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Different from the chiral edge states, antichiral edge states propagating in the same direction on the opposite
edges are theoretically proposed based on the modified Haldane model, which is recently experimentally realized
in photonic crystal and electric lattice systems. Here, we instead present that the antichiral edge states in the
two-dimensional system can also be achieved based on the original Haldane model by combining two subsystems
with the opposite chirality. Most importantly, by stacking these two-dimensional systems into three-dimension,
it is found that the copropagating antichiral hinge states localized on the two opposite diagonal hinge cases
of the system can be implemented. Interestingly, the location of antichiral hinge states can be tuned via
hopping parameters along the third dimension. By investigating the local Chern number/layer Chern number
and transmission against random disorders, we confirm that the proposed antichiral edge states and hinge states
are topologically protected and robust against disorders. Our proposed model systems are expected to be realized
in photonic crystal and electric lattice systems.
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Recently, there has been emerging interests in the study
of high-order topological insulators, which are proposed
and have attracted widespread research attention in the
fields of condensed matter physics [1–16], optics [17–22],
acoustics [23–28], mechanics [29], etc. In the conventional
topological insulators, the topologically protected bound-
ary states appear with one dimension lower than that of
the corresponding bulk system [30,31]. In contrast, the n-
order high-order topological insulator (HOTI) in d dimension
can support (d − n)-dimensional topological boundary states,
which can be two or more dimensions lower than that of the
corresponding bulk system [1–29]. Up to now, the existence
of zero energy corner states in the second-order topologi-
cal insulators are already experimentally realized in many
different systems, for example, electrical circuits [32–34],
photonics [20,22], acoustics [26,28], etc.

Lately, the concept of antichiral edge states in the two-
dimensional system is theoretically proposed based on a
modified Haldane model [35], which alters the next-nearest-
neighbor hopping parameters in both A and B sublattices.
According to the chirality of the conventional chiral edge
states, the edge states on the opposite edges must propa-
gate in the opposite direction. However, the antichiral edge
states on the opposite edges can propagate in the same di-
rection instead. This interesting phenomenon has also been
theoretically investigated in many other physical systems, for
example, an exciton-polariton honeycomb lattice with strip
geometry [36], a Heisenberg ferromagnet on the honeycomb
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lattice [37], and a graphene nanoribbon with zigzag edges
under a uniform uniaxial strain [38], etc [39–42]. More im-
portantly, the existence of antichiral edge states based on
this modified Haldane model has been experimentally demon-
strated in gyromagnetic photonic crystal system [43] and
classical circuit lattice [44]. It is found that the robust prop-
agation of antichiral edge states topologically protected by
the winding number depends on the corner shape in the open
boundary condition [43]. Then the natural question arises: Is
it possible to realize the antichiral edge states in the two-
dimensional topological insulator and antichiral hinge states
in three-dimensional high-order topological insulator based
on the original Haldane model?

In this Letter, we answer this question in an affirmative
way by realizing the antichiral edge states with the original
Haldane model by combining two subsystems with opposite
chirality. Conceptually, the realization of antichiral edge states
here is totally different from that based on the modified Hal-
dane model, i.e., the translational symmetry is broken due to
the construction of two different subsystems. The proposed
antichiral edge states will appear as midgap states in the
gapped bulk states. By calculating the local Chern number, we
find that the antichiral edge states are topologically protected.
Furthermore, the disorder averaged transmission 〈T 〉 is found
to be quantized over a wide range of random disorder strength,
which verify the robustness of antichiral edge states. Most
importantly, the antichiral hinge states can be realized by
stacking the two-dimensional system to the third dimension,
which forms a antiferromagnets (AFMs) system characteriz-
ing by the slab Chern number. The robustness of antichiral
hinge states is further confirmed by calculating the disorder
averaged transmission. Moreover, the location of antichiral
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FIG. 1. (a) Schematic plot of zigzag nanoribbon system with
width W and length L consisting of two regions I (light gray) and
II (dark gray). Hollow circles and solid-filled circles represent A and
B sublattice sites of the honeycomb lattice, respectively. The black
box at the bottom left corner represents a unit cell in the system.
(b) Band structure of the corresponding zigzag nanoribbon system in
(a) with width W = 192. (c) The absolute value of wave functions
with energy E = 0.01 along transverse y direction for two antichiral
modes denoted as red up-pointing and down-pointing triangles in
(b). (d) The absolute value of wave functions with energy E = 0.01
for two counterpropagating modes denoted as black left-pointing
and green right-pointing triangles in (b). (e) Local Chern number
versus transverse y direction. (f) The disorder averaged transmission
coefficient 〈T 〉 and its fluctuation rms(T ) versus disorder strength
U with system size W = 192, L = 100, 300. Each data point on the
figure is averaged over 2000 disorder configurations. Here, t1 = 1 is
taken as the unit of energy, t2 = −0.1.

hinge states can be further tuned by varying the hopping
parameters between two-dimensional layered systems.

First, we propose a model system (honeycomb lattice along
the zigzag direction) consisting of two regions (I and II) along
the y direction as shown in Fig. 1(a) to realize the antichiral
edge states. The proposed Hamiltonian can be expressed as,

H2D = HI + HII + HI,II , (1)

where individual I/II region’s Hamiltonian HI/II and coupling
Hamiltonian HI,II between two regions are given by

HI/II = t1
∑

〈i j〉
c†

i c j + t2
∑

〈〈i j〉〉
e−iνi jφI/II c†

i c j,

HI,II = t1
∑

〈i∈I, j∈II〉
c†

i c j, (2)

where c†
i and ci are the creation and annihilation opera-

tors at site i, i and j run over all sites in the system, t1
is the nearest-neighbor hopping strength, t2 describes the
next-nearest-neighbor hopping, and νi j = ±1 corresponds
with counterclockwise/clockwise hopping of A/B site in the
hexagonal lattice, φI = −φII = π/2. In order to account for
the random disorder effect, we consider the static Anderson-
type disorder to the on-site energy with a uniform distribution
between [−U/2,U/2].

Note that the Hamiltonian HI/II in Eq. (2) in each region is
based on the Haldane model, which can generate the quantum
anomalous Hall effect (QAHE) when |φI/II | = π/2 [45]. To
verify the topological property of the studied finite system,
we calculate the local Chern number ν(r) by the antisym-
metric product of the projection operators [46–48]. The size
of finite-sample is 50 × 192 sites and the numerical results
of local Chern number ν versus the transverse direction are
given in Fig. 1(e). It is found that the local Chern number
(detailed calculations are provided in Supplemental Mate-
rial [49]) ν changes from 1 in region I to −1 in region II
along the transverse y direction, which indicates that there
must exist topologically protected edge states in regions I
and II. Due to the opposite sign of local Chern number in
two regions, the corresponding chirality of the edge states
in regions I and II should also be reversed to each other.
Physically, the edge states in the upper and lower boundary
of the system have the same propagating direction while the
counterpropagating states should be located in the centrally
transverse direction as schematically shown in Fig. 1(a). Thus,
the antichiral edge states can be achieved in this combined
two region system. By first investigating the band structure of
a system with W = 192 shown in Fig. 1(b), we find that there
are four states in the band gap. Through velocity analysis, it is
easily found that two of them are propagating along positive
x direction and degenerate, while the other two states have
counterpropagating direction. Furthermore, the absolute value
of four wave functions with E = 0.01 along the transverse
direction are presented in Figs. 1(c) and 1(d). Indeed, two
degenerate states are located in the upper and lower boundary,
which indicate that they are antichiral edge states. The other
two counterpropagating states are mainly distributed in the
center of the transverse y direction.

In addition, we simulate the quantum transport properties
of antichiral edge states by contacting the system with two
semi-infinite leads. Here the random disorders are in the
presence of the central region. By using nonequilibrium
Green’s function method [50–56], the transmission can be
calculated and averaged over disorder configurations
(detailed information on how to calculate transmission T
and transmission eigenchannel Tn are given in Supplemental
Material [49]). From Fig. 1(f), we can know that the disorder
averaged transmission 〈T 〉 is quantized over a wide range
against disorder strength U ∈ [0, 3]t1 and its corresponding
transmission fluctuation rms(T ) is zero presented in the
insert figure. When the system length is increased from
L = 100 to L = 300, the disorder averaged transmission 〈T 〉
does not drop in the quantized region, which indicates the
robustness of antichiral edge states. It is worth mentioning
that the robustness of antichiral edge states depends on the
system’s next-nearest hopping parameter t2. The quantized
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FIG. 2. (a) Schematic plot of the proposed three-dimensional
model system stacking along z direction, which consists of layered
two-dimensional finite systems shown in Fig. 1(a). The perpendicular
red and blue arrows in the region I and II denote positive and negative
magnetization in I and II regions, respectively. (b), (c) Schematic plot
of antichiral hinge states denoted by the red arrows propagating along
x direction on the two opposite diagonal hinge cases, respectively.
The corresponding hopping between two-dimensional layers are also
shown. The counterpropagating states are denoted by the dark gray
arrow.

transmission region can be enlarged up to U = 4.5 when
the magnitude of t2 is doubled. Furthermore, the robustness
of antichiral edge states against different corner shapes
are presented in Supplemental Material [49]. In a nutshell,
our proposed model to realize antichiral edge states is
topologically protected and robust again random disorders.

Next, let us consider how to achieve the antichiral hinge
states in a three-dimensional system, which also propagate
along the same direction. As shown in Fig. 2(a), the model
system is building by alternate stacking two-dimensional sys-
tems H2D with the Chern number = ±1 as discussed in the
previous section along z direction. For the three-dimensional
system, the nearest hopping term between adjacent layers is
introduced [4]

Hz = tz
2

∑

i∈A,α

(1 − (−1)αA )c†
iαciα+1

+ tz
2

∑

i∈B,α

(1 + (−1)αB )c†
iαciα+1 + H.c., (3)

where αA/B represents A/B site in αth layer along the z direc-
tion, tz is the nearest interlayer hopping strength. From Eq. (3),
we can know that the interlayer coupling terms give out either
only A or B site connection between neighboring layers. The
Hamiltonian for the overall three-dimensional system is given
by H = H2D + Hz.

Before investigating the electric properties of antichiral
hinge states, we first discuss its topological behavior in the
separate I/II region. Actually, the layered antiferromagnetic
I/II system is a three-dimensional high-order topological in-
sulator where chiral hinge states can emerge in the system.
Note that the magnetization in each layer can be either ↑ or
↓ depending on the sign of phase φ in Eq. (2). Moreover,
the topological property of the bulk system can be character-
ized by the slab Chern number Cz

slab [4]. For instance, when
the number of layers N in the system is odd, the inversion
symmetry is preserved [the inversion center is denoted as
dashed line as shown in Fig. 2(a)] and the slab Chern number
is equal to Cz

slab = ±1 depending on stacking order. On the
other hand, when the number of layers N in the system is
even, the inversion symmetry is broken and the slab Chern

FIG. 3. (a) Band structure of the proposed three-dimensional
antichiral hinge states system along x direction shown in Fig. 2(b).
(b), (c) The absolute value of wave functions in y-z plane for two
antichiral hinge modes with kx = 3.16 denoted as red up-pointing
and down-pointing triangles in (a). (d), (e) The absolute value of
wave functions in y-z plane for two counterpropagating modes de-
noted as black left-pointing (kx = 2.19) and green right-pointing
(kx = 4.08) triangles in (a). (f) Disorder averaged transmission co-
efficient 〈T 〉 and its fluctuation rms(T ) versus disorder strength U
with two system lengths L = 100, 300. Each data point on the figure
is averaged over 2000 disorder configurations. Here, the parameters
are E = 0.01, N = 9, W = 64. t1 = 1 is taken as the unit of energy,
t2 = −0.1, tz = 0.3.

number Cz
slab = 0. In order to achieve the antichiral hinge

states in the three-dimensional system, we particularly con-
sider the system stacking with an odd number of layers. In
the individual two-dimensional layer system, the phase φI and
φII have same magnitude while have opposite sign with each
other. For instance, from bottom layer to top layer, the phase
φI in different layers are +π/2, −π/2, · · · , while phase φII

in different layers are −π/2, +π/2, · · · , which gives out the
corresponding positive or negative two-dimensional system’s
magnetization denoted by the red and blue arrows shown
in Fig. 2(a). As shown in Fig. 2(b), we consider the model
system is periodic along x direction and is finite along y and z
directions. The hopping parameters αA and αB are both equal
to α in both regions as shown in Fig. 2(b). Without loss of gen-
erality, the system parameters are chosen as layer number N =
9 and width along y direction W = 64. The corresponding
band structure is presented in Fig. 3(a). Similar to the two-
dimensional system, there are two degenerate states and two
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FIG. 4. (a) Band structure of the proposed three-dimensional
antichiral hinge states system along x direction shown in Fig. 2(c).
(b), (c) The absolute value of wave functions in y-z plane for two
antichiral hinge modes with kx = 3.16 denoted as black up-pointing
and red down-pointing triangles in (a). (d) The disorder averaged
transmission eigenchannels 〈Tn〉 versus disorder strength U with L =
100 where n = 1, 2, ..., 10. Each data point on the figure is averaged
over 2000 disorder configurations. (e), (f) The absolute value of wave
functions in y-z plane when x = 100 for two antichiral hinge modes
(n = 1, 2) in a specific disorder configuration when U = 2. Here, the
parameters are E = 0.01, N = 9, W = 64. t1 = 1 is taken as the unit
of energy, t2 = −0.1, tz = 0.3.

counterpropagating states with different momentum located in
the band gap. By choosing the electron energy E = 0.01, we
present the absolute value of wave function distribution in y-z
plane in Figs. 3(b)–3(e). It is clear that the two degenerate
states are located in the upper left and lower right corners
in y-z plane as shown in Figs. 3(b) and 3(c). Since these
two states have same momentum kx = 3.16 and are propa-
gating along positive x direction, they are definite antichiral
hinge states. Correspondingly, the other two counterpropa-
gating states are mainly distributed in the central interface
between region I and II presented in Figs. 3(d) and 3(e). To
test and verify the robustness of the antichiral hinge states,
the random disorders are placed in the three-dimensional sys-
tem with two length L = 100, 300 that is contacted with two

semi-infinite leads. Note that the transmission coefficient is
equal to two when there is no disorder, i.e., U = 0. As the
disorder strength is increasing up to 2.5t1, the disorder aver-
aged transmissions 〈T 〉 for both systems are still quantized as
two. Correspondingly, the transmission fluctuation rms(T ) is
zero over this disorder strength region. Compared with short
system (L = 100), the quantized value is slightly decreased as
the system length is tripled. This indicates that the proposed
antichiral hinge states are robust against random disorders.

Lastly, we discuss the case of another antichiral hinge state
as presented in Fig. 2(c) where two hinge states located in
the two hinges in the same z plane. In this case, the hopping
parameters αA and αB are equal to α in the region I while
they are equal to α + 1 in the region II, which are shown
in Fig. 2(c). The corresponding band structure is given in
Fig. 4(a). Interestingly, we find that there is no band gap
in the system. However, there are still two degenerate states
propagating along the positive x direction denoted as black
up-pointing and red down-pointing triangles in Fig. 4(a). By
investigating the real-space distribution of the corresponding
wave function with E = 0.01 in the y-z plane in Figs. 4(b)
and 4(c), we easily know that these two states are antichiral
hinge states in the same z plane. In the meantime, other states
at the same energy propagating along positive x direction are
bulk states as provided in the Supplemental Material [49].
Because the bulk states and antichiral hinge states are mixed,
the disorder averaged transmission 〈Tn〉 for all channels versus
disorder strength are studied in Fig. 4(d). It is found that two
transmission channels are quantized over a wide range of dis-
order strength while the transmission channels for other states
quickly drop from one as the disorder strength increases,
which are easily localized. To further present the robustness
of antichiral hinge states, the corresponding absolute value
of wave functions in y-z plane when x = 100,U = 2 for a
specific disorder configuration are still localized in the corners
shown in Figs. 4(e) and 4(f).

To summarize, we have proposed a theoretical model to
realize topologically protected antichiral edge states in two
dimensions and hinge states in three dimensions. The model
is basically constructed by the Haldane model, which indi-
cates that our system is topologically protected by choosing
proper parameters. Their topological properties and robust-
ness are investigated by calculating local Chern number and
disordered transmission function. Since the antichiral edge
states are recently achieved in the photonic system [43] and
electric system [44], it is expected our proposed model can
also be realized in the near future with the same experimental
technique.
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