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Resummation-based quantum Monte Carlo for quantum paramagnetic phases
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For spin rotational symmetric models with a positive-definite high-temperature expansion of the partition
function, a stochastic sampling of the series expansion upon partial resummation becomes logically equivalent
to sampling an uncolored closely packed loop-gas model in one higher dimension. Based on this, we devise
quantum Monte Carlo updates that importance-sample loop configurations for general SU (N ) in fundamental
and higher-symmetric representations. The algorithmic performance systematically improves with an increase
in (continuous) N , allowing the efficient simulation of quantum paramagnets. The underlying reason for the
increased efficacy is the correspondence of quantum paramagnetic phases such as valence bond solids to short-
loop phases on the loop-gas side rather than the particular value of N . This also gives a connection between
Sandvik’s JQ model class and classical loop-gas models in the deconfined universality class.
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For all areas of physics including strongly correlated mat-
ter, efficient computational algorithms are now indispensable.
Systematic advances in their design have thus become the
keys to progress. Such is exemplarily the case for an im-
portant class of algorithms based on the Monte Carlo (MC)
method that has provided unbiased insights into multifarious
condensed matter systems, as well as lattice gauge theories for
elementary particles.

For magnetic insulators that set our backdrop, quantum
Monte Carlo (QMC) is now routinely used to study various
lattice quantum spin Hamiltonians [1] which provide effective
microscopic models for the magnetically active sites in the
crystal, or idealized versions aimed at capturing the correct
long-distance physics [2]. For these models, an influential set
of works [3–8] have set the agenda for charting out the land-
scape of magnetic and, importantly, quantum non-magnetic
phases and associated quantum phase transitions. The large-N
perturbative approach of Refs. [3,5–8] offers insights into
SU (2) magnets [9], and also connects to quantum dimer mod-
els [10] in the N → ∞ limit that serve as effective low-energy
models for spin systems [6].

There are two well-known flavors of QMC for simulat-
ing these spin models on a d-dimensional lattice at finite
temperatures that are extremely efficient for small N . One is
based on a path-integral representation in d + 1 dimensions
in (imaginary) time [11,12], and the other based on a stochas-
tic sampling of the high-temperature series expansion (SSE)
of the partition function which leads to a discrete (d + 1)-
dimensional formulation [13,14]. Both approaches share a
close relation—as a simple example, there is a well-defined
spin state on the lattice (

∏
i∈lattice ⊗|sz

i 〉) at any point or slice
in the additional dimension in both representations—and the
ideas in one context may be ported into the other [15]. There
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are also zero-temperature (T = 0) projection-based QMC
methods that stochastically project out the ground state from
a trial state by exploiting the valence bond basis for antiferro-
magnetic ground states in the singlet sector [16] including a
continuous-N generalization [17].

What has made these methods really powerful is the loop
algorithm [12,18–23] and its extensions [24–31] which per-
form nonlocal updates similar to cluster updates in classical
lattice simulations [32,33]. The loop algorithm is based on
a colored loop representation of the partition function [34],
and changing the color of loops leads to nonlocal updates.
This idea can be used in T = 0 valence bond projector-QMC
as well by reintroducing spin variables judiciously in the va-
lence bond formulation as shown by Sandvik and Evertz [23],
which also works for Beach et al.’s continuous-N generaliza-
tion [35]. Such loop color updates have also been exploited
to study classical loop-gas models [36–38] whose universal
properties can parallel that of spin models. This connection
goes the other way too, i.e., spin models at finite T may
be converted to classical (uncolored) loop models in one
higher dimension as noted in “Suzuki-Trotterized” contexts
[22,39,40]. This is essentially a resummation over the spin
variables.

In this Letter, we design finite-T nonlocal SSE updates
based on this resummation which directly handle uncolored
loops without any reference to the underlying spin states.
This takes advantage of the basic SSE setup which in-
curs no Suzuki-Trotter errors [41]. These updates lead to
a systematic improvement in algorithmic performance as N
increases. In relation to the classical loop-gas models al-
luded to above [36–38], the resultant algorithm is well suited
for simulations of phases with predominantly short loops.
In fact, this pure loop formulation generalizes the essential
idea of valence bond T = 0 projector-QMC method via the
resummation-based updates to simultaneously access both
finite temperatures and any total spin sector. More broadly
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FIG. 1. Illustrative operator string configurations for standard
SSE (left) with definite spin states, and for resummed SSE (right)
characterized purely by uncolored loops.

speaking, uncolored short loops in space-time are rather the
natural objects or building blocks for quantum non-magnetic
phases such as valence bond solids (VBSs). These states are
of long-standing interest both intrinsically, and for possible
proximity to spin-liquid states. On the other hand, colored
loops with definite spin states are the natural objects in long-
loop phases which correspond to magnetic phases that were
exploited by Sandvik-Evertz [23]. We also combine the above
with the SSE methods developed by one of the authors in
Refs. [42,43] for efficient simulation of higher-symmetric
representations of SU (N ) that were introduced by Read and
Sachdev [6] to expose the myriad possible quantum non-
magnetic states for higher spins.

Fundamental representation. We describe the basic idea
using the canonical SU (2) spin- 1

2 nearest-neighbor Heisen-
berg Hamiltonian on a bipartite lattice. It is

H = J
∑

〈i, j〉
si · s j,

where si ≡ (sx
i , sy

i , sz
i ) are spin- 1

2 operators on site i at po-
sition ri, and 〈i, j〉 indexes the nearest-neighbor bonds of the
lattice. After a sublattice unitary rotation, H = −J

∑
〈i, j〉 Hi j

with the “singlet projector” Hi j = 1
N

∑
α,β |αiα j〉〈βiβ j | up to

an innocuous constant. α, β range from 1 to N = 2 [44,45].
Then, the high-temperature series representation of the parti-
tion function Z (β ) = Tr(e−βH ) = ∑

n
(−β )n

n! Tr(Hn) with β ≡
1

kT becomes the (positive-definite) operator-string representa-
tion of SSE,

∞∑

n=0

(−β )n

n!

∑

Sn

∑

α

〈α|H{b1,μ1}H{b2,μ2} · · · H{bn,μn}|α〉,

where Sn denotes a string of operator indices, and {bm, μm} is
a joint index that tracks for the mth operator in the operator
string its bond location 〈i, j〉 where Hi j “lives” via bm, and
whether it is diagonal or off diagonal in the usual choice of sz

basis via μm. The operator-string representation thus lives in
d + 1 dimensions. As remarked earlier, it can be imagined as
a configuration of closely packed colored loops [34] as shown
in Fig. 1(a). Now, one may resum over the spin or color values
of these closely packed loops without breaking or changing
any loop connections in the operator string. This then renders

the ensemble as a configuration of closely packed uncolored
loops as shown in Fig. 1(b). This loop-gas representation for
the high-temperature series may be written as

Z (β ) =
∞∑

n=0

(−β )n

n!
Nnl

∑

Sn

hb1 hb2 · · · hbn , (1)

where bond index bi is now the only indexing required, hbi in-
dicates the spin-symmetric matrix element contribution (− J

N
in our example) at bi, and nl is the number of loops in a given
configuration.

We may suggestively rewrite the above as Z =∑
{Cloops} W (Cloops), where Cloops is any allowed closely packed

uncoloured loop-gas configuration with only one underlying
operator where loops abut each other at various time slices
[Fig. 1(b)], and W (Cloops) = (βJ/N )n

n! Nnl . The underlying
operators thus perform the role of “transfer matrices” in the
loop-gas language [36]. The uncolored nature of the loop gas
emerges in the presence of SU (N ) symmetry, which ensures
that the diagonal and off-diagonal operators contribute the
same factor to the weight of the configuration. Having done
the resummation though, N is now purely a parameter and
can be any positive, real number. It also gets rid of the index
which tracks diagonal versus off-diagonal operators, which
implies a superposition of spin states at any time slice.

Estimators. The simplest QMC estimator is energy, and
it is measured in the same way here as in standard SSE.
This is because, if we now color back the uncolored loops,
the contribution to the energy estimator is independent of
the coloring, i.e., each coloring contributes the same value
( n
β

) to the energy estimator [15]. The measurement of bond
operators also remains unchanged, e.g., Bλ(	r) ≡ sr · sr+êλ

on
the square lattice. We can similarly measure the square lat-
tice VBS order parameters, φx = 1

Ns

∑
r(−1)rx 〈Bx(r)〉 and

φy = 1
Ns

(−1)ry〈By(r)〉. Measuring the correlations of the bond

operator C̃φ2
λ
(r) = 〈Bλ(0)Bλ(r)〉 is also straightforward. The

estimator of the spin stiffness which tracks magnetic ordering
is changed due to the resummation. In standard SSE, the
stiffness is related to the winding of colored loops according to

the following relation, ρ = 〈W2
c 〉

β
, where 〈W2

c 〉 is the winding
fluctuations of colored loops [15]. It is related to the winding
fluctuations of uncolored loops as 〈W2

u 〉 = N2

(N−1) 〈W2
c 〉, which

gives an “improved” estimator for the stiffness:

ρ = (N − 1)

N2

〈
W2

u

〉

β
. (2)

The derivation of the winding fluctuation relation is given in
Ref. [46]. This estimator for stiffness can be used in standard
SSE as well.

Implementation and application. Based on Eq. (1), we
implement a Monte Carlo algorithm to directly sample the un-
colored loop ensemble. Each MC update consists of proposing
to insert a spin-symmetric operator at an “identity” location or
to remove an already existing “non-identity” spin-symmetric
operator at various space-time locations. The proposals get
accepted with Metropolis probabilities which are governed
by the change n → n ± 1 (for the Heisenberg model) and
the change in the number of loops δ(nl ) [46]. For Hi j , δ(nl )
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FIG. 2. Top: Comparison of autocorrelation of the VBS order
parameter (φ = √

φ2
x + φ2

y ) on a 16 × 16 lattice for N = 5, 15, 30
at β = 128, 64, 64, respectively, measured after each Monte Carlo
step using the resummation algorithm with that of the standard
SSE. Autocorrelations fall off faster in the resummed SSE (RSSE)
algorithm systematically as N increases. These values of N corre-
spond to the short-loop or VBS phase [47] showing the efficacy of
resummation-based updates for short-loop phases in general. Bot-
tom: Joint histograms of the VBS order parameters, φx and φy, for
N = 7, 10, 20, on a 16 × 16 lattice at β = 128, 128, 64, respectively.
φx and φy have been measured at every Monte Carlo step for 106

steps. For N = 7, the performances of both algorithms are compara-
ble. However, as we go deeper into the VBS phase for higher values
of N , we clearly see that resummed SSE (RSSE) spans the angular
space of the histogram better, thus proving to be the more ergodic
algorithm in this regime.

takes only the values ±1 purely due to considerations of loop
topology.

One may anticipate improved performance as N increases
compared to standard SSE: In any (typical) instance of the
standard SSE operator string configuration, the off-diagonal
operator contributions start to dominate those of diagonal
operators as N increases. This is simply due to there being
N (N − 1) off-diagonal operators versus N diagonal operators
in Hi j . This makes the “diagonal” update of standard SSE—
that changes n by inserting or removing diagonal operators
between two (identical) definite spin states—less efficient in
updating the operator string (the “off-diagonal” update of
standard SSE changes only the spin or color value of the loop
as remarked earlier, and does not change n). This is a non-
issue in our algorithm; operators can be potentially inserted
or removed at any space-time location. This improved perfor-
mance is indeed seen as discussed in Fig. 2. From a loop-gas
perspective on the other hand, the resummed SSE algorithm
is apt for simulating any phase with predominantly short
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FIG. 3. (a) Finite-size scaling of the VBS order parameter for the
SU (N ) square lattice antiferromagnet in the fundamental representa-
tion for N = 7, 10, 13 at β = 128 representative of zero-temperature
limit [46,49]. It clearly extrapolates to finite values showing VBS
order in this regime as is expected [47]. Bottom: The joint histogram
of φx and φy measured at every tenth Monte Carlo step with a total
of 107 steps. (b), (c) At low enough temperatures, the histograms
show U (1) symmetry for N = 10, 13 (at β = 128, 256, respectively)
on a 32 × 32 lattice. (d) For N = 7, at β = 64 on a 16 × 16 lattice,
the distribution peaks at an U (1) symmetric ring and at φx = φy = 0
suggesting a first-order transition.

loops where the computation of δ(nl ) becomes quite efficient.
This is the underlying reason to prefer resummed SSE for
short-loop phases (regardless of N) such as VBSs (Fig. 2) as
mentioned earlier. This should apply for other non-magnetic
phases such as the plaquette VBS or the Haldane-nematic
phase [7,48]. These updates can also supplement the standard
SSE diagonal and loop updates in long-loop phases or near
transitions if needed for performance.

We now apply the resummed SSE algorithm to the square
lattice antiferromagnet, H = − J

N

∑
〈i j〉

∑N
α,β=1 |αiα j〉〈βiβ j |,

for several N . In the fundamental representation, it maps to
the non-interacting quantum dimer model (QDM) with one
dimer per vertex as N → ∞ [6]. Only very recently, an effi-
cient algorithm based on SSE has been developed for finite-T
simulations directly in the constrained Hilbert space of the
QDM [50]. We can also access the large-N regime in our
simulations efficiently. In Fig. 3(a), we see VBS order at low
enough temperatures in this regime. However, we see U (1)-
symmetric VBS order histograms as shown in Figs. 3(b) and
3(c) in contrast to the “mixed” phase histograms of Ref. [51]
for similar system sizes. The approach to the constrained
Hilbert space of QDM in the loop-gas representation can also
be quantified as shown in the final section of Ref. [46]. We
find non-negligible deviations from QDM Hilbert space to put
SU (N ) magnets away from the perturbative neighborhood of
QDM even for quite large N . We ascribe this to the contrast
between our results and Ref. [51]—a relevant detail on the
connection between SU (N ) magnets and QDM. Figure 3(d)
shows how the algorithm performs near the thermal transition
out of the ordered phase.
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FIG. 4. Schematic to illustrate the resummation over the pro-
jection operators. On the left side is shown a small section of the
uncolored loop QMC configuration with two split-spins per site. On
the right is shown the rewiring MC update at the projection time slice.
The shade of gray corresponds to the projection operators shown
as circles in the QMC configuration on the left, assuming a loop
geometry without any other operators on the shown bond elsewhere
in time.

Higher-symmetric representations. We now write down
resummation-based updates for higher representations by
making use of the “split-spin” language [40,42,52,53]
which splits Si as Pi(

∑2S
a=1 si,a)Pi, where Pi are appro-

priate projection operators to stay in the correct Hilbert
space. We take the spin-1 Heisenberg model for SU (2) as
our example, which automatically extends to the SU (N )
case with two symmetric “flavors.” The spin-1 Heisen-
berg model H = J

∑
〈i, j〉(Si · S j ) in the split-spin language

is written as H = PH̃P with H̃ = J
∑

〈i, j〉
∑

a,b si,a · s j,b

and a, b is now a split-spin index running over the num-
ber of symmetric flavors. P is a projection operator that
projects onto fully symmetric subspace over the split-
spins, i.e., P = ∏

i Pi and Pi ≡ | ↑↑〉〈↑↑ | + | ↓↓〉〈↓↓ | +
( |↑↓〉+|↓↑〉√

2
)( 〈↑↓|+〈↓↑|√

2
) for the two split-spins on the ith site.

With this in hand, the standard-SSE operator-string repre-
sentation follows from Z (β ) = TrS(e−βH ) = Trs(e−βH̃P ). To
ensure symmetrization, it is enough that the projection opera-
tor acts at one particular time slice [52]. We may now resum as
before to get a configuration in terms of uncolored loops with,
in this case, two “parallel” loops running at each space-time
point as sketched on the left side of Fig. 4. The resummation
over colors proceeds exactly the same as before to give the Nnl

reweighting factor.
To resum over the projection operator, one must ensure that

the action of the projection operator Pi is faithfully captured
on all sites. In standard SSE, one implements the projection by
the use of a directed loop update [25,27] at the projection time
slice [54]. Resumming over this now amounts to a “rewiring”
of the two uncolored loops at the two split-spin sites at this
time slice as shown on the right side of Fig. 4. So, the
implementation essentially mimics that of the earlier section
with an extra MC update for the projection time slice where
one proposes to reconfigure the split-spin connections as in
Fig. 4 with the acceptance probability again governed by the
δ(nl ) due to this proposal [46]. Extending this to yet higher-
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FIG. 5. Comparison of finite-temperature energy per unit site
e(T ) and spin stiffness ρ(T ) measured in our algorithm with standard
SSE (dashed lines) on a 4 × 4 lattice for several N and ns (number of
split-spins or symmetric flavors) [49].

symmetric representations follows along very similar lines
with more split-spins per site. In Fig. 5, we demonstrate the
implementation of these extensions by benchmarking energy
and spin stiffness with standard SSE. Simulations of SU (N )
models in these higher-symmetric representations have previ-
ously been carried out using colored loop updates [55,56]. Our
algorithm provides an alternative to this that can allow more
efficient access to the quantum non-magnetic states of SU (N )
antiferromagnets [6,7], thereby opening up further studies on
(quantum) phase transitions with N and T [57].

Discussion. One may finally ask if there is a physical
meaning to the uncolored loops, or are they just algorith-
mic constructs. Any such interpretation, apart from providing
intuition, can help formulate other useful QMC estimators
[58] based on our generalization of the valence bond T = 0
projector-QMC method to finite T without the singlet sec-
tor restriction. We can indeed interpret them as follows: At
a colored level in standard SSE, an operator |αiα j〉〈βiβ j |
destroys βi, β j in a state (“below” the operator in Fig. 1)
and creates αi, α j in the resultant state (“above” the opera-
tor). Thus, |αiα j〉〈βiβ j | ≡ b†

i,αb†
j,αbi,βb j,β , where b, b† stand

for the destruction and creation operations, respectively.
If χi j,α ≡ bi,αb j,α , then an α-colored loop is of the form
χ

†
li,α · · · χ†

jk,α
χi j,α . Therefore, upon resumming, an uncolored

loop has the following SU (N )-symmetric operator content,
χ̃

†
li · · · χ̃†

jkχ̃i j with χ̃i j = ∑
α χi j,α . A similar interpretation in

the “reverse” direction from loops to magnetic degrees of
freedom was laid down by Nahum et al. in Refs. [36,37,59],
but the Hamiltonian does not take a simple form for three-
dimensional (3D) loop gases [60]. Resummation instead gives
a recipe to go from local Hamiltonians to loop-gases including
for higher-symmetric representations.

The above interpretation gives a connection between the
2D JQ models [2,61] and the 3D loop-gas model studied by
Nahum et al in Ref. [38], both of which have been argued to
exhibit deconfined criticality [62,63]. The Q term—a tensor
product of several singlet projectors over independent bonds∏p

i=1 Hbi —gives an additional rule for how loops may abut
each other on a given time slice. A Q operator in the uncol-
ored loop representation will lead to p loop abutments at a
given time slice of the layered extension of the underlying
lattice, just as each Hb led to one loop abutment as in Fig. 1.
The J, Q terms in the loop-gas language thus define appro-
priate transfer matrices. This throws a “forward” perspective
on Refs. [38,64], in that by resumming, any spin-symmetric
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Hamiltonian with a positive-definite high-temperature series
expansion exhibiting deconfined criticality implies the same
between a long-loop and a short-loop phase in a logically
equivalent loop gas.
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