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Multipole representation is proposed for the anisotropic Coulomb interactions in solids. Any local interactions
can be expressed as the product of two multipole operators, and the interaction parameters are systematically
classified based on the point group symmetry. The form of the multipole interactions are restricted not only
by the symmetry and Hermiticity but also by the spatial structure of the interaction, which is closely related
to the presence or absence of the odd-rank multipoles. As an exemplary demonstration, the screened Coulomb
interaction for SrVO3 is considered, where only a few parameters are necessary for its description. By comparing
it with the unscreened version, the totally symmetric A1 representation is found to be strongly suppressed, but the
A1 component still gives a dominant contribution for the anisotropic part of the interaction. The anisotropic inter-
actions are also applied to the localized two f -electron wave functions, which give the same-order contribution
as the one-body level splitting estimated by the band structure calculation.
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The interactions among electrons cause a variety of intrigu-
ing phenomena in strongly correlated systems. In solids, the
tight-binding model is frequently used for the description of
the correlated electronic states, where the Coulomb interac-
tions can be expressed in the second quantized Hamiltonian by
the product of the four creation/annihilation operators of elec-
trons. Although for most cases the Hubbard model with the
on-site interaction is enough for the phenomena of interest, the
multiorbital nature is still necessary to be considered for al-
most all the strongly correlated materials including d-electron
systems such as iron-based superconductors, heavy-electron
materials, and molecular-based conductors [1].

Usually, the Coulomb interaction is considered as the one
in the spherical limit, where only a few parameters are neces-
sary [2]. In the presence of the multiorbital effects in solids,
however, a discontinuous point group symmetry at the corre-
lated site complicates the spatial structure of the interaction.
The Coulomb interaction in solids has been systematically
studied for a spherical interaction with cubic crystalline field
[3,4]. The more general interactions have also been considered
by Bünemann and Gebhard, where the interaction parameters
are classified based on point group symmetries [5]. In the
present paper, we propose a simple representation in terms
of multipole operator which was originally introduced for a
description of the local degrees of freedom of f electrons
[6–15] in terms of total angular momentum J . The multipoles
have also been used for analyzing the two-particle Green
functions [16], and applied to the other systems beyond the
scope of f electrons [17–20]. As demonstrated in this pa-
per, the multipole representation makes it simpler to consider
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the anisotropic Coulomb interactions in solids with discrete
point group symmetries. There are even-rank and odd-rank
multipoles as classified by the time-reversal symmetry (TRS),
and we show that the spatial structure of the interaction is
closely connected to the presence or absence of the odd-
rank multipoles in the interaction. The proposed scheme is
used for analyzing the complicated effective interactions in
the first-principles calculations [21–29]. While the multipole
representation for the classical Coulomb potential has been
proposed [30], our scheme with a second quantization form
can be used in the quantum mechanical level.

The local Coulomb interaction in solids is written in a
general form as

HC = 1

2

∫
dr1dr2dr3dr4

× U (r1, r2, r3, r4) : n(r1, r3)n(r2, r4) :, (1)

where n(r, r′) = ∑
σ ψ†

σ (r)ψσ (r′) with the annihilation op-
erator ψσ (r) of electrons with spin σ (=↑,↓). The colon
(:) symbol makes the expression normal ordering, i.e., the
creation operators are placed left and annihilation operators
right with the consideration of anticommutation relation [3].
For specific principal and azimuthal quantum numbers (n, �)
of localized electrons at an atom, it is expressed as

HC = 1

2

∑
m1m2m3m4

Um1m2m3m4 : nm1m3 nm2m4 :, (2)

where the density operator is defined by nmm′ = ∑
σ c†

mσ cm′σ
with the electron annihilation operator cmσ of a magnetic
quantum number m.

For a spherically symmetric case, it is well known that the
above matrix element can be expressed by the Slater-Condon
parameters, which are denoted as F k where k is a rank [2].
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TABLE I. List of multipoles for each rank classified by the ir-
reducible representations under the cubic Oh point group symmetry.
See Ref. [12] for the concrete form of the multipoles.

Rank of multipoles Type of multipoles (�)

k = 0 A1

k = 1 T1

k = 2 E + T2

k = 3 A2 + T1 + T2

k = 4 A1 + E + T1 + T2

k = 5 E + T a
1 + T b

1 + T2

k = 6 A1 + A2 + E + T1 + T a
2 + T b

2

Owing to the symmetry of the Gaunt coefficient, the odd k
terms can be set as zero and only � + 1 parameters are needed
(k = 0, 2, . . . , 2�). In solids, on the other hand, the continuous
symmetry does not exist, and therefore the matrix elements
have much complicated structure as seen in, e.g., Ref. [28].

The central idea of this paper is to rewrite the Coulomb
interaction in terms of multipole operators, which are defined
by Mξ = ∑

mm′σ c†
mσ Oξ

mm′cm′σ where ξ is the index for the
multipole and Ôξ is a Hermitian (2� + 1) × (2� + 1) matrix.
These are constructed through the combination of angular
momentum operators [12]. The number of the full set of
matrices is also (2� + 1)2. Hence the series of the matrices
is regarded as complete, and any matrix can be expanded by
these matrices. More specifically, the matrices satisfy the re-
lations Tr Ôξ Ôξ ′ = (2� + 1)δξξ ′ and

∑
ξ Oξ

m1m2
Oξ

m3m4
= (2� +

1)δm1m4δm2m3 . These relations can be understood by consid-
ering the most simple situation with 2×2 matrices, where
the three Pauli matrices and identity matrix are involved. We
can transform the density operator nmm′ into the multipole
operators, and the interaction is written as

HC = 1

2

∑
ξξ ′

I (ξ, ξ ′) : Mξ Mξ ′ :, (3)

where the relation I (ξ, ξ ′) = I (ξ ′, ξ ) = I∗(ξ, ξ ′) holds. Start-
ing from Eq. (2), we can perform the multipole expansion
uniquely with a given set of matrices. This is the most general
expression for the local Coulomb interaction in the absence of
the spin-orbit coupling in the interaction terms [31].

In solids, the multipole matrices are classified by the rank,
which corresponds to the angular momentum of multipoles,
and also by the irreducible representation under a given point
group [12]. The complete set of the multipoles are explicitly
given in the literature [12,20,32], and here we utilize them
for description of interactions. The types of the multipoles
are obtained by considering the irreducible decomposition for
each rank [4,33], and we summarize the results in Table I for
the cubic point group. The index for multipoles is then written
as ξ = (k, �, α), where � identifies the type listed in Table I
and α distinguishes the degenerate components belonging to
�. Note that � is implicitly dependent on k (see Table I), and
also α dependent on �.

Here, we explain the multipole matrices in detail for the
cubic point group. Following the procedure given in Ref. [12],
we construct the complete orthonormal basis for the matrices.
Since the full list is shown in the literature [12,20,32], we do

not list the full set of matrices but we only show a few of them.
First of all, we define the angular momentum (2� + 1) ×
(2� + 1) matrices L̂x,y,z, and their combination leads to the
complete set of matrices Ôk,�,α . More concretely, we in-
troduce the diagonal matrix L̂z = diag (�, � − 1, . . . ,−�) by
determining the quantization axis, and then the x and y compo-
nents are constructed as they satisfy the commutation relations
[L̂μ, L̂ν] = i

∑
λ εμνλL̂λ, where εμνλ is the antisymmetric ten-

sor. The trivial one is the rank 0 matrix

Ô0,A1 = 1̂, (4)

where we have omitted the index α for the one-dimensional
representations. The rank 1 matrices are equivalent to the
angular momentum matrix. Noting that the trace of squared
matrix is normalized to 2� + 1, we obtain

Ô1,T1,1 =
√

3

�(� + 1)
L̂x, (5a)

Ô1,T1,2 =
√

3

�(� + 1)
L̂y, (5b)

Ô1,T1,3 =
√

3

�(� + 1)
L̂z. (5c)

The rank k = 2 operators are made from the combinations of
L̂x,y,z. We utilize the polynomials x2 − y2, 3z2 − r2 (r2 = x2 +
y2 + z2), xy, yz, zx for the rank 2 representation, and replace
them by the angular momentum matrix to obtain the rank 2
matrices. In order to make it Hermitian, we symmetrize the
expression and obtain

Ô2,E ,1 ∝ 3L̂2
z − L̂

2
, (6a)

Ô2,E ,2 ∝ L̂2
x − L̂2

y , (6b)

Ô2,T2,1 ∝ L̂xL̂y + L̂yL̂x, (6c)

Ô2,T2,2 ∝ L̂yL̂z + L̂zL̂y, (6d)

Ô2,T2,3 ∝ L̂zL̂x + L̂xL̂z. (6e)

Note that we need to normalize the expressions. Repeating
the same procedure for the higher order ranks, we obtain the
complete set of the (2� + 1)2 matrices.

The multipole interaction now becomes

HC = 1

2

∑
k�

∑
k′�′

I (k, k′; �,�′)
∑

α

: Mk�αMk′�′α : . (7)

Because of selection rules in the group theory, the multi-
poles with different irreducible representations do not interact
[34]. However, this does not mean the interaction is diago-
nal with respect to �: for example, the interaction parameter
I (2, 6; T2, T a

2 ) can be finite since the two multipoles belong
to the same irreducible representation T2. This property is
also checked by using the concrete expressions for multipoles
given in Refs. [12,20]. While we restrict ourselves to a fixed �

case, the extension for the parity mixing between the different
orbital angular momenta is also possible with using a suitable
multipole basis [32].

The above multipole representation can be identified with
the familiar Slater-Condon parameters F k in the spherical
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FIG. 1. Local Coulomb interaction parameters for SrVO3. Multipole representation for (a) unscreened interaction and (b) screened
interaction calculated by cRPA are shown. The value of I (0, 0; A1, A1) needs to be multiplied by 20 in (a) and 5 in (b). In (c), the deviation
from the spherical limit δI = I − I spher for the screened Coulomb interaction in (b) is plotted.

limit. In this case I is dependent only on the rank k
of the multipoles, and there is a simple correspondence
I (k, k′) ∝ F kδkk′ [34]. The Slater-Condon parametrization is
frequently utilized in local density appoximation (LDA)+U
and LDA+dynamical mean-field theory (DMFT) frame-
works [35,36], but is not generally valid in solid state
materials.

For a time-reversal symmetric system, the even- and odd-
rank multipoles do not mix, since the odd-rank multipoles are
odd under the time-reversal transformation. Actually, the ap-
pearance of even-rank or odd-rank multipoles are also closely
related to the functional form of U (r1, r2, r3, r4). Usually, the
interaction U (r1, r2, r1, r2) at two spatial points is considered.
In this case, the interaction includes only the even-rank mul-
tipoles (See Supplemental Material (SM) A [34]), and hence
it does not have the ability to describe the TRS breaking in
interaction terms. The complexity enters when we consider
the more general case U (r1, r2, r1, r4), which can be real-
ized by considering the static three-point vertex correction
to the Coulomb interaction. However, even in this case, we
do not have odd-rank multipoles for the time-reversal sym-
metric system [34]. Thus, only the case of U (r1, r2, r3, r4)
with static four-point vertex corrections induces the odd-rank
multipole interactions. We note that, for a TRS broken system,
the three-point function can have the odd-rank multipoles
coupled to even-rank multipoles, but the two-point func-
tion does not have an ability to describe the TRS breaking.
In this way, the appearance or disappearance of odd-rank
multipoles is connected with the spatial structure of the
interaction.

Below, we consider the three specific cases as a demonstra-
tion of multipole representation of the Coulomb interactions.

Application to p electrons. In order to have intuition for
multipole interactions, let us first consider the p electrons
(� = 1) with real wave function basis. The results are also
applicable to the t2g orbitals of d electrons [37] and t1u

orbitals of fulleride materials [38]. The interaction is usu-
ally parametrized as the Slater-Kanamori interaction [39–41]:
Uγ γ γ γ = U , Uγ γ ′γ γ ′ = U ′, Uγ γ ′γ ′γ = Uγ γ γ ′γ ′ = J (γ �= γ ′)
where γ represents px,y,z orbitals instead of the magnetic
angular momentum m (= 0,±1). We note that this Kanamori
parametrization is not valid in the case with full d or f
orbitals. The relations to the multipole representation are
identified as I (0, 0; A1, A1) = 1

3 (U + 2U ′), I (2, 2; E , E ) =

1
3 (U − U ′), I (2, 2; T2, T2) = 2

3 J and I (1, 1; T1, T1) = 0. The
cubic symmetry is reflected in the difference between
I (2, 2; E , E ) and I (2, 2; T2, T2), and in the spherically sym-
metric case we have the relation I (2, 2; E , E ) = I (2, 2; T2, T2)
identical to the well-known condition U ′ = U − 2J . We em-
phasize that only in this spherical case can the Slater-Condon
parametrization (F 0,2) be used. The odd-rank multipole with
� = T1 is absent in this case, which is related to the fact that
the Slater-Kanamori parametrization is based on the interac-
tions at two spatial points.

Application to d electrons. Next we consider the actual ma-
terials. For an exemplary demonstration, we take the concrete
material SrVO3. We calculate the electronic band structure
of SrVO3 from the LDA of the DFT [42,43] and construct
the maximally localized Wannier function of the V 3d or-
bitals hybridized with the O 2p orbitals. We also perform the
constrained random phase approximation (cRPA) technique
to calculate the screened interaction for the Wannier func-
tions, which reflects the screening effects in the cubic crystal
[44,45]. The detail of the ab initio calculation is shown in
SM B [34].

Figure 1 shows the multipole interactions for 3d electrons
at the V site with Oh point group symmetry, where the values
are listed in descending order with respect to the absolute
values. We emphasize that only a few interaction parameters
are needed to express the full interaction term in solids, even
though the original Coulomb tensor has, naively, (2� + 1)4 =
625 components. Since the numerical errors are in general
included in the raw data [34], we symmetrize the interac-
tions, but the error bars are invisible for our data. The bare
Coulomb interactions are shown in (a). We can see, for in-
stance, the difference between I (k, k; E , E ) and I (k, k; T2, T2)
which reflects the cubic symmetry. The screened interactions
are also shown in Fig. 1(b), where the A1 components are
much suppressed, while the others remain almost unchanged.
This is understood as follows: The electronic charge is re-
sponsible for the screening to reduce the Coulomb interaction,
and the charge component is represented as totally symmet-
ric representation A1. Because of the cubic symmetry, the
different ranks for A1 are mixed and are much influenced
by screening. Intuitively, the parameter I (0, 4; A1, A1) may
be interpreted as that the spherical deformation of charge is
accompanied by the cubic deformation in the solids with Oh

symmetry.
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FIG. 2. Anisotropic interaction effects on the crystal field energy levels of f 2 wave function. The types of interaction parameters are
(a) I (0, 4; A1, A1), (b) I (0, 6; A1, A1), and (c) I (2, 2; E , E ) − I (2, 2; T2, T2). The level scheme of the local one-body potential calculated for
UBe13 is shown at I = 0 and the deviation enters for I �= 0.

We note that the odd-rank multipoles are absent in the
cRPA results. This is consistent with the fact that the RPA
calculation is performed for a fixed single wave vector q of the
effective interaction where no three-point vertex correction is
considered. The effective interaction then originates from a
function of the two spatial points and the odd-rank multipoles
do not appear as discussed before. Since the spatial inver-
sion does not change the local interaction term for a fixed �

[34], the absence of the odd-rank multipoles indicates that the
local cRPA interaction is always time-reversal and inversion
symmetric.

The result of the screened Coulomb interactions shown in
Fig. 1(b) can be represented as the sum of the spherically
symmetric part Ispher plus its deviation, which is suitable for
examining the contribution from the discrete cubic symmetry.
The spherical part of the interaction is extracted as Ispher (k) =

1
2k+1

∑
� d�I (k, k; �,�) where d� = ∑

α 1 is the number of
degeneracy. This is used for the definition of the cubic devi-
ation δI = I − Ispher shown in Fig. 1(c). Here the dominant
component is I (0, 4; A1, A1) as compared to the others, even
though it has been much reduced by the screening effect. The
second largest one is the rank-2 with non-A1 representation,
and the other interaction values are basically decreased as
the rank increases. The present results thus indicate that the
dominant contributions for the anisotropic part are given by
the A1 component plus rank-2 component.

Whereas the data in Fig. 1 are sufficiently accurate, the
more complex materials may produce the larger numerical
errors. The quality of data can be improved by using the
symmetries, and if the interaction originates from spatial two-
point functions as in cRPA, the odd-rank multipoles can also
be dropped, which is not a requirement of symmetry.

In this way, the screening behavior in solids becomes
clearer with multipole representation. It is interesting to ex-
plore the interaction parameter structures in a wide range of
materials with cRPA and the more accurate technique beyond
cRPA.

Application to f electrons. We further apply the anisotropic
multipole interactions to the localized f -electron wave func-
tion under the cubic crystalline field [52]. We consider the
two f -electron ( f 2) wave functions realized in Pr- and U-
based materials, for which the interaction effects are relevant.
By considering the spherical part of the Coulomb interaction
and the spin-orbital coupling (Hund’s rule), we obtain the
ground state J = 4 multiplet |M〉 (M ∈ [−J, J]) (SM C [34]).

We now demonstrate that the anisotropic interaction affects
the wave function and modifies the energy level structure.
We take UBe13 as an example, which shows the robust non-
Fermi-liquid behavior and unconventional superconductivity,
and the multichannel Kondo effects have been suspected as
their possible origins [46,47]. In the multichannel Kondo
effect scenario, the realization of non-Kramers �3 doublet
ground state is a necessary condition for a robust non-Fermi
liquid. In our previous works, we focus on the fact that the
conduction electrons of UBe13 can be seen as compensated
metal and propose possible scenario for the unconventional
superconductivity [48,49]. On the other hand, there is another
possibility that the competition between Kondo singlet and
crystalline field �1 singlet leads also to the non-Fermi liquids
[50,51]. With these backgrounds, we consider the effect of
the anisotropic multipole interaction on the f 2 wave functions
and see what kind of the ground state is favored by multipole
interactions.

For the estimation of the local one-body level splitting, we
calculate the band structures of UBe13 and find the local on-
site potentials for f electrons [34]. Since Fig. 1 shows that the
dominant contribution is the A1 type involving the rank 0 com-
ponent, we consider the multipole interactions I (0, 4; A1, A1),
I (0, 6; A1, A1), and also the second largest one I (2, 2; E , E ) −
I (2, 2; T2, T2) in Fig. 1(c). The magnitude of the typical values
are estimated as I (0, 4; A1, A1)/I (0, 0; A1, A1) 
 0.02 from
Figs. 1(b) and 1(c). Assuming that I (0, 0; A1, A1) (= F 0) is
nearly 2.5 eV for a U atom [53], we consider the range |I| <

50 meV. The results are shown in Fig. 2, where the anisotropic
interactions are included by the first-order perturbation the-
ory [34]. The crystalline field �1 singlet is the ground state
without multipole interactions, and once the anisotropy is
introduced, we find �1, �3, and �5 ground states depending
on the parameters. Thus the cubic anisotropy of the interaction
can substantially modify the crystal field structure determined
by the non-correlated parts.

This scheme is applicable to any types of material, and
hence our results show that we need to be careful about
the anisotropic interaction effects when one determines the
multiple f -electron wave functions from a microscopic point
of view [54]. For the one-body part of the Hamiltonian, the
energy spectrum is expected to be accurately described by the
first-principles band structure calculations, but the interaction
effect considered in this paper is a correlation effect which is
not included in the band-structure calculations. We note that
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this is not true for the f 1 in Ce and its hole analog, f 13 in
Yb, since the interaction effects for the localized crystal field
levels are irrelevant.

To summarize, we have proposed a systematic and simple
way to express the Coulomb interaction in solids by using
the multipole operators. The interaction parameters are re-
stricted by the symmetries, and we have also identified that the
spatial structure of the interaction functional form is closely
connected to the presence or absence of odd-rank multipoles.
The multipole representation can be utilized for examining the
structure of the complicated cRPA interactions and for study-
ing the crystal field ground states of the localized correlated
electrons. Whereas we focus on the cubic crystal in the present
paper, in principle, the formulation with multipoles can be
applied to any local interactions including molecules and qua-
sicrystals, and can also be generalized for the intersite inter-

actions. The scheme can be further utilized to compactify the
two-particle Green’s functions in multiorbital systems, which
shares a structure similar to the Coulomb interaction term.

Moreover, in recent years, the tight-binding models based
on the first-principles calculation have been intensively used
not only for the strongly correlated electrons but also for the
topological systems. The effect of interaction is necessary for
a quantitative description of electronic properties, where one
must consider the complicated Coulomb interaction tensor in
solids. Our technique is generic and useful in accessing the
interaction parameters with discrete symmetries.

We are grateful to T. Miki for useful discussions. This work
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