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We present a method for the exact construction of the fully particle-hole symmetric Pfaffian (PH-Pfaffian)
ground state and its charged excitations on a sphere. We adopt the Moore-Read state, but with a nonholomorphic
pairing component as in previous studies, and project it to the lowest Landau level. We study the energetics as
well as other properties of these states and find that in a pure system interacting with the Coulomb forces the
PH-Pfaffian cannot compete with either the Moore-Read state or its particle-hole conjugate, the anti-Pfaffian
state, as an explanation for the 5

2 effect.
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One of the most intriguing topological [1] quantum phases
of matter was discovered [2] in the fractional quantum Hall
effect (FQHE) [3,4] at 5

2 filling of the lowest two Landau
levels (LLs). A large number of studies of the 5

2 state point
to either the Moore-Read [5] Pfaffian (MR-Pf) state, or its
particle-hole (PH) conjugate, the anti-Pfaffian (aPf) state [6,7]
to explain this phenomenon. Another related state that has
recently attracted considerable attention is the PH-Pfaffian [8]
(PH-Pf). It is so named because, unlike the MR or the aPf,
this state is symmetric under PH conjugation. All three are
expected to be Hall superconductors [9], but with different
pairing symmetries. There is however scant support in nu-
merical studies of the 5

2 state for the PH-Pfaffian. Instead,
there is considerable evidence in favor of the MR and aPf.
Some examples in different geometries are given in Refs.
[10–15].

Earlier studies, for the most part, preserved the PH sym-
metry of the Hamiltonian and were unable to discriminate
between the latter two ground states. In the presence of inter-
Landau-level transitions or mixing (a ubiquitous feature of
experiments), PH symmetry is broken and the aPf gains the
advantage [16–18]. However, the energy splitting per parti-
cle is small and omitting some pseudopotential components
of the three-body mixing [19] corrections stabilizes [20] the
MR-Pf [21–23]. The quasiparticle excitations of all three
states possess Majorana zero modes and are expected to obey
non-Abelian statistics [5,24], which is a necessary ingredient
for quantum information processing. They are also fully spin
polarized, in agreement with both experiment [25,26] and
numerical calculations [10,27] of the 5

2 effect.
Recent measurements [28] of quantized thermal Hall con-

ductance κxy, however, found a value that is only consistent
with the PH-Pf state. There are several interesting scenarios
for explaining this observation. Disorder, which is present
in experiment, was first put forward as the decisive factor
in stabilizing the PH-Pf [29]. Alternate scenarios that favor
the PH-Pf ground state have also been suggested [30,31]. A
different possibility is the formation of Pf and aPf domains

in the presence of disorder [32–34], which under suitable
conditions could result in the measured quantized thermal
Hall conductance. Whether this mechanism can account for
the experimental observation is unclear [35,36].

Another possibility is that the aPf ground state, under
certain conditions, could produce the measured κxy [37,38].
However, a more recent experiment also supports a PH-Pf
ground state [39]. In any event, these developments call for
a thorough examination of the PH-Pfaffian state.

In this Letter we formulate an exact procedure for calculat-
ing the ground state and charged quasiparticle excited states
of the PH-Pfaffian. We then obtain results for up to 14- and
12-electron systems for the ground and charged excited states,
respectively. These sizes are comparable to previous exact
diagonalization studies of the 5

2 effect. We use the spherical
geometry since the angular momentum “technology” simpli-
fies the construction. In what follows, all energies are given
in units of e2/4πε�B. Distances (wave vectors) are given in
units of the magnetic length �B (inverse magnetic length) and
densities in inverse 2π�2

B units. As a reminder, Fig. 1 shows
the gapped phases of FQHE near the half-filled first excited
Landau level (1LL) as the first Haldane pseudopotential v1

is varied. Only the first three odd pseudopotentials seem
substantially different from their lowest-Landau-level (LLL)
values. The arrows show the positions of the MR, PH-Pfaffian,
and the anti-Pfaffian from left to right, respectively. The only
visibly gapped states appear to be MR-Pf and aPf, which are
related by particle-hole conjugation that maps the electrons
to holes and vice versa. The MR-Pf satisfies the relation
Nφ = 2Ne − 3, which has a shift of 3. The shifts of the PH-Pf
and aPf are 1 and −1, respectively. Different shifts generally
signify a different topological phase of matter.

Computation of wave function. While there may well be
other forms for the PH-Pf wave function we will use the one
from previous studies [29,40–42],

|�PH-Pf({ri})〉 = Pfi, j

{
1

ūiv̄ j − ū j v̄i

}
|�1/2〉, (1)
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FIG. 1. Top left: In the first row, a comparison of pseudopotentials vm, for spin-polarized electrons of the lowest and first excited Landau
levels. Top right: Ground state energies for the Coulomb potential in 1LL as the flux Nφ is varied for 16 electrons. Bottom: v1 of 1LL Coulomb
is varied by ±0.05.

where u and v are spinor coordinates [43] and the holomorphic
part |�1/2〉 is the ν = 1/2 bosonic Laughlin state:

|�1/2({ui, vi})〉 =
∏
i> j

(uiv j − u jvi )
2. (2)

Projection of the wave function to the LLL turns ū and v̄

into operators (usually derivatives [44]). The key idea in our
approach is to project one pair at a time in occupation space.
The projection operators are only in the Pfaffian, which is the
pairing part of the wave function. We thus start with projecting
a single pair. Multiplying both the numerator and denominator
by the factor uiv j − u jvi, we have

1

ūiv̄ j − ū j v̄i
= uiv j − u jvi

|uiv j − u jvi|2 . (3)

TABLE I. Some attributes, indicated by the column headings, of
PH-Pf and MR states for different sizes Ne.

Ne |〈�|�Sym〉| Variational E0 E0/Ne E0(Pf)/Ne

6 0.9999996 −2.583729 −0.4306215 −0.4868794
8 0.9999633 −3.291081 −0.4113851 −0.4458210
10 0.9999807 −3.993417 −0.3993417 −0.4248679
12 0.9999463 −4.694213 −0.3911844 −0.4122298
14 0.9998940 −5.404673 −0.3860481 −0.4040570

This is a rotationally invariant holomorphic pair (scalar) op-
erator with a 1/r2 potential, where r is the chord distance
between particles i and j on a unit sphere. This potential is to
be projected into the LLL. The numerator is holomorphic and
turns a two-boson state into a state of two fermions, which
in total adds a flux quantum NF

φ = NB
φ + 1, without altering

J and M: |J, M, NB
φ 〉 transforms to |J, M, NF

φ 〉. J and M are
the total and azimuthal angular momenta of the pair. Using
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FIG. 2. Variational energies of the PH-Pfaffian state for 6–14
electrons. The straight line is a least-squares fit of the data, yielding
an infinite-size value of −0.3523 ± 0.0004 per electron.
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FIG. 3. Variational energies of the MR-Pfaffian state for 6–14
electrons. The curve is a fit of the data to a polynomial of degree
2. The intercept in the infinite-size limit is −0.3675 ± 0.0004 per
electron.

the Wigner-Eckart theorem we obtain the reduced matrix ele-
ments below. These are, in fact, the Haldane pseudopotentials
for a 1/r2 “Hamiltonian” that changes a pair of bosons into
a pair of fermions. Therefore, we set M = J , simplifying the
two-particle wave functions [43] to

∣∣J, J; NB(F )
φ

〉 = (uiv j − u jvi )
NB(F )

φ −JuJ
i uJ

j , (4)

where B(F ) refers to bosons (fermions). The number of
bosons and fermions is equal and is denoted by Ne. The matrix
element of the pair operator between the two-particle states is
reduced to the expectation value of 1/r2 (apart from normal-
ization factors) for a two-fermion state. The pseudopotentials
are

VJ = NF
φ + 1√(

NF
φ − J

)(
NF

φ + 1 + J
) . (5)

To get the matrix elements in a more convenient form
[Eq. (6)], we expand the pair creation annihilation operators
in terms of a pair of single-particle boson annihilation and
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FIG. 4. Pair correlation function for 6–14 electrons as a function
of the large circle distance.

a pair of fermion creation operators. Again, because of the
additional flux quantum for fermions relative to bosons, the
needed Clebsch-Gordan (CG) coefficients for the same J and
M have the correct parity under particle exchange for both
bosons and fermions. Combining the CG coefficients with VJ

and summing over J and M yields the desired matrix elements,
which can be separately calculated and stored:

V
(
m f

i , m f
j ; mb

i , mb
j

) =
〈
m f

i , m f
j

∣∣∣∣ uiv j − u jvi

|uiv j − u jvi|2
∣∣∣∣mb

i , mb
j

〉
,

m f
i + m f

j = mb
i + mb

j . (6)

The matrix elements can easily be antisymmetrized in the two-
fermion and symmetrized in the two-boson orbitals.

The coordinates in the Pfaffian can now be integrated
out. The antisymmetrization required in the Pfaffian can,
by a change of integration variables, be compensated by
the exchange of fermion orbitals. The interpair antisym-
metrization of the fermion orbitals only requires Nfact =
Ne!/[2Ne/2(Ne/2)!] = (Ne − 1)!! independent terms, which is
much smaller than Ne!. However, this operation has to be done
for all occupied single-particle states with total zero azimuthal
angular momentum. The total number of configurations for
fermions is Nc = NfactNH , where NH is the dimension of the
appropriate many-body fermion Hilbert space [45].

The main calculation is organized in a single loop of size
Nc for fermions. Because of the conservation law for each pair
of bosons in Eq. (6), there are an additional Ne/2 inner loops
for boson orbitals. In the inner core of these Ne/2 + 1 loops
the PH-Pf wave function is obtained from the product of the
matrix elements, other information on the fermion basis, and
the Laughlin wave function.

While the code is very short and relatively simple, it still is
an Ne-body operator with a much higher degree of complexity
than diagonalizing a many-body Hamiltonian. On the other
hand, the computations for different sets of fermion orbitals
{m f

i } are independent and the outer loop can be massively
parallelized. We have also taken advantage of reflection sym-
metry to divide the basis (by its parity), and hence the outer
fermion loop, into two independent but nearly equal parts,
providing further parallelization.

The ground state (GS). The PH-Pfaffian wave functions
are very nearly particle-hole symmetric. However, they cannot
be fully symmetrized or antisymmetrized by the usual means
(making a linear combination of the two states) because of
the antiunitarity of the PH transformation. The problem is
overcome if the eigenvectors of the 2 × 2 overlap matrix of
the two states related by PH conjugation are obtained. The
parity of the state is immaterial. One eigenvector would have
an overlap of near unity with the calculated wave function
(see Table I) and the other a very small overlap. The table
also shows their variational energies for the 1LL Coulomb
potential. These are plotted in Fig. 2 and give an extrapolation
to an infinite size of −0.3523. That is larger than −0.3675
for the Pf (or equivalently for aPf) energies extrapolated in
Fig. 3. We note that the PH-Pf on the sphere is aliased (same
Ne and Nφ) with the particle-hole symmetric version of Jain’s
[46] composite fermion (CF) with an effective magnetic flux
quantum of one: N∗

φ = Nφ − 2(Ne − 1) = 1 as opposed to
zero [47,48]. This has been called the Dirac CF (DCF) [8,49]
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FIG. 5. (a) Guiding center structure factor with a single main
peak for Ne = 6 and 12. (b) Same as in (a) except with two main
peaks for Ne = 8, 10, and 14. Solid (open) symbols are for cases
where the larger peak is to the left (right) of the other main peak.
The dotted line is the known asymptotic value [53] of S0(Q) for large
wave vectors Q.

since its Berry phase, when taken around the Fermi surface,
is π [8,50,51]. Both composite Fermi liquids of CF and DCF
are appropriate ground states in the LLL at ν = 1

2 but not at 5
2

filling. In the PH-symmetric case the electrons form closed
shells with total angular momentum L = 0 for sizes given
by Ne = (n + 1)(n + 2), with n a non-negative integer. For
partially filled shells, the inter-DCF distances can be maxi-
mized for nonzero values of angular momentum, which vary
systematically with size [48].

Figure 4 shows the pair correlation function for even sizes
of 6–14 electrons. Oddly, there is no indication of conver-
gence, in sharp contrast to the case of the MR-Pf state, where
a clear picture emerges with 12 electrons [52]. In addition,
long-range tail oscillations, which are typical of composite
Fermi liquids [48], persist to large sizes [42]. Also, there
appears to be two classes of states determined by whether
or not the DCFs form a closed shell. Figure 5 shows the
(LL-independent) guiding center structure factor S0(Q). We
separate the filled shell configurations Ne = 6 and 12 (n = 1

TABLE II. The variational energies of GS, charge excitations,
and the gaps of PH-Pf and MR state for 12 electrons.

State QE energy QH energy GS energy 	c

PH-Pf −4.774736 −4.615954 −4.694213 −0.001132
MR-Pf −5.028995 −4.833692 −4.946758 0.015415

and 2, respectively) from the rest. Only the first group exhibits
a single sharp peak at a wave vector that approaches 2k f

for large sizes. This separation agrees with the high overlap
of DCF with the PH-Pf for Ne = 12 obtained by the Monte
Carlo method [40]. Since the PH-Pf is in fact a paired state of
DCFs, this trend is not entirely surprising. For unfilled shells
the angular momentum of DCF is nonzero and thus will have
no overlap with the PH-Pf GS. However, these trends may
not bode well for a gapped topological phase. Moreover, the
n = 1 LL Coulomb potential is insufficient for the pairing of
DCFs into a Hall superconductor and it is left as a compress-
ible state. It seems unlikely that disorder can overcome these
shortcomings.

Charge excitations. To complete the picture of the PH-Pf,
we turn to the quasielectron and quasihole excitations. These,
given below, are the most natural extension of the ground state
wave function,

|�QE(ri )〉 = Pfi, j

{
ūiv̄ j + ū j v̄i

ūiv̄ j − ū j v̄i

}
|�1/2〉, (7)

and

|�QH(ri )〉 = Pfi, j

{
uiv j + u jvi

ūiv̄ j − ū j v̄i

}
|�1/2〉. (8)

The two quasiparticles are at the poles of the sphere. As
a result, the full rotational symmetry is downgraded to az-
imuthal symmetry. We have included the corresponding MR
quasiparticle states for comparison. The wave function of a
pair of quasielectrons and quasiholes [14,52] is the same as
in Eqs. (7) and (8), but with holomorphic denominators [54].
The calculation becomes a little more complicated, due to the
loss of full rotational symmetry, but the matrix elements of
the two-body interactions can still be computed by the trans-
formation of coordinates [55]. Figure 6 shows the densities
of these states for Ne = 12. We also compare the variational
energies in Table II. Again, the MR state and the correspond-
ing quasiparticles have lower energies. Whether they remain
so in the thermodynamic limit is unclear. A more meaningful
comparison would be to calculate the energy gap for creating
a neutral pair of quasielectrons and quasiholes. Since a pair
of quasiparticles is created for each quantum of flux above or
below the GS, we divide the energies by two. The energy gap
for creating the neutral pair is defined by

	c = E (Nφ + 1, Ne) + E (Nφ − 1, Ne) − 2E (Nφ, Ne)

2
, (9)

where Nφ is the number of flux quanta for the ground state.
We have used the actual values of the energies without any
subtractions or rescaling. The last column of Table II shows
the results for both PH-Pf and MR for 12 electrons. A more
telling picture of the gaps as a function of inverse size is
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FIG. 6. The density of the PH-Pf (upper figures) two quasielectrons (QEs) and two quasiholes (QHs) for 12 electrons as a function of the
large circle distances. The horizontal lines mark the density of the fluid if the charge was distributed uniformly. The lower two figures are the
MR QEs and QHs densities.

shown in Fig. 7 for 8-, 10-, and 12-electron systems. The stark
difference in the energy gaps between the MR-Pf (or aPf) and
the PH-Pf is clearly visible.

Finally, we note that recent measurements [56] on a closely
related system appear to be consistent with our results. The
experiment by Huang and co-workers on half-filled 1LL in
bilayer graphene did not find any evidence for the PH-Pf.
Instead, depending on the valley Zeeman splitting, they found
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FIG. 7. Charge gaps in 8–12 electron systems for both MR and
PH-Pf states.

either the MR-Pf (at ν = 3
2 and 7

2 ) or the aPf (at ν = 5
2 ), which

were identified by the presence of their respective daughter
states.

In summary, we have presented an exact method for pro-
jecting the PH-Pfaffian as well as its quasiparticle states to
the lowest Landau level. The calculations can be organized in
a way that is scalable on massively parallel machines [57].
We obtained wave functions for up to 14 and 12 electrons
for the GS and charge excitations, respectively. By extrapo-
lating finite-size results to large sizes in a pure system, we
unequivocally find that the PH-Pf energetically falls short
of the Moore-Read Pf (or aPf) state. Other factors such as
Landau-level mixing or disorder are unlikely to reverse these
trends. Including LL-mixing corrections [19] with three-body
interactions for up to a relative angular momentum M = 9 (as
in Ref. [18]) shows no indication of stabilizing the PH-Pf.
A more comprehensive study of LL mixing will be reported
elsewhere [58].
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