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Assisted by general symmetry arguments and a many-body invariant, we introduce a phase of matter that
constitutes a topological SO(5) superfluid. Key to this finding is the realization of an exactly solvable model that
displays some similarities with a minimal model of superfluid 3He. We study its quantum phase diagram and
correlations, and find exotic superfluid as well as metallic phases in the repulsive sector. At the critical point
separating trivial and nontrivial superfluid phases, our Hamiltonian reduces to the globally SO(5)-symmetric
Gaudin model with a degenerate ground manifold that includes quartet states. Most importantly, the exact
solution permits uncovering of an interesting non-pair-breaking mechanism for superfluids subject to external
magnetic fields. Nonintegrable modifications of our model lead to a strong-coupling limit of our metallic phase
with a ground-state manifold that shows an extensive entropy.
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Introduction. Exactly solvable models of quantum many-
body systems are theoretical constructions key to uncover
physical mechanisms or effects resulting from competing
interactions [1–3]. The case of spin-1/2 particles with SO(5)-
symmetric p-wave interactions is particularly compelling
because it can give rise to nontrivial spin-triplet Cooper-pair
topological phases with no equivalent in SU(2)-symmetric
couplings. For instance, it is well known that the emergent
SO(3)L ⊗ SO(3)S ⊗ U(1) symmetry in liquid 3He, contained
in SO(5), is responsible for topological classification of the
defects of its exotic superfluid phases [4]. Similar mech-
anisms could be at play in unconventional uranium-based
metallic ferromagnetic superconductors, where strong exter-
nal magnetic fields can even revive superconductivity [5]. A
theoretical understanding of these mechanisms is therefore a
prerequisite to engineering materials or synthetic matter with
exotic magnetic superfluid behavior [6].

SO(5)-symmetric models have a long history in nuclear
physics as a description of isovector (isospin 1) pairing
between protons and neutrons. The earliest version of an inte-
grable model consisting of a unique SO(5) algebra, describing
a proton-neutron system, was presented in Refs. [7,8]. The
generalization of the exact solution to many SO(5) copies
or, equivalently, to many nondegenerate single-particle or-
bitals, arose as an extension of the Richardson-Gaudin
(RG) models [9,10] to rank 2 algebras [11,12]. In con-
densed matter physics, the systems closest to admitting an
SO(5)-symmetric representation are arguably superfluid 3He
[13–16] and non-p-wave systems [17–19], but, as far as
we know, there are no corresponding integrable interacting
models.

In this work, we study the quantum phase diagram of
the fermionic (ckσ , c†

kσ ) SO(5) Hamiltonian expressed in

momentum (k) space as

H =
∑

k,σ=↑,↓
εkc†

kσ ckσ −
∑
k,k′

�kk′ ( �T +
k · �T −

k′ + �T −
k · �T +

k′ )

−
∑
k,k′

Wkk′ �Sk · �Sk′ −
∑
k,k′

Vkk′NkNk′ − h
∑

k

Sz
k. (1)

The operator T +
μk [ �T +

k = (T +
−1k, T +

0k, T +
1k )] creates a spin-triplet

fermion pair (k,−k) with spin projection μ = ±1, 0. Mag-
netic Heisenberg (�Sk · �Sk′) and density-density (NkNk′ , where
Nk counts all spinful fermions with momenta ±k) interactions
complete the minimal set required to close an SO(5) algebra,
with a fermionic representation [20]

T −
μk = (−1)

μ(μ+1)
2

(2δμ,±1 + √
2δμ,0)

∑
σ,σ ′

c−kσ (iσμσ y)σσ ′ckσ ′ ,

Sμ

k = 1

2

∑
σ,σ ′

(c†
kσ σ

μ

σσ ′ckσ ′ + c†
−kσ σ

μ

σσ ′c−kσ ′ ),

Nk =
∑

σ

(c†
kσ ckσ + c†

−kσ c−kσ ), (2)

where σ± = σ x ± iσ y, σ 0 = σ z are Pauli matrices, and T +
μk =

(T −
μk )†. For an appropriate choice of (separable) interactions

�kk′ = Wkk′ = 4Vkk′ , Hamiltonian (1) is exactly solvable in-
dependently of spatial dimensionality.

In the attractive pairing sector, the model displays trivial
and nontrivial topological superfluid phases, separated by a
critical point that is globally SO(5)-symmetric. At this point
the ground-state manifold is macroscopically degenerate with
pair and quartet correlations. The application of a magnetic
field h [21] leads to a remarkable magnetized superfluid,

2469-9950/2021/104(6)/L060503(6) L060503-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8369-3986
https://orcid.org/0000-0001-5289-7698
https://orcid.org/0000-0002-7715-5487
https://orcid.org/0000-0003-3254-4494
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.L060503&domain=pdf&date_stamp=2021-08-16
https://doi.org/10.1103/PhysRevB.104.L060503


WILL J. HOLDHUSEN et al. PHYSICAL REVIEW B 104, L060503 (2021)

where spin-triplet pairs transition, without pair breaking, be-
tween different spin projections as in the B to A first-order
transition in superfluid 3He. This mechanism is absent in
SU(2) pairing models. Finally, the repulsive sector shows a
metallic phase whose strong-coupling limit is adiabatically
connected to a flat-band model with exponentially degenerate
ground states, giving an extensive entropy similar to holo-
graphic models of strange metals [22].

Exactly solvable SO(5) model. RG integrable models
are defined by a set of integrals of motion Rk fulfilling
the integrability condition [Rk, Rk′ ] = 0, such that their lin-
ear combination realizes a Hamiltonian as (10). The exact
eigenspectrum of the integrals of motion, and corresponding
Hamiltonian, may be found with algebraic complexity by
solving the RG ansatz equations.

These models may be formulated in terms of a generalized
Gaudin algebra [3,23–25]. Starting from the rational SO(5)
RG integrals of motion [12], we form the set

Rk =
(

1 + �

2

)
N−

k + �

2
Sz

k + q
∑
k′ �=k

Zkk′ �Tk · �Tk′ , (3)

where N−
k = Nk/2 − 1, and �Tk · �Tk′ is the SO(5) Gaudin in-

teraction �Tk · �Tk′ = �T +
k · �T −

k′ + �T −
k · �T +

k′ + �Sk · �Sk′ + N−
k N−

k′ .
The function Zkk′ = Z (ηk, ηk′ ) = ηkηk′

ηk−ηk′ , Zkk′ = −Zk′k, is a
particular case of a more general function interpolating
between hyperbolic and trigonometric SU(2) RG models
[3,26,27]. The parameters �, q, and ηk are arbitrary real
numbers with the restriction that ηk �= ηk′ for k �= k′ to avoid
singularities.

In Eq. (3) and for the remainder of this Letter, sums are
taken over momenta with kx > 0 to avoid double counting.
Each pair of momenta ±k labels a level with a corresponding
irreducible representation (irrep) of SO(5) characterized by
seniority νk and reduced spin sk quantum numbers. The l
levels correspond to a lattice with L = 2l sites, since each
level incorporates two modes in k space.

Eigenvalues and eigenvectors of the integrals of motion are
determined by two sets of spectral parameters: pairons eα , α =
1, . . . , Ne, and wave function parameters ωβ , β = 1, . . . , Nω,
that are roots of the two sets of RG (Bethe) equations

−1

q
=2

∑
α′ �=α

Zα′α −
∑

β

Zβα +
∑

k

(νk

2
− 1 + sk

)
Zkα (4)

and

−�

q
= −

∑
β ′ �=β

Zβ ′β +
∑

α

Zαβ +
∑

k

skZkβ, (5)

with Zα′α = Z (eα′ , eα ), Zβα = Z (ωβ, eα ), and Zkα =
Z (ηk, eα ). The number of pairons Ne is equal to the number of
spin-1 fermion pairs and relates to the total fermion number as
N = 2Ne + ∑

k νk. The number of wave function parameters
is Nω = Ne + ∑

k(Sz
k + sk ). We emphasize that while the

dimension of the Hilbert space grows exponentially with
the number of levels L and Ne, the complexity of the exact
solution grows only polynomially, allowing exact treatment
of very large systems.

Numerical solution of the RG equations must navigate
the singularities that arise whenever the spectral parameters

approach each other or the level parameters ηk. To avoid
these singularities, we add modulated imaginary parts to ηk
while iteratively solving to a desired coupling q and then
incrementally remove these to achieve physical results [27].

In terms of the variables eα and ωβ , the integrals of motion
Rk have eigenvalues

rk = νk

2
− 1 + qsk

∑
β

Zkβ + q
(

1 − νk

2
− sk

) ∑
α

Zkα

− q
∑
k′ �=k

[(νk

2
− 1

)(νk′

2
− 1

)
+ sksk′

]
Zkk′ . (6)

To obtain the corresponding eigenstates, we need operators

S+
β =

∑
k

Zkβ S+
k , T+

μα =
∑

k

Zkα T +
μk, (7)

and
←−
I +

α , defined by its action on T+
μα:

T+
μα

←−
I +

α′ = δαα′

{
T+

μ+1α, μ � 0,

0, μ = 1.
(8)

Then, the eigenstates can be written as [20]

|�〉 =
Ne∏

α=1

T+
−1α

Nω∏
β=1

(
S+

β −
Ne∑

α′=1

←−
I +

α′Z∗
α′β

)
|�〉 , (9)

where |�〉 is a vacuum state characterized by νk and sk with
S−

k |�〉 = T −
μk |�〉 = 0. In most cases, the ground state is built

from the empty (νk = sk = 0 for all k) vacuum |0〉. The
exception occurs when sufficiently strong repulsive pairing
couplings break pairs.

When εk = ηk, �kk′ = Wkk′ = 4Vkk′ = (g/L)ηkηk′ , and
h = 0, Hamiltonian (1) can be written as a linear combination
of the integrals of motion [20]

H = 2

1 − q
∑

k ηk

∑
k

ηkRk + constant

=
(

1 − g

gc

) ∑
k

ηkNk − g

L

∑
k,k′

ηkηk′ �Tk · �Tk′ + gL

g2
c

. (10)

Here, we define qL = −g/(1 − g/gc) with g−1
c L = ∑

k ηk and
set � = 0 (letting � �= 0 has the effect of assigning a different
kinetic energy to spin-up versus spin-down fermions). At g =
gc, q becomes singular and H reduces to the (globally) SO(5)-
symmetric Gaudin model, as is evident from the second line
in Eq. (10). Adding a uniform magnetic field h does not break
integrability and is discussed below.

Using the eigenvalues rk from Eq. (6), the total energy for
a system of density ρ = N/L is

E (N ) = 2
∑

k ηkrk

1 − q
∑

k ηk
(11)

up to a constant dependent on the vacuum state |ν〉 [20] while
total energy per site (energy density) will be indicated by
e = E (N )/L. Other observables may also be computed from
the integrals of motion using the Hellmann-Feynman theorem,
e.g., momentum distribution 〈Nk〉 = 2(rk − q∂rk/∂q + 1).

Hamiltonian (10) displays a particle-hole symmetry P .
Under the map P†ck↑P = c†

k↓, P†ck↓P = c†
k↑, H transforms
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FIG. 1. Quantum phase diagram of the SO(5) RG model as a
function of density ρ and coupling g. Ground-state momentum dis-
tributions 〈Nk〉, as a function of k > 0 for ρ = 1/2, are displayed
at g/gc = −1, 3

4 , 3
2 , that is, for the metallic, topological, and trivial

paired-superfluid phases, respectively. The metallic phase displays a
discontinuity at the Fermi momentum kF = πρ/2, the topological
superfluid phase is continuous with occupation of low-momentum
modes, and the trivial superfluid vacates the low-momentum modes.
The phase transition between superfluid phases is second order (see
Fig. 2).

as P†H (ρ, g)P = αH (2 − ρ, αg) up to an additive constant,
where α−1 = 2g/gc − 1. At g = gc, α = 1 and H is particle-
hole symmetric.

Quantum phase diagram: One-dimensional case. To illus-
trate the physics arising from our SO(5) model we now work
in one spatial dimension. The momenta for periodic boundary
conditions are k j = 2π j

L , j = −L/2,−L/2 + 1, . . . , L/2 − 1,
which leaves isolated modes at k = 0 and k = −π that cannot
participate in pairing interactions and therefore do not corre-
spond to RG levels. When using these boundary conditions,
we ignore all interactions on the k = −π mode to preserve
integrability. The effect of the ignored interactions diminishes
in the thermodynamic limit (L → ∞ with ρ and g fixed). To
avoid this finite-size effect, the majority of our calculations
utilize antiperiodic boundary conditions, under which all mo-
menta come in pairs (+|k|,−|k|) corresponding to RG levels:
k j = π

L (2 j + 1), j = −L/2,−L/2 + 1, . . . , L/2 − 1.
We linearize the dispersion close to the Fermi points

by choosing ηk = k and εk = |k| (in units of 1
2 h̄vF where

h̄ is the reduced Planck’s constant and vF the Fermi ve-
locity). Because ηk = −η−k , interaction coefficients �kk′ =
ηkηk′ have the antisymmetry necessary for p-wave pairing:
�kk′ = �−k−k′ = −�−kk′ . In coordinate space, the Fourier-
transformed coefficients �i j linking sites at ri and r j decay as
(ri − r j )−1 [28,29], and show alternating sign (−1)i− j [20].

We next analyze the various phases that emerge in the
phase diagram of the SO(5) RG Hamiltonian (10).

Topological superfluid phase. For attractive couplings g >

0, the ground state of Hamiltonian (10) is a superfluid of
spin-triplet pairs. At the density-independent critical coupling
g = gc, the system undergoes a topological phase transition
with an accompanying change in occupation number 〈Nk〉
around zero momentum (k = 0), as seen in the inset of Fig. 1.
The system transitions from a weak-pairing topologically
nontrivial SO(5) superfluid into a strong-pairing trivial super-
fluid gapped phase. The transition is signaled by a divergence
in ∂2e0/∂g2, the second-order derivative of the ground-state

FIG. 2. Second derivative of the ground-state energy density e0

with respect to coupling for a mean-field solution [20] with L = 2000
(solid line), and the exact solution at L = 128, both at quarter filling
(ρ = 1/2). Lower insets: The variables eα (diamonds) and ωβ (dots)
are plotted with their imaginary parts on the y axis and their real parts
on the x axis at g/gc = 0.9 (left) and 1.1 (right). An animation of
these spectral parameters as a function of g is included in the Supple-
mental Material [20]. Upper insets: Energy difference between odd
and even sectors is plotted as a function of boundary condition φ for
a quarter-filled system with 32 fermions at g/gc = 0.7 (left) and 1.75
(right).

energy density. Figure 2 illustrates this along with distribution
of spectral parameters in the complex plane.

To understand the topological nature of these superfluid
phases, we need a many-body (bulk) topological invariant dis-
tinguishing them. Reference [28] introduces a fermion parity
switch for spinless fermions that distinguished p-wave topo-
logical phases of an SU(2) model. Our SO(5) model consists
of spinful fermions and therefore requires a generalization of
the fermion parity to

PN (φ) = sgn
(
Eodd

0 (φ) − Eeven
0 (φ)

)
, (12)

where the ground-state energies are defined as Eeven
0 (φ) =

Eφ

0 (N ) and Eodd
0 (φ) = 1

2 [Eφ

0 (N + 2) + Eφ

0 (N − 2)] for
fermion number N divisible by four, such that the
N ± 2-particle states have N↑ = N↓ odd. This differs from
the SU(2) case (where Eodd

0 is the average of N ± 1-particle
energies) due to the spin degeneracy of the k = 0 mode.
The quantity φ = 0 (2π ) represents periodic (antiperiodic)
boundary conditions and corresponds to enclosing a flux
� = φ�0

2π
in a ring geometry with anomalous flux quantum

�0 [28,29]. In the topologically trivial phase (g > gc),
PN (φ) = 1 for both periodic and antiperiodic boundary
conditions (Fig. 2). For g < gc, a parity switch is observed,
with PN (0) = −1 and PN (2π ) = 1. This can be linked back
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to occupation of the zero-momentum state that exists for
φ = 0: in the topologically nontrivial phase, it is energetically
advantageous to occupy both (σ =↑,↓) k = 0 single-particle
states instead of forming a pair. In the pairing-dominated
trivial phase, the k = 0 states are vacated in favor of an
additional pair at finite momentum.

Unlike what is seen in other SU(2) RG models, there is a
macroscopic degeneracy at the critical point involving mul-
tiple states from each sector with fixed N and M = ∑

k Sz
k,

with an accompanying global SO(5) symmetry generated by
operators Iκ = ∑

k Iκ
k where Iκ

k , κ = 1, . . . , 10, is any gener-
ator of the SO(5) algebra in Eq. (2). At g = gc, Hamiltonian
(10) becomes the SO(5) Gaudin model

∑
k,k′ ηkηk′ �Tk · �Tk′ ,

and the ground-state solutions to the RG equations have all
pairons eα equal to zero. Those equations then simplify to
a single set for variables ωβ ,

∑
β ′ �=β Zβ ′β = ∑

k skZkβ , β =
1, . . . , Nω. Each independent solution corresponds to a de-
generate eigenstate. The entire energy spectrum at this point
can be classified according to the degenerate SO(5) global
irreps constructed from the coupling of the l SO(5)k irreps
{νk, sk} of each level. The chain decomposition SO(5) ⊃
US(2) ⊃ USz (1) [30] classifies the complete set of eigenstates
in terms of the fermion number N and spin content S in
each global irrep. The wave functions constituting the ground-
state irrep are defined in terms of S = 0 quartet creation
operator, Q+ = ∑

k,k′ (T +
1kT +

−1k′ + T +
−1kT +

1k′ − T +
0kT +

0k′ ), S = 1
global pair operators T +

μ = ∑
k T +

μk, and spin-lowering op-
erator S− = ∑

k S−
k . For an even number of particles N � L

(N > L states can be determined by particle-hole transforma-
tion), these states are

|NQ, S, M〉 = (S−)S−M (Q+)NQ (T +
1 )S |0〉 . (13)

Since N = 4NQ + 2S, the possible values of spin are S =
N/2, N/2 − 2, . . . , 1 or 0, with S = 0 representing the pure
quartet state. From this, we find the degeneracy of the even-N
ground-state manifold: deven

N,M = �min(N,2L−N )−2|M|
4 � + 1, where

�x� is the largest integer less than or equal to x. The energy of
these states is Eeven = −3 gc

L

∑
k η2

k.
The N + 1 (N even) particle ground-state irrep has N par-

ticles in a wave function of the form (13) with spin Se and
one unpaired particle in the lowest momentum level km, giving
total spin S = Se ± 1/2 with possible values S = N/2, N/2 −
1, . . . , 1/2. The number of particles is then N = 4NQ + 2Se +
1. From the available spins and the additional twofold degen-
eracy arising from the two momenta (±km) of the unpaired
particle, the degeneracy of the odd-sector ground-state sub-
space is dodd

N,M = min(N,2L−N )−2|M|
2 + 1. The energy of these

states Eodd = Eeven + ηkm (1 + gc

2L ηkm ) simplifies to the even-
N energy plus the kinetic energy of the unpaired fermion in
the thermodynamic limit.

The presence of quartets in a Hamiltonian such as (10)
deserves mention. We are only aware of the significance of
quartet correlations in atomic nuclei [31,32] and in exotic
phases of cold spin-3/2 fermionic atoms [17,19]. It is impor-
tant, then, to establish the interactions that take our system
away from its g = gc critical point and stabilize a quartet, as
opposed to a paired, ground state. To this end, we compare
the quartet, �4(N ) = [E0(N + 2) + E0(N − 2) − 2E0(N )]/2
(see for example [33]), and paired, �2(N ) = [E0(N + 1) +

E0(N − 1) − 2E0(N )]/2, gaps in our Hamiltonian (10) as a
function of g. If �4(N ) ∼ �2(N ), we say that there are signifi-
cant quartet correlations in the ground state for that value of g.
Our analysis indicates that quartet correlations become more
relevant in the repulsive sector and, in the attractive sector, for
pairing-only (nonintegrable) interactions [20].

SO(5) magnetic superfluid. An interesting physical mech-
anism emerges when our SO(5) system (10) is subject to an
external magnetic field h as in Eq. (1). At low temperatures
and pressures superfluid 3He, known to have both p-wave
pairing and ferromagnetic interactions [13], displays transi-
tions between nonmagnetic (B) and magnetic (A) superfluid
phases as function of an applied magnetic field. The A and
B phases of superfluid 3He are associated with the mean-field
wave functions proposed by Anderson, Brinkman, and Morel
(ABM) and Balian and Werthamer (BW), respectively [13].
The BW state is a simple generalization of BCS principles to
spin-triplet (rather than spin-singlet) pairs, and in the SO(5)
language is a superposition of T +

−1, T +
0 , and T +

1 operators
acting on the vacuum. The ABM state is structured similarly,
but allows only like-spin fermion pairs, ruling out the channel
generated by T +

0 . Experimentally, it is known that in absence
of a magnetic field, the B phase is the only possible superfluid
at zero temperature. With the addition of a magnetic field, both
phases become accessible at zero temperature along with the
spin-polarized superfluid A1 phase [34].

Interestingly, our model demonstrates a series of first-order
magnetically driven transitions between different spin-triplet
superfluids with no pair breaking, which may provide insight
into magnetic superfluidity. To determine the ground-state
energy of the Hamiltonian (10), it suffices to find E0(N, M ),
the lowest energy of the h = 0 Hamiltonian for each possible
value of Sz (a conserved quantity), and determine which value
of M gives the lowest total energy E0(h) = minM (E0(N, M ) −
hM ). This process simplifies for 2g > gc, since above this
coupling we find the ground state has no unpaired fermions
for any value of h. From this formula, it is clear that the mag-
netization Mz = ∂E0/∂h is equal to M. Rather than breaking
pairs, the magnetic field changes the balance of −1, 0, and 1
pairs. This manifests as a series of first-order phase transitions
as Mz jumps between integers with the same parity as Ne,
as illustrated in Fig. 3. The minimum value of h for nonzero
magnetization goes to zero in the thermodynamic limit, while
the final transition occurs at a value, h = hc, that remains finite
in that limit. A similar type of mechanism may be at play
in superfluid 3He leading to the emergence of the A1 phase.
Crucially, the h �= 0 ground state of our model is merely
the lowest-energy solution to the h = 0 problem at the same
coupling g in a sector with N↑ �= N↓, and so shares topological
and superfluid properties with the h = 0 ground state at the
same coupling g.

This non-pair-breaking mechanism, already encoded in the
exact solution, can be modeled at the mean-field level by
introducing the SO(5) generalized coherent state [35]

|�〉 = e
∑

k zk (x1 T +
0k +x2T +

1k +x3T +
−1k ) |0〉 , (14)

where x2
1 + x2

2 + x2
3 = 1 and {zk} are variational parameters

[20]. As |x1,2,3| goes from 0 to 1, this state goes from having
only M = 0 pairs through a state with a mixture of all three
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FIG. 3. Ground-state magnetization Mz as a function of h at
g/gc = 0.6 (dashed line) and 1.6 (solid line) for L = 32 and N = 16
(ρ = 1/2). The circled points are at h = hc, the smallest field that
fully polarizes the system. Inset: Density ρ as a function of the ther-
modynamic extrapolation of hc, indicating a phase boundary between
fully and semipolarized magnetic superfluids.

pairing channels, similar to the BW state, to a state with only
like-spin pairs, similar to the ABM wave function.

Metallic phases. For repulsive couplings (g < 0),
the ground state has a momentum distribution with a
discontinuity at the Fermi momentum kF (Fig. 1),
suggesting a ground state almost identical to a noninteracting
Fermi gas |�nonint〉 = 1√

N!

∏kF
k=−kF

c†
k↑c†

k↓ |0〉 with energy
Enonint(N ) = 〈�nonint| H |�nonint〉. This discontinuity persists
even for strongly repulsive couplings, unlike what is usually
observed in an interacting Fermi liquid [3,36]. In the
thermodynamic limit, the ground-state energy density e0

converges to enonint = π
4 ρ2 − gπ2

64 ρ4 + O(1/L) [20].
One may wonder whether Eq. (10) has a flat-band limit in

the strong-coupling (g → −∞) limit. The SU(2) RG model
shares similar metallic properties with the SO(5) model for
low couplings, but the flat-band Hamiltonian limg→−∞ 1

gH
has an exponentially degenerate ground-state manifold [20].
This limiting case has been studied, for instance, in fractional
quantum Hall liquids [37], and its importance lies in the non-
Fermi-liquid behavior that manifests due to a high density of
states near the ground state. Due to the presence of effective
single-particle terms in the interaction, the SO(5) model in
(10) does not exhibit high degeneracy in this limit. Instead,
a level crossing occurs at a nonuniversal coupling where the

ground state gains a nonzero seniority independent of system
size [20]. By removing all single-particle terms, one arrives at
a special case of the Hamiltonian (1) with an exponentially
degenerate ground state in the flat-band (pure interaction)
limit. A detailed discussion of this behavior is beyond the
scope of this Letter [20].

Concluding remarks. We have presented an exactly
solvable model displaying SO(5) topological superfluidity.
Its relevance lies in providing a new non-pair-breaking
mechanism for magnetic superfluids, of relevance for
liquid 3He or other exotic spin-triplet p-wave superfluids.
At a critical coupling separating trivial and nontrivial
topological superfluids, the model reduces to an (global)
SO(5) Gaudin Hamiltonian. These phases show quartet
correlations that become more prevalent as magnetic
and density interactions are quenched. The repulsive
phases of the model are also of interest, in particular,
in relation to non-Fermi-liquid behavior; they deserve
further study. Finally, we would like to make connection
to a seemingly unrelated phenomenon. The positive
semidefinite (frustration-free) Haldane-Rezayi Hamiltonian
[38,39] H = ∑

0< j<L Hj , Hj = ∑
k,k′ ηkηk′ �T +

k · �T −
k′ with

T +
0,k = (c†

j+k↑c†
j−k↓ + c†

j+k↓c†
j−k↑)/

√
2, T +

1,k = c†
j+k↑c†

j−k↑,

T +
−1,k = c†

j+k↓c†
j−k↓, defined in a cylinder (k, k′ ∈ [− j, j] are

angular momenta indexes), stabilizes a gapless zero mode at
filling fraction ν = 1/2 representing a non-Abelian fractional
quantum Hall trial state [40]. We have shown that (positive
semidefinite) Hamiltonian Hj is an element of SO(5) but, as
a corollary of this work, it is not integrable à la RG. As it
is a (repulsive) pairing-only Hamiltonian, it is expected that
quartet correlations become relevant. Interestingly, each Hj

has a macroscopically degenerate zero-energy subspace and
the intersection of their kernels results in the Haldane-Rezayi
state.
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