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Mutual information, quantum phase transition, and phase coherence in Kondo systems
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We propose a static auxiliary field approximation to study the hybridization physics of Kondo systems without
the sign problem and use the mutual information to measure the intersite hybridization correlations. Our method
takes full account of the spatial fluctuations of the hybridization fields at all orders and overcomes the artificial
(first-order) phase transition predicted in the mean-field approximation. When applied to the two-impurity Kondo
model, it reveals a logarithmically divergent amplitude mutual information near the so-called “Varma-Jones”
fixed point and a large phase mutual information manifesting the development of intersite phase coherence
in the Kondo regime, with observable influences on physical properties. These highlight the importance of
hybridization fluctuations and confirm the mutual information as a useful tool to explore the hybridization
physics in Kondo systems.
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Correlation between subsystems plays a key role in many-
body quantum systems whose collective phenomena cannot
be viewed as a simple addition of microscopic properties
[1,2]. The mutual information, a key concept in the infor-
mation theory, measures the statistical dependency between
two random variables and may be used to probe the total
amount of correlations between subsystems [3,4]. It has re-
cently been introduced to identify phase transitions without
explicit knowledge of the broken symmetry and the order
parameter [5–18], but the concept has not been widely applied
in strongly correlated electronic systems.

The Kondo systems are arguably one of the most well
studied correlated systems. Theoretically, a pseudofermion
representation is often used for the impurity spins and the
underlying physics has been described by an effective hy-
bridization between pseudofermions and conduction electrons
[19–21]. However, most studies focus on the mean-field
approximation [22–35] and ignore fluctuations of the hy-
bridization fields that may give rise to important new physics
as recently observed in ultrafast optical pump-probe experi-
ments [36]. The mean-field theory has made false predictions
such as an artificial (first-order) phase transition in multi-
impurity Kondo systems [34,35]. Efforts to take into account
some thermal and quantum fluctuations have led to some
effective low-energy theories but include only low order ex-
pansions of the hybridization due to analytical difficulties
[37–43]. Numerical simulations [44–56] usually do not di-
rectly probe the hybridization fields due to the sign problem.
A proper treatment of hybridization fluctuations is lacking,
which severely limits our exploration of the richness of the
hybridization physics.

*yifeng@iphy.ac.cn

In this work we propose a static auxiliary field approx-
imation to directly simulate the probabilistic distribution of
the hybridization fields beyond the mean-field approach. We
show that mutual information may be used as a tool to re-
veal some important aspects of the hybridization physics. The
method allows us to capture full spatial correlations of the
hybridization fields using the Monte Carlo sampling without
the sign problem. As an example, when applied to the two-
impurity Kondo model, it suppresses the artificial first-order
phase transition, in good agreement with the exact numerical
renormalization group (NRG) analysis [57–59]. We find that
the mutual information of the hybridization amplitude, calcu-
lated using the recently developed neural estimator, exhibits
a logarithmic divergence with lowering temperature near the
so-called “Varma-Jones” fixed point, while that of the phase
adopts a finite value in the Kondo regime but diminishes for
large impurity distance, providing a measure of the intersite
phase coherence. These have important influences on physical
properties, in particular near the critical point. Our method can
be easily extended to other models to provide useful insight on
their hybridization physics.

We start with the two-impurity Kondo model,

H =
∑
kσ

εkc†
kσ ckσ + JK

2∑
i=1

si · Si + JHS1 · S2, (1)

where εk is the conduction electron dispersion, JK and JH

are the Kondo and Heisenberg exchange interactions, re-
spectively, Si is the impurity spin located at Ri, and si =∑

αβ c†
iα

�σαβ

2 ciβ is that of conduction electrons. The model
describes one of the simplest systems that feature strong
electronic correlations and competition between different
many-body ground states. In the magnetic limit (JH � JK),
the two impurities are locked into a spin singlet, while in
the Kondo limit (JK � JH), both are screened by conduction
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electrons. While the mean-field theory has predicted a first-
order transition between two phases [34,35], NRG and the
conformal field theory (CFT) suggest a crossover at finite
temperatures and a Varma-Jones fixed point at zero temper-
ature for a conduction band with the particle-hole symmetry
[57–61].

The hybridization physics is best seen in the Abrikosov
pseudofermion representation Si = ∑

ηγ f †
iη

�σηγ

2 fiγ . The
Kondo and Heisenberg terms can be decomposed using the
standard Hubbard-Stratonovich factorization, resulting in a
bilinear action of pseudofermions and conduction electrons
that are only coupled through fluctuating background
auxiliary fields,

S = β
∑
i,n

(
JK|Vi,n|2

2
+ JH|χn|2

4

)
− β

2∑
i=1

λi + S1, (2)

where Vi,n and χn are the auxiliary fields in Matsubara
frequency (iωn) representing the Kondo hybridiza-
tion and intersite magnetic correlation, respectively.
S1 = ∑

nmσ �†
nσ (Onm − iωnδnm)�mσ , with �nσ =

[ck1σn, . . . , ckN0 σn, f1σn, f2σn]T and N0 being the number
of k points in the Brillouin zone of conduction electrons. The
matrix Onm is

Onm =

⎡
⎢⎢⎢⎢⎢⎣

εk1 · · · 0 V 1
1,n−m V 1

2,n−m
...

. . .
...

...
...

0 · · · εkN0
V N0

1,n−m V N0
2,n−m

V
1
1,m−n · · · V

N0

1,m−n λ1
JH χn−m

2

V
1
2,m−n · · · V

N0

2,m−n
JH χm−n

2 λ2

⎤
⎥⎥⎥⎥⎥⎦

,

where V j
i,n−m = JKeiRi ·k j Vi,n−m

2
√

N0
. λi is the Lagrange multiplier for

the constraints ni
f = 1 and takes a real value after a Wick

rotation [62].
The above action is, however, generally unsolvable. To pro-

ceed, we propose a static approximation assuming Vi,n−m =
Viδnm, χn−m = χδnm such that Onm = Oδnm. This ignores the
temporal fluctuations of the auxiliary fields but takes full ac-
count of their spatial fluctuations and probabilistic distribution
beyond the mean-field approximation [63–68]. To see how it
works, we first integrate out all fermionic degrees of freedom
and obtain an effective action only of the auxiliary fields,

Seff = β

2∑
i=1

(
JK|Vi|2

2
+ JH|χ |2

4
− λi

)

− 2
∑

n

ln det(O − iωn). (3)

The summation over Matsubara frequency can be evaluated
using

∑
n ln det(O − iωn) = ∑

l ln(1 + e−βξl ), where ξl de-
note the eigenvalues of O and are always real because O is
Hermitian. This action can also be derived from an effective
Hamiltonian (with the constraints ni

f = 1):

Heff =
∑
kσ

εkc†
kσ ckσ + JK

2

∑
i,σ

(
Vic

†
iσ fiσ + H.c.

)

+ JH

2

∑
σ

(χ f †
1σ f2σ + H.c.), (4)

FIG. 1. (a) The mean-field phase diagram. (b) Comparison of
the mean-field |V1| and that derived from the peak position of
p(V1,V2, χ ) and p(V1,V2) as a function of temperature for JK = 0.34
[dashed line in (a)]. (c) Evolution of the probabilistic distribution
p(V1) on the complex plane of V1 = (V x

1 ,V y
1 ) at T = 0.001 for three

different values of JK in the magnetic regime, near the quantum
critical point, and in the Kondo regime, respectively.

where the auxiliary fields Vi and χ are random vari-
ables satisfying p0(Vi) ∼ exp(−βJK|Vi|2/2) and p0(χ ) ∼
exp(−βJH|χ |2/2), respectively. The model can then be stud-
ied using Monte Carlo simulations [69–73]. Alternately, one
may first eliminate the conduction electron part in O and
obtain

∑
n ln det(O − iωn) = ∑

n ln det(An − iωn) + S0 with

An =
[

λ1 − �11(iωn) JHχ

2 − �12(iωn)
JHχ

2 − �21(iωn) λ2 − �22(iωn)

]
. (5)

Here �i j (iωn) = J2
KV iVj

4N0

∑
k

e−ik·(Ri−Rj )

−iωn+εk
. S0 is a constant from

conduction electrons and can be safely dropped. The result
is also real because A†

n = A−n.
The hybridization physics can then be studied with the

probabilistic distribution p(Vi, χ ) = Z−1 exp(−Seff ), where Z
is the partition function serving as the normalization factor.
Vi and χ are both complex numbers and, due to the high
dimensionality of all variables, one may use the Monte Carlo
and Metropolis algorithm for importance sampling. Com-
pared to the perturbation expansion or mean-field theory, all
spatial fluctuations of the hybridization fields are included.
Below we will fix JH = 0.1 and the impurity distance |R| =
|R2 − R1| = 1 unless noted. For simplicity, we also set the
half-conduction bandwidth to unity and use εk = −(cos kx +
cos ky)/2 with the particle-hole symmetry. The Lagrangian
multipliers are then approximated by their saddle-point value
λi = 0 [74].

To better understand the fluctuation effect, we present
in Fig. 1(a) the mean-field phase diagram with three dis-
tinct regions. For small JK, the mean-field hybridization is
zero (|V | = 0) and there is an artificial second order phase
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transition from |χ | = 0 to |χ | �= 0 at T = JH/4, below which
the two impurity spins form a singlet due to the Heisenberg
interaction. With increasing JK, the mean-field theory predicts
an artificial first-order transition to the Kondo phase (|V | �=
0) [34,35]. By contrast, NRG and CFT analyses suggest a
Varma-Jones unstable fixed point at zero temperature [57–61]
and argue that fluctuations will suppress the artificial first-
order transition and turn it into a crossover.

This is indeed the case in our method. The mean-field
solution is equivalent to the saddle point approximation for
the effective action Seff. Figure 1(b) compares the mean-field
|V1| and that of maximal p(V1,V2, χ ) at a chosen JK [the
dashed line in Fig. 1(a)]. As expected, the two agree well with
each other. However, if we first integrate out χ and estimate
|V1| from the maximum of the joint distribution p(V1,V2),
the transition temperature will be greatly suppressed. Since
p(V1,V2) includes the probabilistic distribution of χ , the dif-
ference reflects the effect of fluctuating magnetic correlations
between impurities in reducing Kondo screening by conduc-
tion electrons. We will show later that once the statistical
fluctuations of Vi are also included, the first-order transition
does turn into a crossover in physical properties. Here just
for illustration we plot in Fig. 1(c) the distribution p(V1) of
the complex field V1 = (V x

1 ,V y
1 ) after integrating out V2 and

χ from p(V1,V2, χ ). With increasing JK, the region of large
p(V1) is seen to first expand from a spot around the origin
and gradually develop into a ring, showing a “Mexican hat”
potential for the hybridization in the Kondo phase.

To extract useful information on hybridization fluctuations,
we define the mutual information of two random variables X
and Y with the joint probability p(x, y),

I (X ;Y ) =
∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (6)

where p(x) = ∫
p(x, y)dy and p(y) = ∫

p(x, y)dx are the
marginal probabilities. Its calculation has historically been
challenging because we typically only have samples rather
than the underlying distribution [75]. A straightforward ap-
proach is to partition the samples into bins of finite size but the
results are very sensitive to the bin sizes [76]. Here we use a
neural estimator recently proposed for the mutual information
[77]:

Iθ (X ;Y ) = sup
θ∈�

Ep(x,y)[ fθ ] − log
(
Ep(x)p(y)[e fθ ]

)
, (7)

where fθ is a function parametrized by neural networks
with the parameters θ ∈ �. Iθ gives a lower bound for the
true mutual information, I (X ;Y ) � Iθ (X ;Y ), following the
Donsker-Varadhan representation [78]. As long as the pa-
rameter space � is large enough, the inequality is tight and
becomes a good approximation. The neural estimator has been
successfully applied to both thermal and athermal systems
[79]. We implement it here with a three-layer neural network
using Tensorflow and the Adam optimizer [80,81].

We first integrate out the phase θi of the complex Vi =
|Vi|eiθi and study the mutual information of the amplitude
|Vi|. The results are plotted in Fig. 2(a) as a function of the
temperature and Kondo interaction, respectively. For small
JK, the amplitude mutual information I (|V1|; |V2|) is small but
grows with lowering temperature due to increasing intersite

FIG. 2. (a) The amplitude mutual information I (|V1|; |V2|) as a
function of the temperature and Kondo coupling. The left inset shows
a schematic diagram of the three-layer neural network and the right
inset shows logarithmic divergence of the maximal mutual informa-
tion at low temperatures. The black solid line is a guide to the eye.
(b) Comparison of the distribution p(|V1|, |V2|) at three different JK

at T = 0.001.

magnetic correlations; while for large JK, a peak appears at
finite temperature, indicating the weakening of intersite mag-
netic correlations due to Kondo screening at low temperatures.
Remarkably, the amplitude mutual information varies non-
monotonically with JK and exhibits a maximum whose height
increases rapidly and diverges logarithmically with lowering
temperature, manifesting the quantum critical behavior above
the Varma-Jones fixed point. To get an intuitive picture, we
compare in Fig. 2(b) the distribution p(|V1|, |V2|) at three
different JK. We see that the values of |Vi| are scattered
along the diagonal direction near the critical JK. Hence the
divergence comes from strong cooperative fluctuations of the
hybridization fields on two impurities. Note that the maximal
distribution of |Vi| is not around the origin for small JK in polar
coordinate, showing the presence of hybridization fluctuations
even deep inside the magnetic phase.

The mutual information of the phases is presented in
Fig. 3(a). Since the effective action of the two-impurity
model is invariant under the transformation Vi → Vieiφi , χ →
χe−i(φ1−φ2 ), we fix the gauge such that χ is real and non-
negative and study the phase mutual information I (θ1; θ2)
of the hybridization fields. We see that it is nearly zero at
high temperatures where the intersite magnetic correlations
are negligible. But unlike that of the amplitude, here it always
grows with decreasing temperature and, in the Kondo regime,
varies only slightly with JK as shown in Fig. 3(a). Its large
value reflects the establishment of cooperative phase fluctua-
tions between two Kondo impurities. To see this more clearly,
we plot in Fig. 3(b) the probabilistic distribution p(θ1, θ2) for
three different values of JK. For small JK, the distribution is
featureless; while for large JK, it is peaked along the diagonal
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FIG. 3. (a) The phase mutual information I (θ1; θ2) as a function
of the temperature and Kondo coupling. (b) Comparison of the dis-
tribution p(θ1, θ2) for different JK at T = 0.001.

direction, indicating that the two are “locked” with each other.
The mutual information therefore provides a useful tool to
measure the intersite phase coherence of the hybridization
fields. Note that while the pattern of p(θ1, θ2) may shift with
the gauge of χ , I (θ1; θ2) is gauge invariant. It is also re-
lated to the Shannon entropy of the phase difference through
I (θ1; θ2) = const. − S(θ ) where S(θ ) = − ∫

p(θ ) log p(θ )dθ

with θ = θ1 − θ2.
We may further study physical properties under this

scheme taking partly account of the effect of magnetic and
hybridization fluctuations. Figure 4(a) plots the local density
of states (LDOS) Ac(i, ω = 0) ≈ − β

π
Gc(i, τ = β/2), where

Gc(i, τ ) = −〈Tτ [ci(τ )c†
i (0)]〉 is the Green’s function of con-

duction electrons. We find a strong suppression (pseudogap)
at the impurity sites in the Kondo regime, in agreement with
that observed in the scanning tunneling experiments [82].
Interestingly, the suppression already starts in the magnetic
regime owing to the hybridization fluctuations. There appears
no abrupt change across the critical point, in contrast to
the mean-field expectation of a first-order phase transition.
Figure 4(b) plots the magnetic resistivity as a function of
temperature calculated using ρ ≈ −πT 2

gxx (τ=β/2) , where gxx(τ ) =
−〈Tτ jx(τ ) jx(0)〉 is the current-current correlation function
and jx(τ ) = i

2

∑
lσ [c†

l+x,σ cl,σ − H.c.] is the current opera-
tor [83,84]. We find logarithmic divergence near the critical
point, suppression in the magnetic regime, and saturation in
the Kondo regime, indicating non-Fermi liquid, metallic, and
Kondo-like behaviors, respectively. Again, the smooth evolu-
tion across the mean-field phase boundary implies a crossover
rather than a first-order phase transition once fluctuations are
included as in our method.

The importance of phase coherence is more evidently
seen if we increase the distance between two impurities.
Figure 4(c) compares the phase mutual information for
|R| = 1 and 8. For large distance |R| = 8, the mutual

FIG. 4. (a) Comparison of the our results (SAF) and the mean-
field results (MF) for the electron spectrum at (i = 1) and away from
(i = 3) the impurity sites at T = 0.001, showing strong suppression
(pseudogap) due to hybridization fluctuations even in the magnetic
regime. (b) Temperature evolution of the resistivity ρ at three differ-
ent JK compared with the MF result (inset). (c) Comparison of the
phase mutual information for different impurity distances |R| = 1
and 8 at T = 0.001. The inset shows the mean-field order parameter
χ . (d) Resistivity as a function of temperature for JK = 0.4, showing
a significant drop due to the intersite phase coherence for |R| = 1
compared to that of the single impurity limit (|R| = 8). The inset
reproduces the experimental resistivity of Ce1−xLaxCu6 for various x
[87].

information is reduced to zero even in the Kondo regime.
A large finite phase mutual information only appears for
small |R|, indicating a fundamental difference of the
multi-impurity Kondo physics from the single-impurity
case. For comparison, the mean-field order parameter χ is
also shown in the inset and found to be zero for |R| = 8 and
finite for |R| = 1. The phase coherence is therefore closely
associated with the intersite magnetic correlations [85,86].
As shown in Fig. 4(d), it causes a significant drop of the
resistivity for |R| = 1, in qualitative agreement with the
experimental observation in Ce1−xLaxCu6 at large x [87].

We conclude that the static auxiliary field approximation
can take good account of some fluctuation effects beyond
the mean-field approximation. The employment of the mu-
tual information can effectively reduce the dimensionality of
the data and allow one to extract key information hidden
in the complicated probabilistic distribution functions. It is
thus a useful tool to probe the quantum phase transition and
phase coherence in Kondo systems. Our method can be ex-
tended easily to other Kondo models to investigate spatial
correlations of the hybridization physics. In the dense Kondo
lattice, we expect that it will also suppress the artificial phase
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transitions predicted in an effective Ginzburg-Landau-Wilson
theory [41–43] and reveal the importance of cooperative hy-
bridization fluctuations and intersite phase coherence, which
is important for understanding the heavy Fermi liquid [54].
The method may also be used to reveal the snapshot or spatial
modulation of hybridization configurations [88–90] and pro-
vide novel insight on the Kondo physics in multi-impurity or
lattice systems.
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