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Role of Coulomb interaction in the phase formation of fcc Ce:
Correlation matrix renormalization theory
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The effect of electronic Coulomb interaction on the phase formation of fcc Ce lattice is investigated by full
ab initio calculations without adjustable Coulomb U and J parameters using the Gutzwiller wavefunction-based
correlation matrix renormalization theory (CMRT). Its total energy and pressure as a function of volume agree
reasonably well with existing DFT + Gutzwiller calculations and experiments, indicating correct capture of
electronic correlation and screening effects within the CMRT formalism. A stable phase is found in line with the
experimental α-Ce phase, and a lurking phase is identified supposedly linked with the experimental γ -Ce phase.
A criterion based on the local 4 f electron charge fluctuation is introduced to confirm the distinct electronic
correlation natures of both phases.
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Introduction. Cerium (Ce) has a rich phase diagram par-
ticularly featured by the α-Ce and γ -Ce phases in the fcc
crystal structure. Under ambient pressure, these two phases
take turns to be the stable structure at low and high tempera-
tures. At room temperature, increasing pressure might lead to
an isostructural first-order phase transition from γ -Ce to α-Ce
with a sudden volume collapse (VC) of about 15% which
ends at a critical point with its critical volume denoted as Vc

on the temperature-pressure (T -P) phase diagram [1]. Both a
Bremsstrahlung isochromat and photoemission spectroscopy
of 4 f electrons recorded a spectral weight suppression on
γ -Ce but a resonance peak on α-Ce [2–4] at their Fermi levels.
A peak around 2 eV below the Fermi energy was shared by
both phases [5]. This was understood to be the lower Hubbard
band reflecting the correlated nature of both Ce phases [6]
with γ -Ce being more correlated given a more concentrated
4 f Fock state occupation [7]. Infrared optical spectroscopy
and neutron scattering, on the other hand, showed little dif-
ference between the two phases except around 300 meV
[8,9], where a small difference arises attributed to spin-orbit
coupling (SOC), hinting at its relevant role played in both
phases. For magnetic susceptibility, α-Ce exhibits a Pauli-like
behavior, while γ -Ce shows a Curie-Weiss behavior with a
small local moment [10]. Lattice vibration plays a contro-
versial role in both phases [11,12], and the phonon density
of state changes little across the VC transition [12]. In all,
experimental evidence has suggested that the abrupt change
between α-Ce and γ -Ce is mainly due to electron correlations
in the Ce lattice.

A plethora of theoretical studies have been carried out to
interpret the physics underneath both Ce phases. The key
role played by correlated 4 f electrons and the very change
in nature from local to nonlocal 4 f electrons across the VC
transition are widely accepted, and how they participate in the
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phase formation and transition has been proposed in a variety
of models [13–15]. While ab initio density functional theory
(DFT) embedding methods [16] such as DFT + dynamical
mean field theory (DFT + DMFT), DFT + Gutzwiller (DFT
+ G), and DFT + U [17–19] have confirmed the importance
of appropriately treating the local electronic correlation of
4 f electrons, they rely on adjustable Coulomb interaction U
and J parameters which cause concerns about their predictive
power. There have also been ab initio calculations that have
not incurred adjustable energy parameters [20–22]. However,
a comprehensive understanding and in-depth exploration of
the role of Coulomb interactions in fcc Ce lattices have not
been provided.

In this Letter, we concentrate on possible consequences
the 4 f electron might have with its electronic Coulomb in-
teraction on fcc Ce lattice using a recently developed fully
ab initio method, the correlation matrix renormalization the-
ory (CMRT) [24–26]. Differing from existing ab initio DFT
embedding studies, CMRT works directly with bare Coulomb
interactions, which readily gives us the power to carefully
study the role of electronic Coulomb interactions in this sys-
tem and to seek possible physics beyond what is already
known. Our calculation produces a stable state nearby α-Ce
and presents evidence on a possible lurking phase located at
the strongly correlated region where γ -Ce sits.

Method. CMRT is a fully ab initio variational theory specif-
ically designed for strongly correlated electron systems by
taking a multiband Gutzwiller wave function as its trial wave
function. The overall formalism was fully derived in Ref. [26]
and is briefly outlined below. By assuming one atom per unit
cell, the CMRT total energy is

Etotal =
∑

i j
αβ, σ

tiα, jβ〈c†
iασ c jβσ 〉

+ 1

2

∑

i jkl
αβγ δ, σσ ′

U αβγ δ

i jkl (〈c†
iασ ckγ σ 〉〈c†

jβσ ′clδσ ′ 〉
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− δσσ ′ 〈c†
iασ clδσ ′ 〉〈c†

jβσ ′ckγ σ 〉)

+
∑

i

∑

�

Ei� (pi� − pi�0 ), (1)

with i jkl sites, αβγ δ orbitals, σσ ′ spins, and � Fock states in
the local correlated subspace C. The energy parameters, tiα, jβ ,
U αβγ δ

i jkl , and Ei� , represent bare hopping, Coulomb integrals,
and eigenvalues of a local Hamiltonian defined in C and with
number operators only. The first two terms in Eq. (1) give
the CMRT expectation value of the bare lattice Hamiltonian
with two-body interactions expanded via Wick’s theorem in
its lowest-order approximation in terms of a one-body term.
Specifically, this one body term is related to its noninteracting
counterpart through

〈c†
iασ ciβσ 〉 = f (zασ ) f (zβσ )〈c†

iασ ciβσ 〉0

+ [1 − δαβ f 2(zασ )]n0
iασ . (2)

Here, f (zασ ) is inferred from an exactly solvable model with
zασ being the Gutzwiller renormalization factor [25]. To best
preserve dominant local physics, the CMRT replaces the ap-
proximate local energy with its rigorous value through the
third term in Eq. (1) involving pi� and pi�0 as full and non-
interacting Fock state probabilities. One major error source in
Etotal is with its Fock terms. This error is carefully addressed
by adding to the bare Hamiltonian a commuting null sum
rule Hamiltonian designed based on total charge conservation.
This extra Hamiltonian aims at best canceling out accumula-
tive Fock contributions and meanwhile redistributing a portion
of nonlocal direct Coulomb interactions to local sites for a rig-
orous treatment. The variational minimization of Etotal results
in a Gutzwiller equation set to be self-consistently solved,
which is capable of producing results quantitatively compara-
ble to experiments in weakly correlated lattice systems [26].

In this study, CMRT calculations are interfaced with the
Hartree-Fock (HF) module of the Vienna Ab Initio Simulation
Package (VASP) [27] to update the effective single-electron
Hamiltonian and its eigenspectrum based on the interact-
ing charge density and correlated renormalization factors
produced by solving the Gutzwiller equation set in a self-
consistent procedure [26]. We focus on the nonmagnetic
state without SOC and perform all the CMRT calculations
using quasi-atomic minimal basis set orbitals (QUAMBOs)
constructed from LDA calculations [28] and with a pseudopo-
tential defined with the projector-augmented wave method
[29] and the exchange-correlation of the Ceperley-Alder [30]
form. The validity of QUAMBOs for CMRT has been verified
in previous publications [24–26]. The use of QUAMBOs en-
dows CMRT with a computational speed of a minimal basis
HF calculation, which is very efficient for strongly correlated
systems. Brillouin zone sampling is done by VASP with an
automatically generated K-point grid taking a Rk length of 50
(Rk = 50) [31].

Results. We present E -V curves from nonmagnetic HF,
DFT + G, and CMRT calculations in Fig. 1. These methods
are closely related, and their differences in total energy reflect
the efficacy of CMRT in treating correlated electron systems.
CMRT constructs its single-particle secular equations on top
of a noninteracting HF Hamiltonian. Consequently, CMRT
total energy includes the exact exchange energy with its dom-

FIG. 1. E -V curves on fcc Ce calculated with nonmagnetic HF,
DFT + G with U = 6 eV (upper right panel of Fig. 1 in Ref [23]),
and CMRT. Taking CMRT energy as the reference, arbitrary vertical
energy shift are applied to HF and DFT + G for a best comparison
with CMRT.

inant local components replaced with an exact local energy.
These actions significantly change the HF behavior and reas-
suringly shift the stable phase from beyond γ -Ce, which is
likely an artifact of the weak interacting HF method, back
to nearby α-Ce in CMRT. This very fact shows the design
of CMRT serves its purpose of appropriately treating (static)
correlation effects well. CMRT and DFT + G share many
things in common [18,26], but have one key difference in
how they represent electronic screening effects. Intimately
connected with and thus sharing close performance with DFT
+ DMFT [18], DFT + G is based on a DFT energy functional
where electronic correlation is partially accounted for with
an exchange-correlation functional. DFT + G further replaces
its local energy component with a supposedly more accurate
term evaluated with a tight-binding Hamiltonian defined with
a set of screened U and J effective energy parameters which
can be adjusted to best match experiments. CMRT, however,
works with bare Coulomb interactions throughout the whole
calculation. Electronic screening is automatically included
through an iterative interacting charge density update by solv-
ing the Gutzwiller equation set in CMRT with a self-consistent
procedure. Such screening effects influence the correlation-
renormalized hoppings and optimized local correlated Fock
occupation, etc. The total energies obtained by both CMRT
and DFT + G are shown in Fig. 1. Their close similarity sub-
stantiates a correct capture of the electronic screening effect in
this system within CMRT. This agreement might also validate
the use of U = 6 eV [23] in DFT + G on the fcc Ce lattice.

P-V curves are shown in Fig. 2 to compare CMRT with
experiments [32,33] and DFT + G [23] acting as the 0 K
reference. As can be seen, the CMRT pressure evaluated with
finite difference passes P = 0 GPa roughly at α-Ce with little
volume dependence halfway between the α- and γ -Ce phases.
It agrees reasonably well in the overall trend with DFT + G
throughout the whole volume range except for nearby 25 Å3,
likely due to systematic error inherent in the basis set used
here.
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FIG. 2. The P-V data obtained from CMRT are compared against
experiments [32,33]. DFT + G at U = 6 eV with SOC [23] is also
included as the 0 K pressure reference. Error bars of CMRT pressure
are derived from those in total energy calculation, see Supplemental
Material Ref. [34].

Figure 3 possibly hints at different physics coming out of
the fcc Ce lattice under the mere effect of electronic hop-
ping and Coulomb interactions. The CMRT E -V curve in
Fig. 3(a) might suggest the existence of more than just a

FIG. 3. (a) CMRT E -V curve and its different equation of state
fits, including a BM(40) + HP(0) fit over the whole volume range
within 40 Å3 and two BM fits in solid red over the same volume
range and solid green for less than Vth. (b) Volume dependence of
nf (solid red, left axis) and ∂nf /∂V (dotted solid blue, right axis), as
well as a linear fit (dashed black) over part of nf to show the relevant
irregularities in ∂nf /∂V are due to error. (c) Volume dependence
of NLCF (solid red) and its weak interacting limit, 1/nf (dashed
red), down-shifted to give contrast against CMRT. The middle two
vertical lines denote Vc and Vth, respectively, and the arrow in panel
(c) denotes VT P.

stable phase. The CMRT energies within a reasonable vol-
ume V covering both Ce phases were fitted with a series of
nested models formed by the Birch-Murnaghan equation of
state (BM) [35] plus an nth-order Hermite Polynomial (HP),
written in a shorthand notation as BM(V ) + HP(n). These
models are statistically judged using the Akaike information
criterion with a correction for small sample sizes (AICc)
[36], with the lowest AICc score designating the optimal fit,
which best balances between the number of fitting parameters
and the residual error. Specifically in this work, the best fit,
BM(40) + HP(0), gives an equilibrium volume of Ṽα = 27 Å3

and a corresponding bulk modulus of B̃0 = 21 GPa, quite
close to 27.9 Å3 and 20 GPa of α-Ce [32]. In contrast, BM(40)
itself shows perceivable differences from the optimal fit and
fails to reproduce the overly flat energy basin of the CMRT
energies. Since the Birch-Murnaghan equation of state is per-
turbatively derived from the elastic theory of a single phase
with changing volume [35,37], its insufficiency to express a
set of E -V data supposedly suggests these data are not from
a single phase. Thus, the statistical analysis hints at hidden
information, which is further analyzed with total 4 f electron
occupation, n f , and its numerical derivative, ∂n f /∂V, both
shown in Fig. 3(b). Given less noisy n f , ∂n f /∂V is capable of
showing a clear jump at a threshold volume of Vth = 31 Å3.
Such a sudden change in slope of n f might signalize the onset
of a nonadiabatic change in the spatial charge distribution
possibly due to single-particle level crossing. Repeating the
model selection procedure on the E -V data within Vth returns
BM(Vth) as the best fit, which nearly overlaps with BM(40) +
HP(0) but deviates away beyond Vth as shown in Fig. 3(a).
The combined message here is energy data less than Vth could
be understood with one phase but such a conclusion becomes
less clear beyond Vth. We might further establish an intimate
connection between the mysterious region and γ -Ce by look-
ing into the normalized local charge fluctuation (NLCF) for
4 f electrons, 〈δn2

f 〉/n2
f = 〈n̂2

f 〉/n2
f − 1, which varies as 1/n f

in the weak interacting limit. It presumably increases when
the lattice constant is small as inferred from Fig. 3(b), but it
must decay in the strong correlation limit as the local charge
fluctuation gets increasingly suppressed. This should result in
a bell shape as volume increases, as clearly seen in Fig. 3(c)
with the turning point volume VT P marking the dividing line
of the qualitatively different correlation nature of 4 f electrons
in fcc Ce. CMRT correctly puts a stable phase in the less cor-
related region, supposedly the experimental α-Ce phase, and
develops something unknown at Vth in the strongly correlated
region not far from Vγ . We might call it a lurking phase as
it is not yet stable but might be further stablized with spin
degrees of freedom included in the calculation, as suggested
by DFT + U and DFT + G [23,38].

Discussion. Motivated by the literature review that a phys-
ical stable phase and its total energy related properties mainly
depend on a proper treatment of the local correlated 4 f
electronic interactions on the fcc Ce lattice, we apply our
recently proposed fully ab initio CMRT to study the possible
physics out of the electronic Hamiltonian in a nonmagnetic
state. Compared against HF and DFT + G, CMRT is shown
to properly treat electronic correlation effects and naturally
render the proper amount of screening within its formalism
starting from bare Coulomb interactions. These observations
help to validate CMRT as a feasible fully ab initio method
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for strongly correlated electron systems. On the other hand,
the close comparison between DFT + G [23] and CMRT
given here should by no means be used to judge the quality
of CMRT on the isostructural VC phase transition in fcc Ce
lattice as SOC is not treated in CMRT here.

The introduction of NLCF helps to establish an intimate
connection between the lurking phase suggested here and
γ -Ce. It might be interesting to further understand how NLCF
helps to delineate the changing nature of electronic correlation
in this system. Obviously, such a change must be related
with electronic kinetic and Coulomb potential energies, the
only two energies treated in this study. Physically, a reduced
volume renders enhanced hopping and hybridization which
might overcome intersite Coulomb repulsion and bring 4 f
electrons out of its localized states to interact more actively
with itinerant electrons. Such a delicate competition brings
up a stable phase around Vα in CMRT. Based on the same
trend shared by its CMRT and 1/n limiting behaviors, NLCF
tells us that this phase is less correlated with kinetic energy
dominating Coulomb potential energy and gives 4 f electrons
a tendency to move around, or be nonlocal. Beyond VT P,

Coulomb repulsions take over kinetic energy, thus preventing
4 f electrons from moving around, viz., being local. Located
within this region, γ -Ce is thus correctly predicted to be
strongly correlated by CMRT. VT P might be an estimator for
the critical volume Vc by noting this is where α-Ce joins γ -Ce,
say, on the P-V phase diagram at the critical temperature.
The nearly identical values between VT P and Vc support the
objectivity of this study. In the above analysis, NLCF plays an
indicating role of how correlation affects electronic behavior
in the fcc Ce lattice. The local-nonlocal physics indicated
by NLCF in fcc Ce is consistent with other theoretical and
experimental studies [7,15]. In weakly correlated systems,
NLCF is expectedly less informative [39].
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