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Spin entanglement via scanning tunneling microscope current
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We consider a system of two spins under a scanning tunneling microscope bias and derive its master equation.
We find that the tunneling elements to the electronic contacts (tip and substrate) generate an exchange interaction
between the spins as well as a Dzyaloshinskii-Moriya interaction in the presence of spin-orbit coupling. The
tunnel current spectrum then shows additional lines compared to conventional spin-resonance experiments.
When the spins have degenerate Larmor frequencies and equal tunneling amplitudes (without spin orbit), there
is a dark state with a vanishing decay rate. The coupling to the electronic environment generates significant
spin-spin entanglement via the dark state, even if the initial state is nonentangled.
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Intense efforts are currently devoted to the study of two
qubits coupled to an environment, motivated by quantum
information science. In particular, it has been realized that
dissipative dynamics due to qubits coupling to the same bath
can be tuned to yield entangled states both in theory [1–4]
and in experiment [5,6]. In parallel, there has been consid-
erable effort in developing techniques of scanning tunneling
microscopy (STM) to probe electron spin-resonance (ESR)
features. These ESR-STM studies are of two types: either
monitoring the current power spectrum in a DC bias employ-
ing a nonmagnetic tip [7–9] (first type) or monitoring the DC
current with a magnetic tip when an additional AC voltage is
tuned to resonance conditions [10–12].

In the present Letter we show that the STM setting with
its two contacts provides another scenario for entangling two
spins, representing two qubits (see sketch in Fig. 1). The
presence of two nondegenerate spins has been proposed to
account for the first type of ESR-STM phenomena [13].
Here we study the case of degenerate spins, which requires
a different derivation of the appropriate master equation due
to additional resonances. We find a number of phenomena:
(i) The tunneling couplings to the electronic baths (tip and
substrate) generate dissipation, but also an exchange coupling
between the two spins; in the presence of spin-orbit coupling
a Dzyaloshinskii-Moriya (DM) interaction also emerges. (ii)
The spin-correlation functions as measured by an STM, in
the presence of either exchange or dipole-dipole interactions,
show additional spectral lines relative to those in conventional
ESR. (iii) When the tunneling amplitudes of the two spins are
equal, we identify a dark state, i.e., an entangled state with
an infinite lifetime. An initial nonentangled state evolves into
a significantly entangled state, i.e., environment-induced en-
tanglement. In contrast to previously studied photon-induced
entanglement [1–6], in our scenario the entanglement is elec-
tron induced and emerges in solid-state nanoscopic qubits, a

setup that is scalable and yet has a controllable low dephasing
rate. Hence, it is a promising and realistic setup for quantum
information devices.

In the following we use a system + bath formalism where
a system-environment interaction sums products of operators
Aj, Bj in the system and environment spaces [14,15]. We
choose the Aj’s such that they evolve in the interaction picture
with frequency ν j ,

HSE (t ) =
∑

j

A je
−iν j t B j (t ), (1)

where the sum may contain one or more terms with ν j = 0.
The master equation for the system density-matrix ρ is within
the Born-Markov approximation,

d

dt
ρ(t ) =

∑
j,k

{
�̃ jk (νk )e−i(ν j+νk )t

× [Akρ(t )Aj − AjAkρ(t )] + H.c.
}

�̃ jk (ω) =
∫ ∞

0
dτ 〈Bj (τ )Bk (0)〉E eiωτ , (2)

where 〈· · · 〉E denotes the bath average. In the following we
apply the secular approximation, i.e., only terms j, k for which
ν j + νk = 0 are kept, Eq. (2) then has the Lindblad form
[14–16]. This is justified when finite frequency differences are
much larger than the linewidth. It is important to note that we
do include off-diagonal terms in view of degeneracies in our
system.

We proceed to two isolated spins (quantum dots or im-
purities) described by Pauli matrices τ ⊗ 1 and 1 ⊗ τ (direct
products display operators acting on the first spin times those
acting on the second spin) and a common Larmor frequency ν

coupled by tunneling in parallel to the two environments L, R
(Fig. 1). The latter have spin-independent energies εkL, εkR
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FIG. 1. Sketch of the system. The scanning tip and substrate are
two electrodes R and L at a relative voltage V , they provide the
environment for the spins labeled 1 and 2. A magnetic field yields
a common Larmor frequency ν. The environment-spin coupling is
due to the tunneling, via the spin sites, between the electrodes.
This allows, in particular, for spin flips via an effective exchange
interaction between the tunneling electrons and the localized spins
[Eq. (3)].

whose chemical potentials differ by a bias V and Hamiltonian
HL = ∑

k εkLc†
kLckL with electron creation and annihilation

operators c†
kL, ckL, being two-component spinors for each

mode kL; similarly with L → R. Setting H0 = 1
2ντz ⊗ 1 +

1
2ν1 ⊗ τz (h̄ = 1), the Hamiltonian is taken in the form

H =H0 + HL + HR + (J1c†
RσcL · τ ⊗ 1

+ J2c†
RσûcL · 1 ⊗ τ + H.c.) (3)

where cL = ∑
k ckL is the local operator that couples to the

spins (the same with L → R). The hopping terms J1,2 in
Eq. (3) are derived from tunneling via a localized state that has
strong on-site Coulomb repulsion, which eliminates doubly
occupied or zero occupied electron states, a procedure known
as the Schrieffer-Wolff transformation [13,17]. For spin 2,
we use the unitary matrix û = eiσzφeiσyθ/2 to model spin-orbit
interactions; this is important for the coupling of an STM
current to the spins [13]. There are additional terms that tunnel
electrons from one lead and back to the same lead, however,
the terms in (3) dominate at large voltage, i.e., V � ν, kBT (T
is the temperature), the typical case in STM experiments.

The interaction picture relative to H0 + HL + HR leads to
HSE (t ) in the form (1) with [using τ± = 1

2 (τx ± iτy), εRL =
εR − εL, and an implicit summation over the bath levels k],

A1 = τ− ⊗ 1, ν1 = ν,

B1 = 2J1(c†
Rσ+cLeiεRLt + c†

Lσ+cRe−iεRLt )

Az = τz ⊗ 1, νz = 0,

Bz = J1c†
RσzcLeiεRLt + H.c.

A2 = 1 ⊗ τ−, ν2 = ν,

B2 = 2J2(c†
Rσ+ûcLeiεRLt + c†

Lû†σ+cRe−iεRLt ),

Az′ = 1 ⊗ τz, νz′ = 0,

Bz′ = J2c†
RσzûcLeiεRLt + H.c. (4)

(Two additional terms are A− j = A†
j with ν−1,−2 = −ν.) The

product AzAz′ is secular and produces off-diagonal terms as
well as A1A−2 = A1A†

2 or A−1A2 = A†
1A2. Plugging these ex-

pressions into Eq. (2) is straightforward and is detailed in the

Supplemental Material (SM) [18]. Here we outline the form
of one particular term,

dρ

dt
= · · · + �̃2,−1(−ν)[A−1ρA2 − A2A−1ρ] + H.c.

�̃2,−1(−ν) = 4J1J2N2(εF ) cos
1

2
θe−iφ

×
∫

εL,εR

i

{
fR(1 − fL )

εRL − ν + i0
− fL(1 − fR)

εRL + ν − i0

}
(5)

where Tr[σ+ûσ−] = Tr[û†σ+σ−] = cos 1
2θe−iφ is used, fR =

fR(εR), fL = fL(εL ) are the Fermi distributions, containing
the bias V , and N2(εF ) is the product of the two electronic
densities of states at the Fermi energy. We note that the prin-
cipal value (P) of this integral is strongly cutoff dependent, the
cutoff � being the electronic bandwidth on either tip or sub-
strate, assumed comparable; the ν dependence in this term is
weak provided ν 	 �. The result is then for e−(V ±ν)/kBT 	 1,

�̃2,−1(−ν) = 4J1J2N2(εF ) cos
1

2
θe−iφ

×[π (V − ν) − i + iν ln(V/�)]

 = P
∫

εR,εL

fL − fR

εR − εL

≈ � ln
16�2

|�2 − V 2| − V ln

∣∣∣∣� + V

� − V

∣∣∣∣. (6)

This assumes constant densities of states so that the
expression for  is taken just as an approximate in-
dication that this term increases linearly with � and,
therefore, can be large. Collecting all the secular terms
that couple the two spins, i.e., �̃ jk (νk ) with ( j, k) =
(2,−1), (−2, 1), (1,−2), (−1, 2), (z, z′), (z′, z) as given in
the SM [18], their imaginary parts combine into the effective
interaction Hamiltonian,

Hint = −Jexτ1 · τ2 + JDM[τ1 × τ2]z,

Jex

JDM

}
= 4J1J2N2(εF ) cos 1

2θ

{
cos φ,

sin φ.
(7)

We recognize an exchange coupling as well as a
Dzyaloshinskii-Moriya interaction. The latter appears
in the presence of spin-orbit coupling (φ �= 0) which
breaks the symmetry between the two spins. We note
that these bath-induced interactions are similar in spirit to
the well-known Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction that generates an exchange coupling between two
distant spins in a metal, the metal being a common reservoir
[19]. Recall that the RKKY coupling is also sensitive to the
cutoff as well as to the dimensionality of the metal.

The environment-induced interaction can be detected in
correlation functions that are measured by either an ESR or
an STM probe. Consider the correlations,

C1(ω) = 〈(τ− ⊗ τz + τz ⊗ τ−)t (τ+ ⊗ τz + τz ⊗ τ+)0〉ω
+(ω → −ω),

C2(ω) = 〈(τ− ⊗ τz )t (τ+ ⊗ τz )0〉ω + (ω → −ω),

C3(ω) = 〈(τ− ⊗ τ+)t (τ+ ⊗ τ−)0〉ω + (ω → −ω). (8)
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FIG. 2. Correlations C1(ω), C3(ω) (left) and C2(ω) (right) of Eq. (8) with the parameters: Larmor frequency ν = 0.1 V (including the
bath-induced shift), electrode couplings λ1 = 0.01, λ2 = 0.009 where λ j = 16πJ2

j N2(εF ), ( j = 1, 2), spin-orbit angle θ = 0 and exchange
interaction Jex = 0.2 V. Black lines: φ = 0, no DM interaction; the peaks are at the expected positions ω = ν for C1(ω), ω = ν, 4Jex ± ν

for C2(ω), and ω = 0, 4Jex for C3(ω). Thick colored lines: allowing for both exchange Jex = 0.2 V and DM interaction JDM = 0.2 V (i.e.,
φ = π/4). The vertical dashed and dotted lines mark the transitions expected from the energy spectrum (9). C3(ω) has a near δ(ω) peak as
well as a finite-width peak at ω = 0 whose widths correspond to the inverse lifetimes of the dark and bright states, respectively. Spectra are
shifted vertically for clarity.

Here C1(ω) probes both spins equally as in macroscopic ESR,
whereas C2(ω) probes only one spin as allowed with STM.
We recall that STM probes the spins via the current corre-
lations [8], the current being iJ1c†

RσcL · τ ⊗ 1 + iJ2c†
RσûcL ·

1 ⊗ τ + H.c. The spin-dependent current fluctuations, there-
fore, involve either τ± for the spin flip or τz, otherwise. The
current fluctuations allow also for a double spin flip, hence,
detection of the correlation C3(ω). The correlation functions
are computed from the quantum regression formula, see the
SM [18]. To identify the various lines, we diagonalize the
system Hamiltonian including Hint,

1√
2

[|↑↓〉 − eiψ |↓↑〉] : ES = 2
√

J2
ex + J2

DM + Jex

|↑↑〉 : ET 1 = ν − Jex,

1√
2

[|↑↓〉 + eiψ |↓↑〉] : ET 2 = −2
√

J2
ex + J2

DM + Jex,

|↓↓〉 : ET 3 = −ν − Jex, (9)

where tan ψ = JDM/Jex. If both interactions are strictly within
our model (7), then remarkably, ψ = φ, the spin-orbit phase.
We use the labels S and T for the singlet and the triplet,
although these coincide with the exact eigenstates only for
JDM = 0.

Consider first the exchange-only case φ = 0. An ESR ex-
periment allows only transitions within the triplet states, and
all appear at frequency ν. There are no transitions between the
singlet and the triplet states because of their opposite permuta-
tion symmetry, while the probing field is uniform in space. In
contrast, a STM experiment allows the probing current to tun-
nel via only one spin, hence, permutation symmetry does not
hold. The experiment would then show also singlet to triplet
transitions, i.e., total of three lines at ν, ν + 4Jex, |ν − 4Jex| as
shown in Fig. 2(right). Thus, ESR-STM reveals the spectra of
the two-spin system in more detail.

The case with spin-orbit coupling where both Jex and JDM

are nonzero is asymmetric within the pair (only the coupling

to the second spin involves the spin-orbit matrix), hence, both
ESR and STM yield four lines: ν ± 2(

√
J2

ex + J2
DM − Jex) (the

previous line at ν is split), and 2(
√

J2
ex + J2

DM + Jex) ± ν. This
case is shown in Fig. 2(left): C1(ω) shows indeed four lines,
although the additional two are rather weak. The STM case
represented by C2(ω) has four lines of comparable intensity.

The spectrum of C3 shows a resonance at 4Jex at the sym-
metric point [Fig. 2(left)] because the operator (τ− ⊗ τ+)ρst

contains a superposition of S and T 2 states with different
energies. A projection onto the entangled subspace may be
achieved by detecting this resonance since τ− ⊗ τ+ maps the
nonentangled states |↑↑〉 and |↓↓〉 to zero.

We exhibit now the entanglement between the spins, in-
duced by their interaction with the electronic bath, similar to
works on two-qubit systems coupled by either a plasmonic
waveguide [3] or by the cavity electrodynamics [4]. The
most promising situation emerges when the spins are equally
coupled to the environments J1 = J2 and θ = φ = 0 so that
the spin orbit interaction does not distinguish between the
spins. We then observe that the singlet state |d〉 = [|↑↓〉 −
|↓↑〉]/√2 becomes dark, meaning that it decouples from the
three triplet states. For the dark-state projector,

d̂ = 1
2 (|↑↓〉 − |↓↑〉)(〈↑↓ | − 〈↓↑ |)

= 1
41 ⊗ 1 − 1

4τz ⊗ τz − 1
2τ− ⊗ τ+ − 1

2τ+ ⊗ τ−, (10)

we can show from the master equation that d pd/dt =
Tr[d̂ (dρ/dt )] = 0 (see the SM [18]), i.e., its decay rates
vanish precisely. The stationary state turns out to be a one-
parameter family that interpolates between d̂ and a mixture
ρtr of triplet states with quasithermal populations (its effective
temperature is ≈ 1

2V/kB provided V � ν). This remarkable
phenomenon of a range of steady states is exhibited by

〈τz ⊗ 1〉 = 〈1 ⊗ τz〉 = −ν̃(1 + 2ρ+−),

〈τz ⊗ τz〉 = ν̃2 + 2(1 + ν̃2)ρ+−, (11)

where ν̃ = ν/V and ρ+− = 〈τ+ ⊗ τ−〉 is an arbitrary real
parameter, constrained only by the eigenvalues of ρ being
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FIG. 3. (Left) Entanglement measures at the symmetric point λ1 = λ2, θ = φ = 0: the steady state is given by a one-parameter family
that interpolates between a mixed state ρtr in the triplet subspace (left, weight 1 − p) and the dark state (right, weight p). The third arrow
marks the noncorrelated stationary state ρst that is also found when the parameters are slightly detuning from the symmetric point. Thin blue
line: quantum mutual information S12, nonzero nearly everywhere, but not specific to entanglement. Thick red lines: logarithmic negativity EN ,
thick blue lines with symbols: entanglement of formation EF , dashed vertical line: critical mixing parameter pc (see the main text). Mutual
information and entanglement measures are scaled to (e)bits, using logarithms to base 2; we take V = 2.5ν. (Right) Transient entanglement at
the symmetric point, followed by probabilistic “purification.” Starting from the product state |↑↓〉, the entanglement of the two-qubit system
transiently oscillates since the states |↑↓〉 and |↓↑〉 are mixed by a Rabi frequency of 2Jex. The singlet state population (S) remains constant,
whereas the triplet sector relaxes to thermal equilibrium (only the S and T 2 populations are shown; details about the transient entanglement,
such as oscillations and decoherence are discussed in the SM [18]). The vertical lines mark measurements of the τz ⊗ τz spin correlation,
and provided the result is −1 (the percentage given in the top panel), they increase the entanglement because the system is projected into
the subspace spanned by the states S, T 2. Thus, both environment-induced relaxation as well as the measurement protocol contribute to
the enhancement of entanglement. The time evolution is computed from the eigenvalue spectrum of the master equation (see the SM [18]).
Parameters: λ = 0.0126, Jex ≈ 0.024ν, voltage V = 1.25ν so that pc = 0.229.

less than 1. The parameter ρ+− can also be detected from
the δ(ω) peak in the correlation spectrum C3(ω) [Eq. (8), in
Fig. 2(left) the near-degenerate case is shown]. Figure 3(left)
quantifies the entanglement in this family of stationary states
as measured by the entanglement of formation EF (related to
the concurrence [20]) and the logarithmic negativity [21,22]
EN . When the weight p of the dark state exceeds pc = 1

2 (1 −
ν̃2)/(1 − ν̃2/3) (dashed line), there is stationary entangle-
ment. When lowering V towards ν (but keeping e−(V −ν)/kBT 	
1), pc is decreased: a larger range of equilibrium states is then
entangled.

In Fig. 3(right), we show that an initially nonentangled
state |↑↓〉 builds up entanglement during the relaxation of
the triplet sector to equilibrium. The weight of the dark state
does not exceed p = 1

2 with this easy-to-prepare product state,
and this is why we propose in Fig. 3(right) a route of further
increasing the entanglement. At the vertical gray lines, a mea-
surement of the spin-spin correlation τz ⊗ τz is made: From
the result −1, the experimenter may infer that the two spins
are not in the product states |↑↑〉 or |↓↓〉, without destroying
the relative phase of any entangled state. A successful result,
thus, increases the relative weight of the dark state. As the
system relaxes, the T 2 state is depleted, and the entanglement
increases slightly. The measurement can be repeated and, if
successful, purifies the dark state further. To actually perform

such a measurement, one may monitor the peaks at ω = 0 or
at ω = 4Jex of the current fluctuation spectrum C3(ω). These
peaks signal the double spin-flip process, hence, once ob-
served the system collapses into the S or T 2 states, equivalent
to detecting an eigenvalue −1 of τz ⊗ τz. We note that this
procedure does not detect every double spin flip since it should
be made fast compared with the lifetime of the bright state
so as to avoid generating the product states T 1, T 3. A more
detailed analysis is left for future work.

In conclusion, we have shown a number of resonance phe-
nomena that can be achieved by probing a pair of degenerate
impurity spins in the tunneling junction of a STM. These
phenomena include generating exchange and DM interac-
tions between the spins, the observation of additional lines
in the STM setup, providing more information on the two-
spin state. In some cases, a maximally entangled dark state
emerges that is highly significant for quantum information
applications.
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