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Edge density of bulk states due to relativity
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The boundaries of quantum materials can host a variety of exotic effects such as topologically robust edge
states or anyonic quasiparticles. Here, we show that fermionic systems such as graphene that admit a low-energy
Dirac description can exhibit counterintuitive relativistic effects at their boundaries. As an example, we consider
carbon nanotubes and demonstrate that relativistic bulk spinor states can have nonzero charge density on the
boundaries, in contrast to the sinusoidal distribution of nonrelativistic wave functions that are necessarily zero
at the boundaries. This unusual property of relativistic spinors is complementary to the linear energy dispersion
relation exhibited by Dirac materials and can influence their coupling to leads, transport properties, or their
response to external fields.
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Introduction. Several materials have low-energy quantum
properties that are faithfully described by the relativistic Dirac
equation. The celebrated example of graphene owes some of
its unique properties, such as the half-integer quantum Hall
effect [1–3] and the Klein paradox effect [4,5], to the relativis-
tic linear dispersion relation describing its low-energy sector.
This is by no means a singular case. A wide range of materials
have been recently identified that admit one-, two-, or three-
dimensional (1D, 2D, or 3D) relativistic Dirac descriptions,
including many topological insulators and d-wave supercon-
ductors [6–11]. The unusual dispersion relation of Dirac
materials gives rise to effective spinors, where the sublattice
degree of freedom is encoded in the pseudospin components.
Nevertheless, the emerging excitations are spinor quasiparti-
cles that can exhibit novel transport properties or responses to
external fields akin only to relativistic physics [5].

Here, we present another counterintuitive aspect of rela-
tivistic physics in Dirac materials manifested by the behavior
of bulk states at the boundaries. In general, the choice of
boundary conditions one imposes on single-particle wave
functions of a system must ensure its Hamiltonian remains
Hermitian. For the example of a nonrelativistic particle in a
box obeying the Schrödinger equation, the boundary condi-
tions are simply that the wave function vanishes on the walls
of the box. However, for spin-1/2 particles of mass m obeying
the (2 + 1)D Dirac equation

(−iαi∂i + βm)ψ (r) = Eψ (r), ψ (r) =
(

ψ↑(r)
ψ↓(r)

)
, (1)

where αi and β are the 2 × 2 Dirac alpha and beta matrices,
vanishing of the spinor ψ (r) is not possible on all bound-
aries without the solution being trivially zero everywhere. The
requirement that the Dirac Hamiltonian h = −iαi∂i + βm is
Hermitian with respect to the inner product

∫
D d2rψ†(r)φ(r)
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on a finite domain D is that the charge current Ji(r) =
ψ†(r)αiψ (r) normal to the boundary ∂D is zero for all spinors.
In other words, if n̂ is the outward pointing normal to the
boundary, then

n̂(r0) · J(r0) = 0 (2)

for all points r0 ∈ ∂D [12]. This condition ensures that parti-
cles are trapped in D. In contrast to the nonrelativistic case, the
zero flux condition of Eq. (2) allows for bulk solutions ψ (r)
whose charge density ρ(r0) = ψ†(r0)ψ (r0) is nonzero on the
boundaries [13,14].

To exemplify our investigation, we consider how bulk
spinor states behave at the edges of a zigzag carbon
nanotube—a system which is described by the Dirac equation
of Eq. (1). We find that bulk states have support on the edges
of the nanotube depending on the size of the system. Im-
portantly, these relativistic effects become more dominant for
gapless nanotubes, corresponding to systems with a multiple
of three unit cells in circumference, or when the length of the
nanotube is small. Such relativistic properties of spinor eigen-
states are expected to be present in all Dirac-like materials and
are complementary to the typically linear dispersion relation
they exhibit. Bulk states with nonzero density at the bound-
aries are expected to impact the coupling of Dirac materials to
external leads, their transport properties, or their response to
external magnetic fields.

Relativistic description of zigzag carbon nanotubes. The
honeycomb lattice of graphene is formed from two triangular
sublattices A and B. We take the two basis vectors nx, ny

and we take the vertical links as our unit cells, as shown
in Fig. 1. We label our lattice sites with the pair (r, μ),
where r = xnx + yny labels the position of the unit cell with
non-Cartesian coordinates x, y ∈ Z, while μ ∈ {A, B} labels
the site within the unit cell. The Hamiltonian of the system
is given by H = −t

∑
〈r,r′〉 a†

r br′ + H.c., where a†
r (b†

r ) cre-
ates a fermion on sublattice A (B) of unit cell r [5]. Bloch
momenta are given by k = 1

2π
(kxGx + kyGy), where Gx, Gy
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FIG. 1. Left: The honeycomb lattice comprising two triangular
sublattices A and B. The lattice basis vectors nx = 1

2 (1,−√
3) and

ny = (1, 0) are depicted with corresponding non-Cartesian coordi-
nates x and y. A nanotube with zigzag boundaries (red lines) is
depicted with length L corresponding to L + 1 unit cells (dashed
ovals) in the nx direction while the ny direction is periodic with
circumference N . The boundary condition is given by the top A sites
and bottom B sites having zero population. Right: The band structure
of a zigzag nanotube of circumference N = 10 is displayed, where
n = 3 (dashed lines) is one of the two minimum gap bands. All bands
have a single minimum except n = N/2 = 5 which is completely flat
(dotted line).

are the reciprocal basis vectors and kx, ky ∈ [−π, π ] are the
corresponding coordinates of the Brillouin zone (BZ) (see
Appendix A of the Supplemental Material [15]).

To study the low-energy properties of a finite zigzag nan-
otube, we first take the continuum and thermodynamic limit in
the nx direction only, while keeping the periodic ny direction
finite and discrete, with N unit cells in circumference. This
gives rise to N bands parametrized by momenta ky = 2nπ/N ,
where n is an integer [16,17]. The nth band has the one-
dimensional dispersion relation

En(kx ) = ±t
√

3 + 2gn(kx ), (3)

where gn(kx ) = cos( 2nπ
N ) + cos( 2nπ

N − kx ) + cos(kx ). The
zigzag nanotube is typically gapped, unlike an infinite flat
sheet of graphene which is gapless. Each conduction band
contains a single minima, as seen in Fig. 1, which dictates the
low-energy physics for that particular band. Our model is a
simplified version of a carbon nanotube as we ignore effects
due to curvature and spin-orbit coupling that are not relevant
to our investigation [5,17–22].

Following the literature [20,22], we expand the
Hamiltonian about the minima of Eq. (3) by letting
kx = Kmin + p, for each band n, yielding the (1 + 1)D
massive Dirac Hamiltonian Hn = ∫

dxψ†
n hnψn, with

hn = −ienσ
y∂x + 
nσ

x, ψn(x) =
(

an(x)
bn(x)

)
, (4)

where the sublattices A and B of the unit cell are encoded
on the pseudospin components, en = 2t cos( nπ

N ) is the spatial
component of the zweibein, and 
n is the energy gap of the
nth band, given by


n = t
[
2 cos

(nπ

N

)
− 1

]
. (5)

See Appendix A of the Supplemental Material for a deriva-
tion [15]. We now truncate the length of the nanotube
to a finite length L. We construct standing waves ψ (x) =

[ψA(x), ψB(x)]T from forward and backward propagating
eigenstates of hn of Eq. (4). The zigzag boundary conditions
are ψA(0) = ψB(L) = 0, where x = 0 and x = L are the coor-
dinates of the unit cells of the top and bottom boundaries, as
shown in Fig. 1 [20,21]. These conditions obey the zero flux
condition of Eq. (2). This gives the solutions

ψn,p(x) = Nn,p

(
sin(px)

sin(px + θn,p)

)
, (6a)

θn,p = arg(
n + ien p), (6b)

where Nn,p is a normalization constant and θn,p is a relative
phase shift between the A and B sublattice wave functions.
The quantized momenta p are solutions to the transcendental
equation

pL + θn,p = mπ, m ∈ N, (7)

which can be solved numerically (see Appendix A of the
Supplemental Material [15]). Note that the wave functions of
Eq. (6a) correspond to bulk states, however, graphene with
zigzag boundaries also supports zero-energy states localized
at the edges [11]. Edge states correspond to complex solutions
of Eq. (7) and are not considered here [5,20,21].

Relativistic edge effects of bulk states. The U (1) electric
charge density of (1 + 1)D Dirac spinors ψ = (ψA, ψB)T is
given by ρ = ψ†ψ = |ψA|2 + |ψB|2. With our interpretation
of the pseudospin components ψA(x) and ψB(x) as the sublat-
tice wave functions, where x labels the unit cell, ρ is therefore
the charge density with respect to the unit cells. For the bulk
standing wave solutions of Eq. (6a), we have

ρn,p(x) = |Nn,p|2[sin2(px) + sin2(px + θn,p)], (8)

which gives a charge density at the boundaries of

ρn,p(0) = ρn,p(L) = |Nn,p|2 sin2(θn,p). (9)

We see that it is possible to have ρn,p(0) 	= 0 due to the phase
difference θn,p, which is purely a relativistic effect.

The edge charge density of bulk states is maximal when
θn,p = ±π/2. Referring to Eq. (6b), this is achieved when

n = 0, i.e., when the nth band is gapless. From Eq. (5) we
see that the gap closes if n/N = ±1/3 which is only possible
if N is a multiple of three. Note that, for a gapless band, the
charge density of Eq. (8) is also completely uniform with

ρn,p(x) = 1

L
, (10)

which is independent of the momentum p, where we have
chosen a 1D normalization. On the other hand, when the
system is gapped, then the density oscillates along the length
of the nanotube and becomes vanishingly small at the edges.
This shift in behavior of the charge density reflects the ex-
pected transition from the relativistic to nonrelativistic regime
witnessed in confined Dirac particles as their mass increases
[13].

The stark contrast between gapped and gapless systems is
confirmed numerically (see Appendix B of the Supplemental
Material for numerical details [15]). The left-hand column of
Fig. 2 shows the edge density ρ of the ground state of a system
of length L = 200 for varying circumferences N . When N
is a multiple of three, i.e., when the system is gapless, the
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FIG. 2. Left: The phase shifts θ ≡ θn,p of Eq. (6b) and the nu-
merically measured edge densities ρ(0) ≡ ρn,p(0) vs circumference
N for the ground state of a system of fixed length L = 200. When N
is a multiple of three, i.e., when the system is gapless, the phase shift
is θ = π/2 and the edge density is ρ(0) = 1/L = 0.005, confirming
Eq. (10). Right: The phase shifts θ and edge densities ρ(0) vs system
length L for the ground state of the gapless systems N = 30 and
its two neighboring gapped systems N = 29 and N = 31. The solid
line represents the analytical formulas while the points represent
numerics. The edge density for the gapless system N = 30 goes as
1/L, while for gapped systems N = 29 and N = 31 the edge density
tends to zero quickly, in agreement with Eq. (9). Inset: The integrated
LDOS at the edge x = 0 for a nanotube of circumferences N =
29, 30, 31 and lengths L = 25 (dashed lines) and L = 100 (solid
lines). The LDOS displays the predicted behavior of maximizing for
gapless systems (N = 30) and increasing with smaller system size L.

edge density spikes to the expected value of 1/L = 0.005.
On the other hand, when N is not a multiple of three, i.e.,
when the system is gapped, the edge density is small. This
behavior is a consequence of the highly oscillating phase shift
θ . When N is a multiple of three, the phase shift is π/2
exactly, maximizing the edge density according to Eq. (9). The
smaller N is, the stronger the effect as the difference between
gapped and gapless systems is much stronger due to the gaps
being larger. However, as N increases, all zigzag nanotubes
tend towards gapless systems even if N is not a multiple of
three, as there exists a band n such that n/N ≈ ±1/3 when N
is large, so the gap of Eq. (5) begins to close, so all systems
begin to behave similarly.

The relativistic boundary effects also have a system length
dependence [13]. The right-hand column of Fig. 2 shows the
numerically measured edge density ρ of the ground state of
a gapless system N = 30 and its two neighboring gapped
systems N = 29 and N = 31 for varying system lengths L.
The edge density of the gapless system N = 30 goes as 1/L
whereas the edge density gapped systems N = 29 and N = 31
tend to zero quickly, both in accordance with Eq. (9). It is
worth noting that, despite the fact that the analytic results have
been derived in the large L limit where the continuum approx-
imation holds, the numerics and analytics are in surprisingly
good agreement even for very small L. This verifies the theo-
retically predicted relativistic effects of nanotubes with small
length L where the violation of the nonrelativistic zero edge
density is expected. Note that this behavior repeats itself for
any N that is a multiple of three and its two neighboring

sizes above and below, which the left-hand side of Fig. 2
demonstrates.

To explain the system size dependence of the charge
density, note that for very small L the allowed momenta p sat-
isfying Eq. (7) become very large. In this case, the imaginary
contribution to the phase θn,p = arg(
n + ien p) dominates,
giving θn,p ≈ π/2 even if the gap is nonzero, as seen in the
right-hand column of Fig. 2. Hence, the edge density of Eq. (9)
becomes significant for small system sizes. For the gapless
case, the phase is exactly equal to π/2 regardless of the value
of p or system size L. This yields a uniform charge density
throughout the nanotube, resulting in the 1/L edge density as
observed.

Finally, Fig. 2 shows the integrated local density of
states (LDOS) on the edge at x = 0 given by N (E , r) =∑

m ρm(r)�(E − Em), where ρm(r) is the unit cell charge den-
sity of the mth eigenstate of the 2D model with eigenvalue Em.
We present this for systems N = 29, 30, 31 and L = 25, 100.
The edge LDOS is maximized for a fixed L when the system
is gapless, so for N = 30 in this case. Moreover, the LDOS
increases as the system size decreases, which provides a clear
signature for the observation of the relativistic edge effect.

To summarize, the edge density is prominent if either the
system is gapless, so N is a multiple of three, or the system
length L is small. The typical lattice constant of a nanotube
is given by |nx| = |ny| ≈ 2.46 Å [17,23], so Fig. 2 applies
to systems on the order of 1 nm in diameter and 10 nm in
length. However, the dependence on whether or not the system
is gapless is very strong, so this effect holds for much larger
circumferences N and lengths L. Therefore, we expect these
results to hold for a wide range of experimentally accessible
sizes.

Relativistic spinors from nonrelativistic wave functions. To
explain the emergence of relativistic boundary effects from a
nonrelativistic model, we focus on the sublattice wave func-
tions ψA and ψB. For concreteness, we examine a nanotube of
dimension (N, L) = (30, 200) and (N, L) = (31, 200) which
have gapless and gapped spectra, respectively.

In the left-hand column of Fig. 3 we compare the numer-
ical sublattice wave functions ψA(x), ψB(x) and the charge
densities ρ(x) to the analytical results of Eqs. (6a) and (8),
respectively, for the first three excited states above the Fermi
energy for the gapless system (N, L) = (30, 200). We see that
the sublattice wave functions ψA and ψB are highly out of
phase and maximize the edge support at x = L and x = 0,
respectively, yielding a charge density ρ(x) with minor os-
cillations about the predicted uniform value of 1/L = 0.005.
These oscillations are caused by finite-size effects.

In the right-hand column of Fig. 3, we present the same
information for the gapped system (N, L) = (31, 200). De-
spite N increasing only by 1, the fact the system now has a
gap results in wave functions ψA(x) and ψB(x) that contrast
considerably to the gapless case, with a charge density ρ(x)
that displays a more Schrödinger-like oscillatory profile. As
the system size L increases, the relative phase shift θ modulo
π between ψA(x) and ψB(x) decreases, as seen in Fig. 2,
and the wave functions begin to display the Schrödinger-like
profile that tends to zero on the boundaries. However, this is
not the case for gapless systems as the phase shift is always
π/2 regardless of system size, as seen in Fig. 2.
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FIG. 3. Left: A comparison of the analytical wave functions
|ψA|2 and |ψB|2 of Eq. (6a) and charge densities ρ of Eq. (9) to
the numerical simulation (markers) for the gapless system (N, L) =
(30, 200). We present the first three excited states above the Fermi
energy E = 0. We observe the wave functions act highly relativis-
tically, with a large boundary support and uniform charge density
of 1/L = 0.005. Right: We present the same information for the
gapped system (N, L) = (31, 200). The behavior contrasts highly
with the gapless system despite N only being greater by one. The
wave functions and densities display a Schrödinger-like profile with
a much smaller edge density that tends to zero as L increases as seen
in Fig. 2.

We now analyze the total wave functions  j of the lattice
fermions, where j ∈ N is the real space coordinate of the
bipartite lattice, alternating between sublattices A and B. This
coordinate should be contrasted to the unit cell coordinate x
of the spinor ψ (x). Figure 4 shows the wave functions of the
single-particle eigenstate with the most negative energy below
the Fermi energy, 0, j , and the first single-particle eigen-
state above the Fermi energy,  j , for a system of dimension
(N, L) = (30, 9).

The wave functions 0, j and  j are both nonrelativistic
wave functions which vanish on the boundaries. This is to be
expected as the microscopic model is nonrelativistic. How-
ever, due to high-frequency oscillations, the support of  j

on each sublattice is highly out of phase. Comparing with
the left-hand column of Fig. 3, we see that these oscillations
give the impression of two separate wave functions faithfully
described by the components of a Dirac spinor. Nonrelativis-
tically, we expect the system to behave as a particle in a
box, so we take the ansatz wave function  j ∝ sin(p j). From
inspection, we see that this matches the numerics for momenta
p = (l + 1)π/2l , where l = 2L + 1 is the total length of the
bipartite chain and L + 1 is the number of unit cells as defined
in Fig. 1. This gives a wavelength comparable to the lattice
spacing. Therefore, the emergent relativistic physics described
by the spinor of Eq. (6a) is a consequence of aliasing from
sampling a high-frequency nonrelativistic wave function at

FIG. 4. The full single-particle ground state 0, j and the first
state above the Fermi energy  j for a system of size (N, L) =
(30, 9). The emergent relativistic physics near the Fermi energy can
be seen clearly as a result of aliasing of a high-frequency Schrödinger
wave function. Comparing this with the left-hand column of Fig. 3,
we see how the sublattice wave functions ψA and ψB described by
the spinor Eq. (6a) emerge.

discrete intervals. This effect is independent of length L. Such
high-frequency wave functions correspond to the middle of
the spectrum where the relativistic linear dispersion is present.

On the other hand, gapped systems display a Schrödinger-
like wave function for both 0, j and  j if the system length
L is large. This can be seen clearly in the right-hand column
of Fig. 3 where the sublattice wave functions are almost in
phase. The total wave functions that describe these can also
be described by the ansatz wave function of a particle in a
box, but for a small p instead, so A and B sublattices are
now more in phase, similar to the left-hand side of Fig. 4. We
also see this in the right-hand side of Fig. 2 where the edge
densities drop to zero on the walls, suggesting a nonrelativistic
behavior.

Conclusion. Our analysis demonstrates that relativistic ef-
fects can dominate certain geometries of Dirac materials,
resulting in large edge support. We studied this effect an-
alytically and numerically for zigzag carbon nanotubes and
demonstrated that it holds strongly for a wide range of experi-
mentally accessible sizes. We found that the effect is dominant
when the system is either gapless or has a small length on
the order of 10 nm. Nevertheless, this relativistic effect is
general and it is expected to be present in 1D, 2D, and 3D
materials with the same qualitative properties presented here.
While high edge densities of bulk states should be measurable
with scanning tunneling microscopy (STM) [24–27], it is ex-
pected to have a significant effect on the conductivity of the
material when attaching leads to its boundaries or its response
to a magnetic field [20,21,28,29]. In addition, determining
if such effects will be present in 2D materials containing a
finite density of defects which effectively imposes boundary
conditions on the wave functions within the material will be
intriguing [5,30–32]. We leave these questions for a future
work.
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