HEM + 1

2m
(P̂ − g0

√
N q̂)2, (6)

where g0 = [h̄e2/(SD�0)]1/2 and Hrel describes the relative
motion of electrons not affected by the electromagnetic (EM)
field.

Let us study a parametric dependence of the many-body
eigenstates on the COM momentum. This dependence can be
formally introduced via the following unitary transformation,
which is equivalent to the so-called twisted boundary condi-
tions trick [30]:

Hk = e−ikRHeikR. (7)

Standard arguments [30,31] relate the Berry curvature Fxy,
associated to the ground state |�0,k〉 of Hk, to the anomalous
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FIG. 2. The schematic image of the polaritonic states which are
eigenfunctions of a shifted harmonic oscillator in the presence of
the an effective magnetic field Beff = 2


�0
. When transported along a

closed contour in k-space they accumulate a nontrivial Berry phase.

Hall conductivity σxy of 2DEG,

σxy = e2

h̄
nFxy|k=0, (8)

where Fxy = 2Im〈∂kx �0,k|∂ky�0,k〉. To proceed further we
represent Hk of Eq. (7) explicitly as follows:

Hk = Hrel + HEM + 1

2m
(h̄k − g0

√
Nq)2 = Hrel

+ h̄�0

2

[
π̂ + 


�0
(ez × q)

]2
+ h̄�

2
(q − ρk)2 + h̄2k2

2m∗ .

(9)

Here � = (�̃2
0 + γ 2)/�0 with �̃2

0 = �2
0 − 
2 and γ 2 =

g2
0N�0

h̄m , m∗ = m(1 + γ 2/�̃2
0) is the electron mass renormalized

due to the electron-photon interaction, and ρ is given by

ρ = g0

√
N

m�
=

√
h̄�0

m

γ

�̃2
0 + γ 2

. (10)

From Eq. (9) we see that Hk is nothing but the shifted Fock-
Darwin Hamiltonian with a shift proportional to the COM
momentum of electrons. This explains the origin of the Berry
phase of the many-body polaritonic state. When k is moving
along a contour enclosing a unit area in the k-space, the wave
function is transported in the q-space along a contour enclos-
ing the area ρ2. The flux ρ2Beff of the effective magnetic field
Beff = 2


�0
gives the Berry phase accumulated in this process,

see Fig. 2.
More formally, eigenfunctions of Hk in Eq. (9) are the

products �k = �rel�k(q) of the wave functions �rel for the
relative motion, and the polaritonic states

�k (q) = e−i 

�0

ρ[ez×k]q
ψn,l (q − ρk), (11)

where ψn,l (q) are eigenfunction of a two-dimensional
(2D) harmonic oscillator (the ground state corresponds to
{n = l = 0}). As the k-dependence of the wave function is
known explicitly we can directly compute the Berry connec-
tion Ak as

Ak = −i
∫

dq �∗
k (q)∇k�k (q) = 


�0
ρ2 ez × k. (12)

FIG. 3. Hall conductivity as a function of electronic concentra-
tion n. Blue dashed line shows asymptotics for large n

The associated Berry curvature Fxy = (∇k × Ak )z reads

Fxy = 2


�0
ρ2 = h̄

m

2
γ 2(
�̃2

0 + γ 2
)2 , (13)

as expected. We note that in the thermodynamic limit N, S →
∞ at N/S → n, the coupling γ →

√
e2n/mD is the effective

plasma frequency of electrons in the cavity. Since the Berry
curvature does not depend on k the corresponding Hall con-
ductivity of Eq. (8) is just

σxy = e2n

m

2γ 2
(
�̃2

0 + γ 2
)2 . (14)

In Fig. 3 we plot Eq. (14) as a function of electron concentra-
tion n for the specific case of �0/2π = 1THz, and 
/�0 =
0.05. For small n the conductivity grows quadratically and
then approaches asymptotic value of c(2π
)/�0 at large
electron density. We note that the electron concentrations
∼1013 cm−2 correspond to the Fermi energies of several tens
of meV and can be routinely achieved in the state-of-the-art
doped semiconducting quantum wells. As can be seen the
value of the σxy depends strongly on the cavity gyrotropy
parameter 
/�0.

We stress here that the electron Berry curvature emerges
solely due to the electron-photon coupling. This effect is thus
essentially different to the recently proposed quantum Hall
effect for the graphene sheet in a magnetic cavity [32,33].
In the case of graphene, the electronic bands are initially
characterized by the nonvanishing curvature and the role of
the cavity is limited to the opening of the gap in the Dirac
point.

The analysis is straightforwardly extended to the case of
the infinite number of the cavity modes spatially uniform in
the 2DEG plane [the details can be found in the Supple-
mentary Material (SM)]. If the mode index is labeled by α

with the corresponding γα , 
α , and �α the expression for the
conductivity reads [34]

σxy = e2n

m

∑
α

2γ 2
α 
α

�̃4
α

(
1 + ∑

β γ 2
β /�̃2

β

)2 . (15)
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For a Fabry-Perot cavity, this expression results in

σxy = e2n

m

π4

90

2γ 2
1 
1(

�̃2
1 + π2

6 γ 2
1

)2 , (16)

where index 1 corresponds to the fundamental Fabry-Perot
mode. As can be seen, inclusion of the multiple modes only
weakly renormalizes the Hall conductivity. The Hall conduc-
tivity of 2DEG induced by the cavity modes can be rewritten
as

σxy/c ≈ εH

|ε| 3
2

1(
1 + �̃2

γ 2

)2 , (17)

which directly relates it to the Hall permittivity of the mirrors.
As can be seen, as �̃/γ vanishes, the denominator approaches
a finite value, but at the same time, at � → 0, the Drude per-
mittivity |ε| → ∞ and thus in the dc limit, the effect vanishes.

It is natural to expect [30] that a nontrivial Berry curvature
and the bulk anomalous Hall effect should be accompanied
with the orbital magnetization of the sample. Indeed, by
adopting the approach of [35–37] we obtain the following
ground-state magnetization Mz:

Mz = − e

mc
P0

2γ 2
(
�̃2

0 + γ 2
)2 , (18)

where P0 is the ground-state pressure of 2DEG [38]. The rigor-
ous derivation is presented in SM [35], however, this result can
be understood from the following simple argument. Because
of the anomalous Hall effect, the gradient ∇U of the confining
potential near the edges will generate the edge charge current.
For example, for the boundary along the x-axis, assuming
a sufficiently smooth edge potential, and applying the Hall
relation locally, we get the edge current density

jx = −1

e
σxy∂yU = − e

h̄
Fxy n∂yU = e

h̄
Fxy∂yP0, (19)

where we used the force balance condition n∇U = −∇P0. By
integrating the above expression across the boundary (from
the interior to the exterior of the sample) we get the net edge
current Iedge = e

h̄ P0Fxy, which produces the magnetization of
Eq. (18).

It is worth emphasizing, that the cavity-induced correction
to the ground state quantified by the Berry curvature, and the
related observables, such as the anomalous Hall conductiv-
ity are extensive quantities, which at fixed plasma frequency
γ ∼ g0

√
N have finite values in the thermodynamics limit

{N, S → ∞}. This result is in stark contrast to the previously
obtained thermodynamic observables of a gas of two-level
systems in a cavity [28], where it was shown that under the
same condition all cavity-induced corrections vanish in the
limit N → ∞.

We have seen from the above macroscopic consideration
that the ground-state magnetization is produced by localized
currents at the edges of a finite sample. Below we illustrate
the appearance of these currents by considering a scattering
of polaritonic states at the edge of a semi-infinite 2DEG that
occupies a half plane y � 0.

We consider a one-electron plane-wave polariton falling
on the boundary at y = 0. For the incident wave �in(r) =

�k(q)eikr, where �k(q) is defined by Eq. (11), the photonic
part is assumed to be in its ground state nin = lin = 0. We
then can obtain the expression for the polariton wave func-
tion for the scattered polariton from the boundary conditions
and calculate the current as jx = e

m 〈�|(h̄kx − ρm�qx )|�〉.
To compute the total current we integrate the single-particle
current over the filled states, neglecting electron correlations
induced by the coupling to the vacuum field. The approximate
expression for the current density reads

jx(y) = e

h̄
εF nFxy

4J3(2kF y)

kF y2
, (20)

where J3(x) is the third-order Bessel function of the first kind.
The edge current Iedge = ∫

dyJ (y) = e
h̄εF nFxy then agrees

with the result obtained via the many-body calculation of
magnetization using periodic boundary conditions if we recall
that the nonintercating pressure P0 ∼ εF n. The expression for
current density in the limit of weak coupling γ � �0 or
equivalently αεF � h̄�0 can be rewritten as

j(y) = nevF α
( εF

h̄�

)2 


�0
F (kF y), F (x) = J3(2x)

x2
, (21)

where α is the fine-structure constant. As we can see the
current oscillates and decays in the bulk of the structure as
(kF y)−5/2.

We showed that the coupling of electrons to the vacuum
electromagnetic field of the gyrotropic cavity induces the
macroscopic orbital magnetization of the electron gas, and
correspondingly, leads to the emergence of the anomalous
Hall conductivity and the existence of edge currents at the
boundaries of the sample. In our analysis we employed the
translation invariance of the electronic subsystem. Apparently,
the inevitable disorder-breaking translation invariance may
affect the magnetization. Moreover, local inhomogeneities in
the electron gas would couple the COM and the relative elec-
tron motion, and therefore the electron motion will also be
influenced by the vacuum electromagnetic field. Quantitative
estimation of the effect of disorder is an interesting problem
for the future. Finally, it is worth mentioning that in a possible
experiment, the gyrotropy in the mirrors is most naturally
induced by using magnetic materials or applying an external
magnetic field, which may generate the usual diamagnetic
currents in the electron gas. While the full screening of the
electron system from the external and/or stray field is a chal-
lenging task, the effect induced by the vacuum fluctuations
can be extracted by studying the dependence on the cavity
photon frequency.

To conclude, the extensive nature of the Berry curva-
ture, the induced magnetization, and emergent edge currents
indicate that the cavity engineering can be used to alter
the macroscopic properties of the ground state of the low-
dimensional electron systems, and thus further smears the
boundaries between the fields of nanophotonics, quantum op-
tics, and condensed matter theory.
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