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Quantum phase transition of many interacting spins coupled to a bosonic bath:
Static and dynamical properties
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By using worldline and diagrammatic quantum Monte Carlo techniques, matrix product state, and a variational
approach à la Feynman, we investigate the equilibrium properties and relaxation features of a quantum system
of N spins antiferromagnetically interacting with each other, with strength J , and coupled to a common bath
of bosonic oscillators, with strength α. We show that, in the Ohmic regime, a Beretzinski-Thouless-Kosterlitz
quantum phase transition occurs. While for J = 0 the critical value of α decreases asymptotically with 1/N by
increasing N , for nonvanishing J it turns out to be practically independent on N , allowing to identify a finite range
of values of α where spin phase coherence is preserved also for large N . Then, by using matrix product state
simulations, and the Mori formalism and the variational approach à la Feynman jointly, we unveil the features
of the relaxation, that, in particular, exhibits a nonmonotonic dependence on the temperature reminiscent of the
Kondo effect. For the observed quantum phase transition we also establish a criterion analogous to that of the
metal-insulator transition in solids.
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Quantum phenomena play the most important role in quan-
tum information technology, where information is stored,
processed, and communicated following the laws of quantum
physics [1,2]. Nowadays it is possible to develop quantum
architectures, such as trapped ions [3,4], superconducting
qubits [5], and Rydberg atoms [6], where quantum informa-
tion applications can be implemented, exploiting the quantum
mechanical features of many-body systems, i.e., coherence
and entanglement. On the other hand, since no quantum sys-
tem can be considered isolated from its environment, it is
crucial to investigate the effects of decoherence, dissipation,
and entanglement induced by the rest of the universe, which
limit the fidelity of the desired quantum operations.

The spin-boson model is the prototypical model of open
quantum systems [7]. It is the simplest realization of the
Caldeira-Leggett model able to describe the quantum phase
transition (QPT) from delocalized to localized states induced
by the environment, and to shed light on the relaxation pro-
cesses, in particular the dissipation and decoherence effects,
in open quantum systems [7–12]. The model consists of a
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two-level system, i.e., the elementary unit of a quantum com-
puter, interacting with a set of quantum oscillators whose
frequencies and coupling strengths obey specific distributions.
Due to its versatility, it can capture the physics of a wide range
of different physical systems going from defects in solids and
quantum thermodynamics [13] to physical chemistry and bio-
logical systems [14–16]. It has been also used to study trapped
ions [17], quantum emitters coupled to surface plasmons [18],
quantum heat engines [19], or qubits strongly interacting with
microwave resonators [20].

While the rich physics contained in the model involving a
single qubit has been extensively addressed, only a limited
set of works focus the attention on the characterization of
QPT in the most interesting case of multiple two-level systems
[21–24]. In particular, through Monte Carlo simulations [24],
it has been proved that a system of N noninteracting spins
coupled to a common bosonic bath undergo a QPT that is in
the same class of universality of the single spin-boson model,
i.e., in the Ohmic regime, a Beretzinski-Kosterlitz-Thouless
(BKT) QPT occurs [25,26]. Furthermore the critical value
of the coupling with the bath αc decreases asymptotically as
1/N with increasing N . At the heart of this result there is
the ferromagnetic interaction among the spins induced by the
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bath. In the presence of an additional direct coupling among
the spins the (thermo-)dynamics of the system may exhibit a
much more complex behavior due to the competition between
different interactions.

In this letter, beyond the coupling with the bosonic bath,
we address also the effects of an antiferromagnetic interaction,
with strength J , between all the N spins, i.e., we investigate a
frustrated model of N spins coupled to a common bath. From
the experimental point of view, current quantum annealing
processors consist of manufactured interacting qubits [27].
The aim is to determine which architecture, that is inevitably
coupled to a thermal environment, is capable to preserve the
quantum coherence. We prove that J �= 0 is crucial to fulfill
this objective. Indeed one of the main results of our paper
is that αc goes to a constant by increasing N at J �= 0. Fur-
thermore αc is a monotonic increasing function of J . These
results unveil a finite interval of α values, increasing with
J , where the many qubit system is marginally influenced by
the environment and then preserves quantum coherence even
when N is very large. By using matrix product state simu-
lations (MPS) [28–33], and combining the Mori formalism
[34] and a variational approach à la Feynman, we investigate
also the relaxation processes. We not only confirm findings
at the equilibrium by varying α at very low T , but observe
also, at a fixed α, a nonmonotonic behavior with T that is
reminiscent of the Kondo effect [35]. Finally, by using the
relaxation function, we establish, for the observed QPT, a
criterion analogous to that of the metal-insulator transition in
solids. Our proposal, addressing the changes of quantum Ising
model in the presence of a tunable and common environment,
can be experimentally realized in various open system quan-
tum simulators [36], for instance, by extending the proposal
based on the coupling between atomic dots and a superfluid
Bose-Einstein condensate [37].

The model. The Hamiltonian is written as

H = HQ + HB + HI , (1)

where (1) HQ = H� + HJ = −�
2

∑N
i=1 σx,i +

J�
4

∑N
i, j = 1,

i < j

σz,iσz, j describes the bare qubit contri-

butions, � being the tunneling matrix element; (2)
HB = ∑

i ωia
†
i ai describes the bosonic bath; and (3)

HI = ∑N
j=1 σz, j

∑
i λi(a

†
i + ai ) is the spin-bath interaction. In

Eq. (1), σx and σz are Pauli matrices with eigenvalues 1 and
−1. The couplings λi are determined by the spectral function
F (ω) = ∑

i λ
2
i δ(ω − ωi ) = α

2 ω1−s
c ωs�(ωc − ω), where ωc

is a cutoff frequency. Here the dimensionless parameter α

measures the strength of the coupling and s distinguishes the
different kinds of dissipation. We focus our attention on the
Ohmic regime (s = 1), use units such that h̄ = kB = 1, and
set ωc = 10�.

Thermodynamic equilibrium. We investigate the physical
features of this Hamiltonian by using three different ap-
proaches. The first of them is diagrammatic Monte Carlo
(DMC) method, based on a stochastic sampling of the Feyn-
man diagrams. It has been successfully applied to investigate
polaron physics in different contexts [38–42]. The second one
is worldline Monte Carlo (WLMC) method, based on the path
integrals. Here the elimination of the bath degrees of freedom
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FIG. 1. 〈HI〉, 〈HJ〉, 〈H�〉, and M2 vs α at T = 10−2�, N = 2
and J = 8: comparison between DMC (triangles), WLMC (squares)
methods and variational approach (solid line). Insets: (c) 〈H�〉 vs
α at J = 0; (d) M2 vs α at T/� = 10−1 (blue), 10−2 (green), and
2 × 10−3 (orange).

leads to an effective Euclidean action [7,43]

S = 1

2

∫ β

0
dτ

∫ β

0
dτ ′ ∑

i, j

σz,i(τ )K (τ − τ ′)σz, j (τ
′), (2)

where β = 1/T (T is the system temperature), and the kernel
is expressed in terms of the spectral density F (ω) and the bath

propagator: K (τ ) = ∫ ∞
0 dωF (ω)

cosh[ω( β

2 −τ )]

sinh( βω

2 )
. In particular, for

β → ∞, the kernel has the following asymptotic behavior:
K (τ ) = α

2τ 2 . The problem turns out to be equivalent to a clas-
sical system of spin variables distributed on N chains (labeled
by i and j), each of them with length β, and ferromagneti-
cally interacting with each other (τ and τ ′ label the spins on
the chains). The functional integral is done with Poissonian
measure adopting a cluster algorithm [43,44], based on the
Swendsen and Wang approach [45]. This approach is exact
from a numerical point of view and it is equivalent to the sum
of all the Feynman diagrams. The third method is based on
the variational principle, and, recently, has been successfully
applied to the spin-boson model (N = 1), where αc � 1 [46].
The idea is to introduce a model Hamiltonian HM where one
replaces the bath in Eq. (1) with a discrete collection of ficti-
tious modes, whose frequencies ω̃i and coupling strengths λ̃i

are variationally determined. A very limited number of these
bosonic modes is enough to correctly describe, up to very low
temperatures, any physical property, correctly predicting the
QPT for any s [46].

In Fig. 1 we plot 〈HI〉, 〈HJ〉, 〈H�〉, and squared mag-
netization M2 = 1

β

∫ β

0 dτ 〈Sz(τ )Sz(0)〉 as a function of α, at

T = 10−2� and N = 2, with Sz = ∑N
i=1 σz,i. The plots point

out the successful agreement between the 3 approaches. As
expected, by increasing α: (1) the absolute value of 〈HI〉
increases; (2) 〈HJ〉 increases in a monotonic way with a
change of sign clearly indicating a progressive reduction of
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FIG. 2. (a) The function G vs β at α � αc � 0.287 (N = 2):
WLMC (squares) vs variational approach (solid line); (b) Phase
diagram, αc vs N at different J .

the effective antiferromagnetic interaction in favour of the
ferromagnetic one; and (3) 〈H�〉 shows a nonmonotonic be-
havior. The absolute value increases at weak coupling, where
there is a different energy balance between 〈H�〉 and 〈HJ〉
with respect to α = 0: the spins tend to minimize 〈H�〉 at
the expense of 〈HJ〉. On the other hand, by increasing α

further, the effect of the dressing by the bosonic field prevails,
inducing a progressive decrease of the effective tunneling.
Note that the nonmonotonic behavior is absent at J = 0 (see
inset). In this case, at α = 0, the average value of H� is
already minimized. (4) M2 increases from 0 to about N2, in
a steeper and steeper way by lowering T (see inset), signaling
an incipient QPT, that, independently on N , is again BKT
QPT. Indeed, in a BKT transition, the quantity M2 should
exhibit a discontinuity at αc and T = 0 [25,26]. In order to get
a precise estimation of αc, we adapt the approach suggested by
Minnhagen et al. in the framework of the X-Y model [47,48].

In the present context, the roles of the chirality and the
lattice size are played by squared magnetization and inverse
temperature β, respectively. Defining the scaled order pa-
rameter �(α, β ) = αM2, the BKT theory predicts: �(αc,β )

�c
=

1 + 1
2(ln β−ln β0 ) , where β0 is the only fitting parameter and

�c = �(αc, β → ∞) is the universal jump that is expected
to be equal to one. In this scenario, the function G(α, β ) =

1
�(α,β )−1 − 2 ln β should not show any dependence on β at
α = αc. In Fig. 2(a) we plot the function G(α, β ) as a function
of β for different values of α. The plots clearly show that
there is a value of α such that G is independent on β. This
determines αc. In Fig. 2(b) we plot the phase diagram of αc

vs N for different J . While at J = 0, αc(J = 0) decreases as
a function of N , and asymptotically as 1/N by increasing N
[24], for nonvanishing J turns out to be rapidly independent
on N . In order to explain this behavior we note that one has
to take into account both the bare instantaneous antiferromag-
netic coupling and the ferromagnetic interaction induced by
the bath. The latter one includes both nonretarded contribu-
tions, with strength αωc [49], and retarded contributions, that
decrease as 1/τ 2 when β → ∞ and give rise to BKT QPT. It
occurs when α is greater than the maximum between αc(J =
0) and α̃, α̃ being the minimal value of α such that also the
effective instantaneous interaction becomes ferromagnetic. It
fulfills the relation J�

4 − α̃ωc = 0. Starting from αc(J = 0),
αc practically increases linearly with J . The more J increases,

the larger is the interval of α values with low environmental
influences on quantum coherence.

Relaxation towards thermodynamic equilibrium. The re-
laxation function is the crucial physical quantity when the
system is out of thermodynamic equilibrium. It represents the
response of the system to a perturbation adiabatically applied
from t = −∞ and cut off at t = 0, and can be calculated
within the Mori formalism. It allows to reformulate, in an ex-
act way, the Heisenberg equation of motion of any observable
in terms of a generalized Langevin equation [34]. Within this
formalism, one introduces a Hilbert space of operators (whose
invariant parts are set to be zero) where the inner product
is defined by (A, B) = 1

β

∫ β

0 〈esH A†e−sH B〉ds. Any dynamical
variable O obeys the equation

dO

dt
= −

∫ t

0
MO(t − t ′)O(t ′)dt ′ + f (t ), (3)

where the quantity f (t ) represents the ”random force”, that is,
at any time, orthogonal to O and is related to the memory func-
tion MO by the fluctuation-dissipation formula. The solution
of this equation can be expressed as O(t ) = �O(t )O + Õ(t ),
i.e., �O(t ) = (O(t ), O)/(O, O) describes the time evolution
of the projection of O(t ) on the axis parallel to O and repre-
sents the relaxation of the O operator, whereas Õ(t ) is always
orthogonal to O. We will focus our attention on O = Sz. If
the system at t = 0 is prepared at the thermal equilibrium
in the presence of a small magnetic field h along z axis, by
using the linear response theory [50] and the Mori approach,
it is possible to prove that �z(t ) = 〈Sz (t )〉

〈Sz (0)〉 , where 〈Sz(t )〉 is
calculated in the absence of h. We proved that �z(z), the
Laplace-transformed relaxation function, can be exactly ex-
pressed either as �z(z) = i

z+iMz (z) , i.e., à la Mori, or in terms
of a weighted sum contributions associated to the exact eigen-
states of the interacting system, each characterized by its own
memory function:

�z(z) =
∑

n

Pn,z
i

z + iMn,z(z)
, (4)

with
∑

n Pn,z = 1 [33,51]. In the case of the optical conductiv-
ity, where O is current operator, this formulation resolves the
difficulty to connect the Boltzmann transport theory and the
Kubo formula.

Here the current operator and the electric field are replaced
by the spin operator and the magnetic field, respectively, and
�z(z) is the analog of the optical conductivity, i.e., �z(z) =
i (χ (z)−χ (z=0))

M2βz , χ (z) being the magnetic susceptibility [33]. It is
straightforward to show that there is a relation between �z(z)
and �y(z), i.e., between the two relaxation functions along z
and y axes [33]:

�z(z) = i

z
+ (Sy, Sy)

(Sz, Sz )
�2�y(z). (5)

Equation (5) allows to define an effective gap: �2
eff =

(Sy,Sy )
(Sz,Sz ) �

2. In particular it restores the bare gap � at α = 0 = J .
We emphasize that so far there have been no approximations.
Here, we combine, for the calculation of �y(z), the short-time
approximation, typical of the memory function formalism
[34], and the variational approach à la Feynman, by replacing
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FIG. 3. �z(t ) at different values of α [0.01 (a), 0.15 (b), 0.2 (c),
and 0.22 (d)] at low T and J = 8: comparison between Feynman-
Mori approach (β� = 500) and MPS and exact diagonalization
methods (T = 0) for N = 2.

the exact eigenstates of H with the ones of the model Hamil-
tonian HM [33,52,53]. These two approximations provide:
Mn,y(z) = i

z �
2
n + 2

τn
, i.e., it is possible to associate an effective

gap �n and a relaxation time τn to any eigenstate of HM .
Here Mn,y(z) is the memory function for O = Sy [see Eq.(4)].
We note also that, consistently, the following relation holds:∑

n Pn,y
1

�2
n

= 1
�2

eff
. Equation (5) allows us to obtain �z(t ), the

most important relaxation function

�z(t ) = �2
eff

∑
n

Pn,ycn(t ), (6)

where

cn(t ) = 1(
γ 2

n + 1
τ 2

n

)
[

cos(γnt ) + 1

γnτn
sin(γnt )

]
e− t

τn , (7)

if �2
n > 1

τ 2
n

, and

cn(t ) = τ (+)
n τ (−)

n

2μn

[
1

τ
(+)
n

e
− t

τ
(−)
n − 1

τ
(−)
n

e
− t

τ
(+)
n

]
, (8)

if �2
n < 1

τ 2
n

. In Eq. (7) γn =
√

�2
n − 1

τ 2
n

, and in Eq.(8)

μn =
√

1
τ 2

n
− �2

n, 1
τ

(+)
n

= 1
τn

+ μn, and 1
τ

(−)
n

= 1
τn

− μn. Inde-

pendently on N , the predicted structure of �z(t ) is always the
same, i.e., a linear superposition of oscillating functions with
decreasing amplitude and/or exponential functions. It is worth
of mentioning that oscillation frequencies γn are determined
by both �n and τn.

In Fig. 3 we plot the relaxation function at low T for dif-
ferent values of α at N = 2 and J = 8. The comparison with
MPS and exact diagonalization methods [54] points out the
effectiveness of our proposal at both short and long times and
any spin-bath coupling. Firstly, by increasing α, not only the
amplitude but also the frequency of the oscillations reduces.
When α is such that the quantity γn, corresponding to the
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FIG. 4. [(a),(b)] �z(t ), at α = 0.05, T = 0, and different values
of J , for N = 2 and N = 4, respectively (MPS approach); (c) �z(z →
0) vs β and (d) �z(t ) at different β, at α = 0.22, N = 2 and J = 8
(Feynman-Mori approach).

ground state, becomes zero, i.e., 1/τn = �n, the relaxation be-
comes exponential. This is the analog of the Toulouse point in
the spin boson model with N = 1 [7]. By increasing α further,
the relaxation time gets longer and longer, and, at α � αc, the
system does not relax, i.e., �z(t ) = 1 independently on time
t , signaling the occurrence of QPT.

In the Figs. 4(a) (N = 2) and 4(b) (N = 4) we fix α and
focus our attention on the dramatic changes induced by in-
creasing values of J . In particular, for N = 4 and α = 0.05,
starting from J = 0, where there is no relaxation (α > αc),
the system, by increasing J , crosses the QPT and exhibits
oscillations with larger and larger duration and amplitude,
asymptotically restoring the Rabi oscillations, typical of the
system in the absence of the spin-bath interaction: the more J
increases the more the decoherence induced by environment
is reduced [55].

There are again two interesting observations. The first one
regards the behavior of the quantity �z(z → 0) as a function
of T . It is the analog of the conductivity in solids. Figure 4(c)
shows that this quantity has a nonmonotonic behavior with
T , displaying a maximum at a finite temperature, that is
reminiscent of the Kondo effect: it is the counterpart of the
minimum (maximum) of the resistivity (conductivity) of the
electron gas in the mapped model. The plots in Fig. 4(d) show
that, correspondingly, also �z(t ) exhibits a nonmonotonic be-
havior as a function of T . The second remarkable property is
related to the possibility to introduce an alternative criterion to
describe the QPT. Indeed the Fourier-transformed relaxation
function obeys the following two sum rules:

∫ ∞
−∞ �z(ω)dω =

π and
∫ ∞
−∞ ω2�z(ω)dω = − 4π

M2β
〈H�〉. On the other hand,

while 〈H�〉 is a continuous function of the coupling α across
QPT, the squared magnetization exhibits a discontinuity:
M2β, when β → ∞, tends to a finite constant depending
on α, for α < αc, whereas, at α � αc diverges. It proves
that �z(ω) at T = 0 and α � αc becomes a δ function.
QPT, in this model, exhibits the same characteristic of the
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metal-insulator transition in solids, provided that the optical
conductivity is replaced by the spin relaxation function along
z axis [56].

Conclusions. We characterized QPT, static and dynami-
cal features of N spins antiferromagnetically interacting with
each other and coupled to a common bath. We proved that,
when J �= 0, there is a finite range of values of α with low
environmental influence on the spin phase coherence indepen-
dently on N . We provided also an original way to address
the spin relaxation processes, that exihibit a nonmonotonic
behavior with T . Finally, for the observed QPT, we introduced
a criterion analogous to that of the metal-insulator transition
in solids.
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