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We present benchmark calculations of the Anderson lattice model based on the recently developed “ghost
Gutzwiller approximation”. Our analysis shows that, in some parameters regimes, the predictions of the standard
Gutzwiller approximation can be incorrect by orders of magnitude for this model. We show that this is caused
by the inability of this method to describe simultaneously the Mott physics and the hybridization between
correlated and itinerant degrees of freedom—whose interplay often governs the metal-insulator transition in
real materials. Finally, we show that the ghost Gutzwiller approximation solves this problem, providing us with
results in remarkable agreement with dynamical mean-field theory throughout the entire phase diagram, while
being much less computationally demanding. We provide an analytical explanation of these findings and discuss
their implications within the context of ab-initio computation of strongly correlated matter.
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Understanding and simulating quantitatively the electronic
behavior of strongly correlated matter is one of the most
fundamental problems in condensed-matter science. The sub-
stantial progress achieved today in this direction largely owes
to quantum embedding methods [1,2]. In particular, the de-
velopment of dynamical mean-field theory (DMFT) [3-13]
constituted a great leap in our understanding of strong-
correlation phenomena, which advanced dramatically our
ability of describing the properties of real materials. In the
past decade, the perspective of expanding the predictive power
of simulations within the blooming field of theory-assisted
materials-by-design [14,15] contributed to stimulate the de-
velopment of alternative computational frameworks, capable
of taking into account strong correlations at a lower com-
putational cost. Within this context, particularly promising
approaches are the Gutzwiller approximation (GA) [16-21]—
or, equivalently [22,23], the rotationally invariant slave-boson
mean-field theory [24-26]—and density matrix embedding
theory [27,28]. These frameworks have similar algorithmic
structures. In fact, as in density matrix embedding theory,
the GA equations can be cast in terms of ground-state cal-
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culations of auxiliary impurity models called embedding
Hamiltonians (EH), where the bath has the same number of
degrees of freedom as the impurity [20]. Furthermore, den-
sity matrix embedding theory can be formally derived from
the GA equations, setting to unity the parameters encod-
ing the quasiparticle mass-renormalization weights [29,30].
More recently, a more accurate extension of the GA, called
“ghost Gutzwiller approximation” (g-GA), has been devel-
oped [31], based on the idea of extending the GA variational
space introducing auxiliary (ghost) fermionic degrees of
freedom.

Here we present benchmark calculations of the Anderson
lattice model (ALM) and demonstrate that, by construc-
tion, the GA cannot capture the interplay between Mott
physics and the hybridization between correlated and itin-
erant degrees of freedom—which generally coexist and
whose interplay often governs the metal-insulator transition
in real materials. We also show that, in some parameters
regimes, this limitation of the GA can result in overes-
timating the Mott critical point by orders of magnitude.
Finally, we demonstrate, both numerically and analytically,
that the g-GA method resolves these problems while re-
maining much less computationally demanding than DMFT.
Furthermore, we show that this method allows us to de-
scribe semianalytically the spectral properties (both at low
and high energies) throughout the entire phase diagram of the
ALM, facilitating the physical interpretation of the numerical
results.

Model—We consider the ALM on a Bethe Ilat-
tice, in the limit of infinite coordination number

Published by the American Physical Society
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where p, and d;,, are Fermionic annihilation operators,
pj{, and d;f, are Fermionic creation operators, i and j are
site labels, o is the spin, < i, j > indicates that the corre-
sponding summation is restricted to first nearest neighbors,
the hopping matrix t, j is uniform, ,u is the chemical po-
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the columns of U/ are the eigenvectors of ¢ and ¢, are its eigen-
values. From now on we fix the hopping matrix ¢ by using the
half-bandwidth of €, (corresponding to a semicircular density
of states) as the energy unit.

Method.—Here we summarize the algorithmic structure
of the g-GA and the GA, pointing out the key differences
between these two methods, from a quantum-embedding per-
spective [20,26,31]. For simplicity, below we focus on the
ALM introduced above, while the general theory for arbitrary
multiorbital systems is summarized in the Supplemental Ma-
terial [33]. For both the g-GA and the GA, the solution is
obtained by calculating recursively the ground state of two
auxiliary systems: (1) The so-called “quasiparticle Hamilto-
nian” (QPH) and (2) the EH.

The EH can be expressed in the following form:
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where the d operators correspond to the EH impurity degrees
of freedom, 7y = Y, d!d_, the f operators correspond to
the EH bath degrees of freedom, and the parameters D and
A€ are determined self-consistently [33]. Note that, while in
standard GA the bath of the EH has the same size of the
impurity, within the g-GA it contains a larger number of sites
(B > 1). Asin Refs. [31,34], here we will set B = 3 (the effect
of increasing B, which would enlarge further the variational
space, will be subject of future work). After convergence,
the expectation value of any local operator old; ,d 1] can be
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calculated from the ground state |®) of the EH as:
(0) = (@] 0ld], d,]|P). )

The QPH can be expressed as:
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where the f;,, operators are “quasiparticle modes” residing in
an auxiliary (enlarged) Hilbert space [33]. Once the parame-
ters [ and r are determined self-consistently in the form above
[33], the resulting Green’s function for the modes ¢, is:

Gk, ) = ()], ®)

where the only nonzero entry of ¥(w) is the dd component,
which is given by the following equations:
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As demonstrated in the Supplemental Material [33] (and
shown in the calculations below), (1) the poles of G(k, w) are
located on top of the eigenvalues of the corresponding QPHs
[35-38], and (2) the resulting total spectral weight of the d
degrees of freedom is given by:

B
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where Ai_dGA and AS? are the g-GA and GA d-electron

spectral functions, respectively, and 72 is the GA d-electron
quasiparticle weight [39]. From the parameters R, A and the
ground state | W) of the corresponding QPH, it is also possible
to calculate the expectation values of all nonlocal quadratic
operators. In particular,
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For completeness, the generalization of all analytical re-
sults listed above to arbitrary multiorbital systems is given in
the Supplemental Material [33].

L081103-2



QUANTUM EMBEDDING DESCRIPTION OF THE ANDERSON ...

PHYSICAL REVIEW B 104, L081103 (2021)

8
7 4
6 4
5 | Instlator
D 4
;] Metal
2 g-GA: Ua
— g-GA: Un
141 — GA: U,
@ DMFT: Ug
0 T T T T T T T
4 3 2 1 0 -1 -2 -3 -4

FIG. 1. Paramagnetic phase diagram of the ALM on an infinite-
coordination Bethe lattice, for 3 electrons per site and V = 1. The g-
GA metal-insulator transition U, and the end of the metal-insulator
coexistence region U,.; are marked in blue and red, respectively.
The black dots are U,, values calculated with DMFT 4+ CTQMC,
at 7 = 0.01. The gray line indicates the metal-insulator transition in
bare GA.

Results.—In Fig. 1 we show the g-GA phase diagram of
the ALM (in the paramagnetic phase) for total occupancy
(N;) = 3. The g-GA results are compared with DMFT—with
the continuous time quantum Monte Carlo (CTQMC) impu-
rity solver [40—42] at temperature 7 = 0.01—and with the
bare GA. Our benchmark calculations show that the g-GA
phase diagram is consistent with previous work [43—45] and
in remarkable agreement with DMFT. As expected, both the
g-GA method and the bare GA capture the fact that the Mott
metal-insulator transition point U, vanishes for ¢, — —oo,
corresponding to the limit where the p degrees of freedom are
gapped out. However, the interaction U, of the metal-insulator
transition is largely overestimated within the GA, especially
for €, <« —1. Note that the phase diagram for (N;) =1 can
be automatically inferred from our calculations above, as they
are related to each other by a particle-hole transformation.

In Fig. 2 we show the behavior of the g-GA total energy
&, the occupancies n, = (71,;) and ng = (f4;), the d-electron
double occupancy D = (figifigiy), the p-d “hybridization
energy” H =) (d; D;,) + c.c., and the d-electron quasipar-
ticle weight:
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The g-GA results are shown in comparison with the bare GA
and DMFT. While the GA solution is considered accurate only
for weak interactions, we find that the agreement between
g-GA and DMFT is remarkable for all observables, in all
parameters regimes.

Let us now analyze the single-particle Green’s function. In
Fig. 3 we consider €, = —1 and 3 values of U, showing the
total g-GA energy-resolved spectral function:

Ak, w) = —%ImTr[g(k, )] (16)

and the p and d local density of states. The DMFT spectra
were obtained by performing analytical continuation with the
maximum entropy method [46]. Interestingly, the g-GA cap-
tures systematically the main features of the DMFT spectra
(including the Hubbard bands and the hybridization between
the p and d degrees of freedom). Note that, to interpret the
behavior of the g-GA spectra, it is possible to exploit its
relation with the bands of the QPH [Eq. (6)], previously
discussed in the Methods section. In particular, the relative
position of the p band with respect to the Fermi level is
approximately encoded in the corresponding on-site energy
€, = €p — i, while the positions of the d-electron low-energy
and high-energy excitations are approximately encoded in the
variational parameters [, (a = 1, 2, 3).

A key fact emerging from our benchmark calculations is
that the GA can overestimate U, dramatically (especially for
€p K —1); see Fig. 1. To explain this result we note that, by
construction, the GA Mott transition occurs when the quasi-
particle weight Z = r? vanishes; see Eq. (10). Therefore, the
corresponding approximation to the Mott phase is such that
(d;,Pi(,>GA = 0; see Eq. (14). In other words, this method
cannot describe simultaneously the Mott phase and the p-d
charge fluctuations. But this is unrealistic for the ALM, where
the p-d hybridization effects are generally very large not only
in the weakly interacting regime but also for U ~ U, and
U > U,; see Figs. 2 and 3. Because of the variational prin-
ciple, this results in a systematic overestimation of the total
energy as we approach the Mott phase (see Fig. 2), causing
an overestimation of the metal-insulator transition point. This
point is documented in further detail in the Supplemental
Material, where the GA overestimation of U, at €, <« —1 is
explained in relation to a qualitative pathological behavior of
the GA variational parameter r in the narrow-bandwidth limit
t — 0).

Remarkably, since the g-GA captures the existence of the
Hubbard bands, the right side of Eq. (11) never vanishes [31].
Therefore, similar to DMFT, (d;, Di»)e-GA Temains finite even
in the Mott phase [see Eq. (13)]. This shows that the ability
of the g-GA of describing simultaneously the Mott physics
and the d-p hybridization is directly connected with its ability
of describing the transfer of d-electron spectral weight to the
Hubbard bands (which the bare GA lacks).

Conclusions—We performed benchmark calculations of
the ALM, showing that the g-GA provides us with results
with accuracy comparable to DMFT, both for the ground-
state and the spectral properties. In particular, we showed
that the g-GA 1is capable of describing accurately the inter-
play between the Mott physics and the hybridization between
correlated and itinerant degrees of freedom, while the GA can-
not describe simultaneously these effects. This is particularly
relevant for real-material calculations in combination with
density functional theory [17,20,47,48], where the correlated
orbitals are generally very localized around their atomic posi-
tions [49,50]—so that the interactions with their environment
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FIG. 2. Behavior of the g-GA total energy £, local occupancies n, = (f1,;) and ny = (fi,;), d-electron double occupancy D = (figitfiai, ),

p-d hybridization H = Y__(d;,

[{ea

Pis) + c.c., and d-electron quasiparticle weight Z for the ALM on an infinite-coordination Bethe lattice, in

comparison with DMFT and the bare GA. The DMFT data are computed with CTQMC at T = 0.01 fore, = 1 and¢, = —0.5and at T = 0.02

for €, = —2. The vertical black dashed lines indicate U, and U,,.

are mainly mediated by the itinerant modes (as in the ALM
studied here). In fact, it is well possible that the limitation of
the GA here uncovered explains why, in some cases, simu-
lating the properties of real materials with the GA requires
to use unphysically large Hubbard U [51] and suggests that
multiorbital implementations of the g-GA will resolve these
problems.

From the computational standpoint, the g-GA is more ex-
pensive than the bare GA (as the bath of the EH contains
additional degrees of freedom). On the other hand, its com-

putational complexity remains much lower than DMFT. In
fact, the g-GA requires to calculate only the ground state of
a finite-size impurity model (while in DMFT it is necessary
to calculate the spectra of an impurity model with an infinite
bath). For example, in our DMFT calculations, each CTQMC
iteration (performed using 5 x 108 Monte Carlo steps, in par-
allel, on 72 cores) required about 2 min of computational
time. Instead, within our g-GA calculations, each EH iteration
(performed on a single core) required about 0.2-0.3 s. Note
also that the difference in computational complexity between
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FIG. 3. Energy-resolved spectral function and corresponding p and d local density of states p(w), calculated with g-GA (upper panels) and
DMFT + CTQMC (lower panels), for €, = —1 and 3 values of U. The g-GA spectra is visualized using a small artificial smearing, I' = 0.06.

The g-GA quasiparticle bands are indicated by gray dashed lines.

DMEFT and g-GA grows exponentially as a function of the
impurity size.

A particularly promising perspective is the possibility of
solving the g-GA equations with hybrid quantum-classical
frameworks [52], employing impurity solvers based on quan-
tum algorithms such as variational quantum eigensolvers
[53-56]. In fact, within the g-GA, realizing such program
for real-material applications may require devices consist-
ing of only tens of qubits, while it has been estimated that
quantum computers with at least 100 logical qubits will be
necessary for applications within DMFT [57]. Furthermore,
since the number of parameters characterizing the EH is finite,
the recently developed approach based on machine learning
for the GA [58] will be applicable also to the g-GA, as
we hope to show in future work. Note also that the g-GA
can be equivalently formulated in terms of the rotationally
invariant slave-boson mean-field theory [31], which is based
on an exact reformulation of the many-body problem. This

line of interpretation may open the possibility of developing
beyond-mean-field schemes, providing us with new routes for
high-precision calculations.
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