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Probing conducting interfaces by combined photoluminescence and transport measurements:
LaVO3 and SrTiO3 interface as a case study
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The carrier-density distribution near a conducting interface and the related band structure are topics of great
contemporary importance in low-dimensional quantum solids. We propose a scheme, innovatively combining
the spectroscopy techniques of photoluminescence and time-correlated single-photon counting with transport
measurements of resistivity to unravel the carrier distribution, the shape of quantum well, energy subbands, and
Fermi surfaces of the conducting interface of LaVO3 and SrTiO3. Electronic parameters, such as the carrier
density, the mobility, estimated from the electrical measurements, are in remarkably good agreement with those
extracted from the spectroscopy with theoretical modeling providing a bridge between the two sets of data
analysis.
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A “two-dimensional electron gas” (2DEG) is a model
system that consists of non(weakly) interacting highly con-
ducting electrons that can freely move in two dimensions
but confined in the third dimension. The 2DEG is of
common occurrence in a transistor made out of semicon-
ductors, specifically metal-oxide-semiconductor-field-effect
transistors (MOSFETs) [1]. Electrons confined in a quantum
well at the heterojunction of two semiconducting materi-
als also act as a 2DEG at the interface [2]. Such a 2DEG
exhibits higher mobilities than those in MOSFETs. The
heterojunction-based 2DEGs are interesting not only because
of their fascinating physical properties, but also because of
their potential applications to modern electronics industries
[3–5].

Perovskite oxides could turn out to be an interesting re-
placement of the conventional semiconductors because of
their emergent properties, such as superconductivity [6,7],
magnetism [8], coexisting magnetism and superconductiv-
ity [9], optically induced ferroelectricity [10], multiferroicity
[11,12], persistent photocurrent [13–15], photoinduced de-
magnetization and metal insulator transition [16], Rashba spin
splitting [17], Shubnikov–de Hass oscillations [18], to name
a few. These functionalities, coupled with 2DEG behavior
may offer a new pathway for the realization of integrated
laboratory-on-chip devices [19,20]. In a pioneering paper,
Ohtomo and Hwang demonstrated the appearance of a high
mobility two-dimensional conducting layer at the interface
of two band insulators LaAlO3 (LAO) and SrTiO3 (STO)
[3]. Such interfaces, subsequently, showed further interesting
properties, although many fundamental questions remain un-
resolved to this date. The origin of conductivity at the interface
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is explained by a number of proposed mechanisms, such as
polar catastrophe or electronic reconstruction, cation inter-
mixing, oxygen vacancies, and cation stoichiometry. None of
the mechanisms is fully accepted so far, and the origin of this
2DEG at the interface of insulating oxides is still in debate
[21,22].

Among all the proposed models the most accepted one is
the polar catastrophe model. For a perovskite oxide ABO3, the
atomic stacking consists of AO and BO2 layers in the (001) di-
rection. These layers could either be charged neutral as in STO
[(SrO) = 0 and (TiO2) = 0)] or could be charged +1/ − 1,
alternatively, as in LAO [(LaO) = +1 and (AlO2) = −1)].
When two such perovskites are stuck together, a polar dis-
continuity at the interface occurs, and a diverging electrostatic
potential builds up. This diverging potential can be avoided
by a transfer of (0.5-electron) charge to the interface. This
is known as the polar catastrophe model. This model has
two important consequences: (1) A critical thickness of the
film is needed to realize the conducting interface, and (2)
the interface should be doped with half an electron per unit
cell. It is reported that for the LAO/STO interface, although
a critical thickness is needed to realize the conducting inter-
face, the interfacial carrier concentration is much less than
that predicted from the model. However, in the case of the
GTO/STO (GTO: GdTiO3) heterostructure the interface is
doped 0.5 electron per unit cell as predicted by polar catastro-
phe model but does not need any critical thickness of GTO to
get interfacial conductivity. Whereas, the LVO/STO interface
satisfies both the characteristics of polar catastrophe model, it
needs a critical thickness of LVO to realize the conducting
interface, and the interface is doped with 0.5 electron per
unit cell. The n-type interface in LAO/STO is a heterostruc-
ture of two band insulators, whereas both LVO and GTO
are Mott insulators. It is important to note that LVO(GTO)
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is a d2(d1) system whereas LAO is a d0 system. Despite
that it is interesting to note that the orbital characters of the
interfacial electron for all these three heterostructures pre-
dominantly have xy characters. On the other hand, that within
the STO substrate, it is predominantly of the yz/xz character
for all these heterostructures [23,24]. In addition, the growth
condition of the LAO thin film is rather reducing (typically
750 ◦C) compared to LVO (typically 600 ◦C). Furthermore,
Al has a higher affinity towards oxygen than “V.” Therefore,
the possibility of an oxygen vacancy in the STO component
of the LVO/STO heterostructure is much less in comparison
with the STO component of a LAO/STO heterostructure and,
hence, the use of LaVO3 instead of LaAlO3 as the film layer
becomes important.

A fascinating topic with, however, patchy understanding is
the distribution and origin of the conducting layer. It is re-
ported that most conducting electrons are concentrated within
a range of 7–10 nm near the interface on the STO side, al-
though a long tail of the carrier density is extended up to 1 μm
[25–27]. Understanding carrier density distribution, the shape
of the confinement potential and electronic subband quantiza-
tion is getting increasing attention because of the possibility
of the existence of “Rashba spin-splitting” bands in the 2DEG
at the conducting interface of perovskite oxides [17,18,28–
30]. It is now crucially important to amplify the shape of the
confinement potential that may produce an internal electric
field at the interface. The electric field produced at the inter-
face transforms in the rest frame of a relativistic electron to
a magnetic field that couples to its spin leading to a substan-
tial Rashba spin-split band. In this Letter, we map the depth
profile of conducting carriers at the interface of LVO and
STO from room-temperature photoluminescence (PL) life-
time measurements. From a theoretical model, we determine
the shape of the confinement potential well and the energy
subbands at the interface. Using the theoretical model and the
PL lifetime data, we estimate the carrier density and effective
masses of the conducting electrons, which match rather well
with those obtained from electric transport measurements.
The LVO/STO heterostructure was grown by a pulsed laser
deposition system using a LaVO4 polycrystalline ceramic pel-
let as a target. The KrF laser of the fluence of 2 J cm−2 at
a repetition rate of 2 Hz was used to ablate the target, and
150 nm of the LVO thin film was deposited on top of the TiO2

terminated (001) STO at 600 ◦C in 1 × 10−6-Torr oxygen par-
tial pressure [17,31]. The schematic of the heterostructure is
shown in Fig. 1(a). The resistivity of the interface is measured
as a function of temperature which suggests a metallic nature
of the interface down to 3 K [see Fig. 1(b)]. To measure
the resistivity of the system, we had used an ultrasonic wire
bonder to connect the measurement systems to the interface.
We have checked the top-down conductivity of the system
and found it is electrically insulating within our measurement
limit. We have also ensured that the film is insulating. It is
worth mentioning that below around 5 K there is small upturn
in the resistance. A similar effect reported by Hotta et al. and
was explained by the localization mechanism arising from the
defects present in the system [31,32]. We first focus our atten-
tion on Fig. 1(c) which shows the PL spectra of an undoped
STO single crystal and a n-type LVO/STO heterostructure
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FIG. 1. (a) Schematic of the LVO/STO heterostructure showing
the alternative charged layers of LVO and neutral layers of STO
that gives rise to 2DEG at the interface and (b) 2D resistivity of
the LVO/STO sample. The inset shows the low-temperature (3-K)
Hall measurement, and (c) shows the room-temperature PL measure-
ment of the undoped (001) STO single crystal and the LVO/STO
heterostructure.

at room temperature. The excitation photon energy and the
excitation density used is 3.54 eV and 0.028 mJ/cm2, respec-
tively. The PL peak is at 2.9 eV for the undoped STO whereas
the LVO/STO heterostructure is characterized by a broad
peak at 2.8 eV (blue PL) which is similar to the previously
reported electron-doped SrTi1−xNbxO3 and n-type LAO/STO
heterostructures [27,33,34]. The broad PL peak for nondoped
STO signifies the polaron (electron-phonon coupling) forma-
tion, defects states, or the impurity present in the system [35].
The origin of the similar broad peak in LVO/STO is, thus,
mainly from the STO substrate. The blue PL observed for
the LVO/STO heterostructure is because of the two-carrier
radiative recombination of photogenerated electrons and the
holes. The dynamics of photogenerated carrier density n(t ) [or
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p(t )] and the PL intensity I (t ) are governed by the following
rate equations [27,35,36]:

dn

dt
(t ) = −An(t ) − Bradn(t )p(t ) − C[n2(t )p(t ) + p2(t )n(t )],

(1)

I (t ) ∝ Bradn(t )p(t ). (2)

Here A, Brad, and C are the nonradiative photogenerated
single carrier (electron or hole) trapping rate, two-carrier
radiative recombination coefficient, and nonradiative Auger
recombination rate, respectively. The Auger recombination is
a three-carrier (electron-electron-hole and hole-hole-electron)
nonradiative recombination.

When we shine light on undoped STO, electrons and holes
are generated. These photogenerated electrons and holes are
identical (n(t ) = p(t ), here n(t )[p(t )] represents the number
density of electrons (holes) at time t ) in number. In the con-
ducting LVO/STO interface the number of intrinsic electrons
(Ne) is much greater than that of the photogenerated electrons
(Ne � n: Ne + n ∼ Ne). It is reported that at room temperature
the radiative recombination is very small for undoped STO
[38]. The term “Bradn(t )p(t )” could be neglected from Eq. (1)
as it is significantly small in comparison with the other two
terms. This leads to the fact that the PL is dominated by the
Auger recombination of doped electrons and photogenerated
holes [27,34,35]. For the conducting LVO/STO interface,
Eqs. (1) and (2) are now modified to (with the approxima-
tion: n2(t )p(t ) + p2(t )n(t ) = [Ne + n(t )]2 p(t ) + p2(t )(Ne +
n) ∼ N2

e p(t ) + p2(t )Ne: for Ne � n),

d p

dt
(t ) = −Ap(t ) − CN2

e p(t ), Ne � n. (3a)

Integrating both sides of Eq. (3a) we get

p(t ) = exp −(
A + CN2

e

)
t, (3b)

I (t ) ∝ BradNe p(t ). (4)

From Eq. (3b), the photogenerated carrier/hole decay is
exponential with decay rate (A + CN2

e). The photogenerated
carrier/hole decay rate is dependent on the intrinsic carrier
density. In addition, the PL decay has a direct relationship
with the photogenerated carrier decay [Eq. (4)], hence, the
intrinsic carrier density of the sample can be calculated using
PL decay. The optical penetration depth is very sensitive to the
excitation wavelength of the used laser [37]. The penetration
depth for the laser 375 and 405 nm is ∼300 nm and >10 μm,
respectively, hence, by using laser 375 nm, electron dynam-
ics around 100 nm below the interface can satisfactorily be
monitored, and the laser 405 nm is monitoring the bulk of the
sample [27,37].

Figures 2(a) and 2(b) represent the PL dynamics of the
undoped (001) STO and the LVO/STO heterostructure for
different excitation wavelengths (375 and 405 nm) monitored
at 2.9 and 2.8 eV, respectively. It can be clearly seen from
Figs. 2(a) and 2(b) that the PL decay rate for undoped STO
is slower than that of the LVO/STO interface. The decay rate
of nondoped STO at 405 nm is slower than at 375 nm and
signifies the low carrier density in the bulk of the sample
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FIG. 2. PL dynamics of (a) undoped STO and (b) a LVO/STO
heterostructure under the excitation wavelengths of 375 and 405 nm
monitored at 426 and 442 nm, respectively. The solid curves repre-
sent the theoretical fitting of PL dynamics using Eq. (6).

in comparison to the surface. A similar behavior is already
reported that shows a nonexponential behavior and explained
in terms of the inhomogeneous distribution of carriers in
the nondoped STO [38]. The faster decay in the LVO/STO
heterostructure is due to the Auger recombination of the
2DEG originated at the interface and the photogenerated holes
[34,38,39]. From Fig. 2(b), a nonexponential behavior of the
PL decay curve in the LVO/STO sample is observed, which
suggests that the charge carriers near the interface are inho-
mogeneously distributed in space. The decay rate is faster
for the lower excitation (375-nm) wavelength corresponding
to the least penetration of light, suggesting that most of the
carriers are accumulated at the interface of the LVO/STO
heterostructure. We have tabulated the decay constants of bare
STO and the LVO/STO interface for both 405 and 375 nm
light in (the Supplemental Material part (3), Table 1 [40]).

From Eq. (4) the temporal variation of the PL intensity is
given by

I (t ) ∝ Brad

∫ ∞

0
Ne(z)p(z, t )dz. (5)

Here, p(z, t ) is calculated from Eq. (3a), p(z, 0) =
p0exp(−αz), where 1/α is defined as the optical penetration
depth. To solve Eq. (5) we have used Ne(z) = N0exp(−βz),
where 1/β is the depth of the carrier distribution as the spatial
distribution of the charge should be a smooth function of the
distance that will decrease as you go away from the interface.
The simplest and obvious choice is an exponential depen-
dence. The previous reports have also used an exponential
special variation of charge [27,35,38,41].
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FIG. 3. (a) Calculated spatial profile of the carriers at the interface perpendicular to the surface, (b) calculated potential energy as a
function of depth from the surface, and (c) the confinement potential VP(Z ) calculated from Poisson’s equation and VM (Z ) the Morse potential
as a function of depth (Z) from the interface (Z = 0, Z > 0 is the STO side and Z < 0 is the LVO side). The dotted lines show the energy
subbands of the potential well with the calculated wave function for the given energy level, and the inset represents the projection of the same
in Kx (or the Ky )-E plane, the two Fermi momentum vectors corresponding to two conducting channels as well as the Fermi level are also
indicated.

By substituting all values in Eq. (5) we get the PL intensity
as

I (t ) ∝ K

β
e−At [1 − erf (N0

√
Ct )], (6)

where, erf (N0

√
Ct ) is an error function of its argument. The

values of the constants A = 1.7 × 106 s−1 and C = 1.3 ×
10−32 cm6 s−1 are taken from the previously calculated values
for undoped STO [34,38,39]. The existence of surface carriers
in nondoped STO is already reported with a typical value of
N0 ∼ 1018 cm−3 [34,38,42]. The N0 obtained from our fitting
of nondoped STO data [Fig. 2(a)] is ∼1.07 × 1018 cm−3 and
is in good agreement with previous reports. To estimate the
value of N0 and 1/β for the LVO-STO interface we have fitted
the experimental data of Fig. 2(b). The best fit is obtained as
1/β = 10 nm and N0 = 2.21 × 1020 cm−3 for the LVO-STO
sample [Fig. 2(b)] for which the total carrier density obtained
from the spatial integration of Ne(Z ) is ensured to match well
with that obtained from Hall measurements. The potential-
energy profile [VP(z)] near the interface as a function of depth
is calculated from Poisson’s equation given as [43]

VP(z) = − eN0

ε(0)ε0

(
e−βz

β2

)
, (7)

and is drawn in Fig. 3(b). As it turns out, the potential distribu-
tion can be well approximated by the Morse potential [VM (z)]
[44],

VM (z) = De
(
e−2a(z) − 2e−a(z)

)
, (8)

where, De represents the depth of the potential well. The
value of the ε used in Eq. (7) is 400. In Eq. (8), a represents

the width of the potential well formed at the interface (a =
1/β = 10 nm). Figure 3(c) shows the potential-energy profile
generated from the Poisson relation Eq. (7) and the Morse
potential Eq. (8). The eigenvalues and eigenfunctions of the
Morse potential are exactly solvable [45]. This fact is uti-
lized to find out the energy eigenvalue and the wave function
for this confinement potential by using the Morse potential
approximation. The calculated energy eigenvalues and wave
function for the LVO/STO system are shown in Fig. 3(c). To
calculate the energy eigenvalues, we have used the effective
mass of STO 1.5me. The wave function quickly vanishes as
we go away from the interface especially for lower subbands.
The spatial distribution of the intrinsic carrier as a function of
depth from the interface is plotted in Fig. 3(a) which indicates
that most of the intrinsic conducting carriers are concentrated
within a few nanometers near the LVO/STO interface. The
total calculated carrier density ∼2.21 × 1014 cm−2 is very
close to the carrier density (3 × 1014 cm−2) predicted from
the polar catastrophe model [46]. A similar carrier density also
may be obtained in oxygen vacant STO-based interfaces. But
in the present case, we have ensured that the level of oxygen
vacancy in the present system is below the detection limit and,
hence, extremely low.

The Hall measurement was performed to elicit the nature
and amount of the charge carrier present in the system. We
have applied current along the x axis, a magnetic field is
applied along the z axis, and the Hall resistance is measured.
The sign of the Hall resistance suggests that the carriers are
of n type. The inset of Fig. 1(b) shows the Hall data at 3 K,
having a nonlinear nature. Similar nonlinear behavior was
also reported previously for the LVO/STO interface [31,32].
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This nonlinear nature of the curve indicates the presence of
two types of electrons and, hence, the existence of two-band
conduction in this system [32,47,48]. In the two-band model,
two conduction channels are corresponding to two groups of
charge carriers with mobilities μ1 and μ2 and charge carrier
densities n1 and n2. In the two-band model, the Hall and
longitudinal resistances are written as

Rxy(B) = B

e

n1μ
2
1 + n2μ

2
2 + (n1 + n2)(μ1μ2B)2

(n1μ1 + n2μ2)2 + (n1 + n2)2(μ1μ2B)2
. (9)

This equation has four unknown parameters but could be
rewritten as an effective two-free parameter equation by using
the fact the longitudinal resistance (Rxx) in the absence of any
applied magnetic field is given by

Rxx(B = 0) = 1

e(n1μ1 + n2μ2)
. (10)

The best fit is for carrier densities n1 = 0.54 × 1014 and
n2 = 1.7 × 1014 cm−2 with mobility values of μ1 = 500 and
μ2 = 2000 cm2 V−1 s−1, respectively. A detailed description
of this analysis is given in Ref. [32]. The effective masses for
the energy subband calculated from these data are 2.1me and
0.67me. The effective masses are calculated from the mobility
by using scattering time 7 × 10−13 s [49–51]. The effective
mass of the carriers is similar to that reported for LAO/STO
systems (∼2.5me and ∼0.5me) [50,52–54].

We have adopted the following scheme to draw the elec-
tronic bands [Fig. 3(c) inset] of this system. From the
two-band fitting of Hall data, the carrier density of the indi-
vidual conducting channel was calculated. By using the mass
of the majority carriers the curvature of that parabolic band
was determined, and the carrier density was used to find out
the Fermi velocity and the Fermi level of the system. Keeping
the Fermi level fixed for the second conduction channel and
estimating the Fermi velocity from the carrier density of the
minority carrier, the second parabolic band is drawn. For both
channels the energy value at K = 0 is determined by the
energy eigenvalue estimated from confinement potential. It
is pleasantly surprising to note that the effective mass of the
second channel (m∗

2 = 0.6me) matches excellently with that
estimated from the Hall measurement (m′∗

2 = 0.67me). The
parabolas in the Fig. 3(c) inset represent the two types of
carriers, namely, light and heavy carriers. This is very similar
to the Ti 3d t2g band splitting in the STO at the interface of the
LAO/STO heterostructure [55,56].

In conclusion, we have proposed a method to map out
the carrier density distribution, the quantum well structure,
and the related energy subbands for a conducting interface
by combining the optical spectroscopy with the electrical
transport measurements utilizing a theoretical model. Our ex-
periments on the conducting interface of LVO/STO suggest
that the potential near the interface could be well approxi-
mated by the Morse potential. It is also important to note that
the distribution of the carriers is mostly concentrated within
a few nanometers near the LVO/STO interface, suggesting a
nearly two-dimensional nature of this electronic system. This
confinement leads to the formation of electronic subbands.
The wave function and the energy subbands for this quantum
well are analytically solved with the Morse potential approx-
imation. The total carrier density estimated from this carrier
density distribution is 2.21 × 1014 cm−2, which is very close
to the carrier density of ∼3 × 1014 cm−2 predicted from the
polar catastrophe model and the one deduced by analyzing
the Hall data. By fitting the observed nonlinear Hall data with
the two-band theory the mobility for two conducting channels
are estimated to 500 and 2000 cm2 V−1 s−1. The correspond-
ing carrier densities are 0.54 × 1014 and 1.7 × 1014 cm−2,
respectively. Excellent agreement in the effective masses es-
timated from electrical transport measurements (m′∗

1 :2.1me

and m′∗
2 :0.67me) and optical spectroscopies (m∗

1:2me and
m∗

2:0.6me) have been observed. Our method offers a way to
examine the electronic distribution, shape of the confinement
potential, as well as the electronic structure of a conducting
interface. This method is not restricted to any particular sys-
tem and could be extended to other conducting interfaces as
well. A fair understanding of the quantum well and related
energy subband structure might be helpful to understand re-
cently observed fascinating physical properties arising from
the “Rashba interaction,” such as the planar Hall effect, the
nontrivial Berry phase, etc., at the conducting oxide interfaces
with strong spin-orbit coupling.
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