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Spin transport in a quantum spin orbital liquid
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Quantum spin orbital liquids (QSOLs) are a novel phase of matter, similar to quantum spin liquids, with
quantum fluctuations in both spin and orbital degrees of freedom. We use nonequilibrium Green’s function
theory to study out-of-equilibrium spin transport in an exactly solvable QSOL model put forward by Yao and
Lee. We find that the spin transport problem can be mapped to that of a free fermion problem with effective
fermionic baths that have a rapidly varying density of states. In the gapless phase, the spin current Is-Vs relation
is thus highly nonlinear, while in the chiral gapped phase, the spin current conductance is quantized to be 1/2π

provided that the contacts are sufficiently wide. The quantized conductance is a signature of the topological
nature of the chiral gapped QSOL.

DOI: 10.1103/PhysRevB.104.L060403

Introduction. Quantum spin liquids (QSLs) are a form of
matter with no long-range order, long-range entanglement,
fractionalized excitations, and emergent gauge fields [1–3].
Owing to an exactly solvable model of a QSL introduced by
Kitaev and a seminal paper by Jackeli and Khaliullin [4,5]
which points out that the model can be realized in some
strongly spin-orbit coupled materials, Kitaev-type QSLs are
an active area of investigation. The Kitaev model has also
been generalized to spin orbital models, or Kugel-Khomskii
models [6,7], which have both spin and orbital degrees of
freedom on each site. Yao and Lee derived a SU(2)-symmetric
version of such a model which lacks spontaneous symmetry
breaking in its ground state and has novel excitations, such
as non-Abelian spinons and fermionic magnons (FMs) [8].
Such novel quantum phases, termed quantum spin orbital
liquids (QSOLs), are proposed to exist in a broader range of
Kugel-Khomskii models [9–18]. Candidate materials that may
realize the QSOLs, such as Ba3CuSb2O9 [19–25], are still
under investigation, while additional candidates may be found
in certain 4d1 or 5d1 Mott insulators and twisted superlattice
systems [15–17,26–29].

Experimental confirmation of QSLs and QSOLs has been
a long-standing problem. Because QSLs are electrically insu-
lating, well-developed transport techniques cannot be utilized
except in a few cases [30,31]. Thermal transport experiments
have been useful for identifying QSLs, especially topological
QSLs, such as α-RuCl3 in a magnetic field, where half-integer
quantized thermal Hall conductance has been reported [32].
Theory and experiment of spin transport in QSLs or QSOLs
is less well developed [33–38]. Chen et al. [39] and Chatterjee
et al. [40] suggested that by sandwiching a QSL material
between two paramagnetic metals and driving a spin current
through the structure, one could characterize different types
of QSLs as they have different power laws of the spin current
Is-Vs relation. De Carvalho et al. generalize the results to
the Yao-Lee QSOL model, and their calculations show that
in the gapless phase with a zigzag-type contact, Is ∼ Vs, while

in the chiral gapped phase, Is ∼ V 3
s [41]. All the prior spin

transport calculations use equilibrium spin correlation func-
tions.

In this Letter, we relax the assumption that the system is
near equilibrium and give a systematic formulation of the spin
transport problem in a clean Yao-Lee model using nonequi-
librium Green’s functions (NEGFs). The difficulty of treating
spin operators in diagrammatic approaches due to their non-
commutativity can be tackled using Majorana representations
[42–45]. We find that the original spin transport problem
may be mapped to a free fermion transport problem in the
presence of fermionic baths with different effective tempera-
tures, chemical potentials, and a nonconstant density of states
(DOS). For the gapless phase, the transport characteristic is
highly nonlinear: For the zigzag-type contact (ZC), Is ∼ V 3

s ,
while for the armchair-type contact (AC), Is ∼ V 5

s . For the
chiral gapped phase, the spin current conductance is quantized
if the contact is wide enough. Our results for the gapless
phases with ZCs and chiral gapped phases differ from those
found in Ref. [41] because we account for the nonequilibrium
accumulation of spin excitations. Such spin transport experi-
ments can detect the topological phases of QSOLs and test the
existence of the predicted FMs.

Model. Yao and Lee constructed a SU(2)-symmetric spin-
1/2 model on the decorated honeycomb lattice [8]. Despite
the complexity of the original Hamiltonian and its underlying
lattice geometry, the low-energy physics is described by a
Kitaev-type Hamiltonian on the honeycomb lattice as shown
in Fig. 1,
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∑
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FIG. 1. Yao-Lee model on the honeycomb lattice. The type λ of
the bond is denoted by x, y, z in the figure. An arrow from site j
to i indicates the matrix element hi j of the Hamiltonian of Eq. (3)
for ui j = 1. A solid arrow indicates hi j = 2iJλ while a dashed line
indicates hi j = iχ/2.

freedom. The nearest-neighbor bond between site i and j of
type λ = x, y, z is denoted by 〈i j〉λ and particularly 〈i j〉α〈 jk〉β
labels three neighboring sites i, j, k that are ordered clock-
wisely within the corresponding plaquette. This model can be
exactly solved by representing Pauli matrices in terms of Ma-
jorana fermions σα

i = − εαβγ

2 iγ β
i γ

γ

i , τα
i = − εαβγ

2 idβ
i dγ

i , where

γ x,y,z and dx,y,z satisfy anticommutation relations {γ α
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j } =

2δi jδ
αβ , {dα

i , dβ
j } = 2δi jδ

αβ , and {γ α
i , dβ

j } = 0 [4,8]. Because
such a representation enlarges the physical Hilbert space, the
constraint Di = −iγ x

i γ
y
i γ z

i dx
i dy

i dz
i = 1 needs to be enforced.

In this representation, Eq. (1) can be written in terms of the
Majorana fermion operators

H =
∑
〈i j〉,α

iJi jui jγ
α
i γ α

j + iχ

4

∑
〈i j〉〈 jk〉,α

ûi j û jkγ
α
i γ α

k , (2)

where ui j = −idλ
i dλ

j and Ji j = Jλ/4 on the type-λ link. Since
[H, ui j] = 0 and [ui j, ui′ j′ ] = 0, the set of bond variables {ui j}
are good quantum numbers that have eigenvalues ±1 and the
Hamiltonian Eq. (2) can be solved for each different {ui j}. In
fact, ui j acts as a Z2 gauge field and Di serves as a generator of
the Z2 gauge symmetry. Gauge-invariant Z2 flux operators can
be defined on each plaquette Wp = ∏

〈 jk〉∈p u jk ( j ∈ A sublat-
tice, k ∈ B sublattice), which are good quantum numbers that
label the physical eigenstates.

Equation (2) can be regarded as three copies of the original
Kitaev model. The global SO(3) symmetry among the three
species of Majorana fermions originates from the original spin
rotational symmetry. The phase diagram of Eq. (2) can hence
be inferred from that of the Kitaev model [4]: When χ = 0
and |Jx|, |Jy|, |Jz| satisfy the triangle inequalities, it describes a
gapless QSOL; when χ = 0 and |Jx|, |Jy|, |Jz| do not meet the
triangle inequality conditions, it describes a nonchiral gapped
QSOL; at the isotropic point Jx = Jy = Jz, if χ �= 0, it is a
chiral gapped QSOL.

It is convenient to define complex fermion operators fi,z =
(γ x

i − iγ y
i )/2 and Eq. (2) can be rewritten as the sum of two

parts,

H = HK + HH =
∑

i j

hi j

4
γ z

i γ z
j +

∑
i j

hi j f †
i,z f j,z, (3)

where HK is the Kitaev model, while at the zero flux sector and
isotropic point HH is equivalent to the Haldane model [46].
The matrix elements hi j when ui j = 1 are indicated in Fig. 1.
Because Sz

i = f †
i,z fi,z − 1

2 , the fermions created by f †
i,z carry

Sz = 1 and are hence dubbed as FMs.
We consider an experimental setup as shown in Fig. 2,

where the system is sandwiched between two spin baths.
The spin baths are paramagnetic metals described by the
Hamiltonian Hα

bath = ∑
α,n εαnc†

αnσ cαnσ , where σ labels spin, n
labels the eigenstate, and α = L, R labels the bath. The system
couples with the spin bath α through the Heisenberg exchange
interaction at the boundary Aα ,

Hα
int =

∑
〈i,iα〉∈Aα

λα �Si · �Siα , (4)

where �Si represents the spin i in the system while �Siα denotes
the spin iα in the spin bath α that interacts with spin i. It is
proposed that a spin bias Vs = μ↑ − μ↓ can be induced in one
bath, for example, by the spin Hall effect, where μ↑(↓) is the
chemical potential of spin-up (down) electrons, while the spin
current Is through the structure can be detected, for instance,
by the inverse spin Hall effect, in the other bath [40,47–49]. In
this Letter, we will simply assume VL = Vs, VR = 0, and spin
current flows from left to right. We only consider the gapless
phase and chiral gapped phase, as the nonchiral gapped phase
generally does not have gapless excitations.

Formalism. We use NEGFs to investigate the spin transport
in the aforementioned model [50,51]. The idea is similar to the
calculation of electric current in a mesoscopic electronic sys-
tem [52–55]. We aim to calculate gauge-invariant observables,
which is given by

〈O(t )〉 = Tr{ρinit[U (t,−∞)]†OU (t,−∞)}, (5)

where U (t,−∞) = e−i
∫ t
−∞ Hint (τ )dτ , ρinit = ρL ⊗ ρS ⊗ ρR,

ρL(R) is the density matrix of the left (right) bath with
μ↑ − μ↓ = VL(R), and ρS = e−βH/Tr(e−βH ) is the density
matrix of the system, all at temperature T = 1/β. Note we
use the interaction representation here. Equation (5) may be
evaluated by representing all Pauli matrices with Majorana
fermions. In this Letter, we assume that the flux gap flux is
much larger than the temperature T and the spin bias Vs so
that we only need to focus on the fluxless gauge sector, which
has the lowest energy according to Lieb’s theorem [56].
Because both the hybridization (4) and the observable we are
interested in, i.e., spin current, do not mix different gauge
sectors, we will simply choose ujk = 1 and work within
this gauge choice. With Wick’s theorem one can therefore
decompose Eq. (5) to products of Green’s functions and
evaluate it with Keldysh techniques [45]. When χ = 0 the
spin current operator Ii j is given by

Ii j = iJλ

2

[
τλ

i τλ
j

]
(σ−

i σ+
j − σ+

i σ−
j )

= 2Ji jui j ( f †
j,z fi,z + f †

i,z f j,z ), (6)

where i and j are nearest-neighbor sites connected by a
λ-type bond and the spin current flows from j to i. For
convenience we set h̄ = 1 throughout this Letter. Thus
one needs to calculate the full FM propagator G f

i j (t, t ′) =
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FIG. 2. Schematic of the experiment setup. The spin-up electrons and spin-down electrons in the left spin bath have a chemical potential
difference Vs, which drives spin current Is through the structure.

−i〈Tce−i
∫

c dτHint (τ ) fi,z(t ) f †
j,z(t ′)〉, which can be approximately

obtained by resumming relevant diagrams and calculating the
Dyson equation (see Supplemental Material [57], Sec. I for
more details)

G f
i j = gf

i j +
∑

α

G f
ik�

f
α,kl g

f
l j, (7)

where gf
i j is the bare propagator for FMs. The convolution on

the Keldysh contour and the sum over repeated indices have
been implicitly indicated. Note that the time arguments of the
Green’s functions are incorporated in the subscripts when not
written explicitly. The simplest self-energy �

f (1)
α,i j due to the

bath α (i, j ∈ Aα) is given by Fig. 3(a),

�
f (1)
α,i j = i(λα )2

4
gM

α,i jg
γ
i j, (8)

while the self-consistent self-energy �
f (sc)
α,i j is [see Fig. 3(b)]

�
f (sc)
α,i j = i(λα )2

4
gM

α,i jG
γ

i j, (9)

FIG. 3. The Dyson equations for FMs (solid lines) and Majorana
fermions (dashed lines). The double lines indicate the full propaga-
tors while the single lines are for bare propagators. The wavy lines
refer to gM defined in the text. The diagrams in (a) represent the
calculation of � f (1) in Eq. (8), while the diagrams of (b) are for the
calculation of � f (sc) and �γ (sc) in Eqs. (9) and (11).

where gM
α,i j (t, t ′) = −i

∑
iα, jα

〈TcS−
iα

(t )S+
jα

(t ′)〉. In Eq. (9) the

full Majorana propagator Gγ

i j (t, t ′) = −i〈Tce−i
∫

c dτHint (τ )

γ z
i (t )γ z

j (t ′)〉 satisfies the Dyson equation

Gγ
i j = gγ

i j +
∑

α

Gγ

ik�
γ (sc)
α,kl gγ

l j, (10)

where gγ
i j (t, t ′) is the bare Majorana propagator and the self-

energy �
γ (sc)
α,i j (i, j ∈ Aα) is given by

�
γ (sc)
α,i j = i(λα )2

4

[
gM

α, jiG
f
i j − gM

α,i jG
f
ji

]
. (11)

Equations (7) and (8) give a first-order solution while the
closed set of Eqs. (7) and (9)–(11) can be solved iteratively to
obtain a self-consistent solution. We point out that one class
of diagrams that we neglect corresponds to the Sz

i Sz
iα

term
as it does not lead to dissipation and only contributes to the
real part of the self-energy, slightly renormalizing the Hamil-
tonian. The term does not alter the transport qualitatively.
Although throwing away such terms may break the original
SU(2) spin rotational symmetry, the U(1) charge Sz is still
conserved and hence the spin current along the z direction is
still well defined. The other neglected diagrams include those
with dressed vertices, dressed gM , and diagrams that cannot
be represented in terms of gM .

From the perspective of NEGFs, spin transport in the Yao-
Lee model and the electron transport in graphene are similar,
not only because both the Hamiltonian and current operators
are similar, but also because the nonequilibrium dynamics is
determined by the self-energies at the system-bath interface.
For FMs the effects of Majorana fermions γz and spin bath
α are equivalent to that of an effective fermionic bath with a
spectral function,

�α (ω) = −� f ,R
α (ω) − � f ,A

α (ω)

2π i
, (12)

and distribution function,

f α
eff(ω) = 1

2

(
1 − �

f ,K
α,i j (ω)

�
f ,R
α,i j (ω) − �

f ,A
α,i j (ω)

)
, (13)

if a single well-defined distribution function exists. The su-
perscripts R, A, K denote the retarded, advanced, and Keldysh
components, respectively, and bold symbols represent matri-
ces. We will refer to such an effective fermionic bath as a
“FM bath” in this Letter. It can be shown that the distribution
function calculated by �

f (1)
α is (see Supplemental Material
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[57], Sec. II)

f α(1)
eff (ω) = 1

eβ(ω−Vα ) + 1
, (14)

which indicates that the FM bath α has an exactly chemical
potential Vα . To calculate the spectral function explicitly, we
make the local self-energy approximation (LSEA) which as-
sumes that the self-energy is local in space. We note that this
approximation is not essential and does not alter the calcu-
lation qualitatively as long as the self-energies in real space
all have the same ω dependence at low energies. Within this
approximation the spectral function at small ω is given by

�
α(1)
ii (ω + Vα ) ≈ (λαJα )2

4

∫
dω′ω′Dα

ii (ω − ω′)

×
[

tanh
β(ω − ω′)

2
+ coth

βω′

2

]
, (15)

where Jα is the local density of states (LDOS) per spin (of spin
bath α at the interface Aα) and Dα

ii = −Im gγ ,R
ii /2π (i ∈ Aα).

The self-consistent self-energy �
f (sc)
α generally may give a

more complicated correction to both spectral functions and
distribution functions. However, within LSEA, we numeri-
cally find that it only gives a minor correction to the spectral
function � and changes the FM bath temperature T = 1/β

in f α(1)
eff to an effective temperature T̃ α = 1/βα , if the cou-

pling λα is not too strong (see Supplemental Material [57],
Sec. III). Therefore we will assume the effects of �

f (sc)
α are

negligible and use �
f (1)
α to investigate the transport in the

gapless phase. Since the spin transport problem has been
mapped to a fermion transport problem, we directly apply the
Meir-Wingreen formula for noninteracting fermions [53]

Is = 2π

∫
dω

[
f L
eff(ω) − f R

eff(ω)
]
Tr

(
G f ,A�R

effG
f ,R�L

eff

)
(16)

to obtain the total spin current passing through the structure
in the gapless phase. Note that in this Letter when calculating
G f ,R(A) numerically we ignore the real part of self-energy and
assume it does not affect our final results significantly.

Gapless phase. We impose a periodic boundary condition
along the y direction and focus on the isotropic point Jx =
Jy = Jz for simplicity. If the width Ly is finite, a series of FM
subbands labeled by discrete ky is developed. We assume that
Vα � vF /Ly, where vF is the Fermi velocity at the Dirac point.
This condition indicates that there are many transverse modes
participating in the spin transport. The spectral function of
the FM bath is rapidly varying: For the armchair-type contact
(AC) depicted in Fig. 4(a), D(ω) ∼ |ω|, therefore according to
Eq. (15), �α(1)(ω + Vα ) ∼ |ω|3 when ω � T ; for the zigzag-
type contact (ZC) shown in Fig. 4(b), due to the existence of
localized Majorana zero modes at the boundaries [41,58–60],
D(ω) ∼ δ(ω), so �

α(1)
eff (ω + Vα ) ∼ |ω| if ω � T . We show

below that when Vs � T , Is ∼ V 5
s for AC and Is ∼ V 3

s for
ZC. For both types of contact, Is ∼ Vs when Vs � T . We have
verified these power laws by evaluating Eq. (16) numerically
(see Supplemental Material [57], Sec. V). The spin current
does not significantly depend on the system’s length Lx if the
system is sufficiently long.

Chiral gapped phase. We first consider an infinitely long
edge of the Yao-Lee model in the chiral gapped phase, con-

FIG. 4. (a) Armchair-type and (b) zigzag-type contacts. Dashed
lines represent the Heisenberg interaction and black dots denote the
sites in the spin baths.

nected with a single spin bath α. In this phase the bulk
is gapped and on the edge there are three chiral Majorana
modes γ α , or equivalently one chiral FM mode fz plus one
chiral Majorana mode γ z. As the edge is only connected
with one spin bath, calculations of � f (1) and � f (sc) both give
f α(1)
eff (ω) = f α(sc)

eff (ω) = 1
eβ(ω−Vα )+1 (see Supplemental Material

[57], Sec. III). This indicates that even for a finite-size sys-
tem with an open boundary condition, the chiral FMs near
the contact α also have a well-defined temperature T and a
chemical potential Vα , as long as the contact length Ly satisfies
the condition

Ly � vC

min{|Im �
f ,R
ii (ω)|}

∼ v2
C

a(λαJα )2T 2
, (17)

where vC is the Fermi velocity of the chiral modes, a is the
bond length defined in Fig. 1, and we have used Eq. (15). Due
to the chirality of the FM on the edge, the FMs carry the same
distribution function after they leave the spin bath α until they
reach the other spin bath, if there is no inelastic scattering or
backscattering across the bulk. The spin current in the whole
system is hence quantized to

Is = 1

2π
Vs, (18)

similar to that in the integer quantum Hall effect or quantum
anomalous Hall effect.

Discussion. There are similarities and differences between
our results and those reported in Ref. [41]. We first remark
that the spin currents found using equilibrium spin corre-
lation functions [39–41] are equivalent to a calculation of
the tunneling current between the left FM bath and the FM
honeycomb model at equilibrium (see Supplemental Mate-
rial [57], Sec. IV). This indicates that at zero temperature
Is ∼ ∫ Vα

0 dωN (ω)�L(1)(ω), where N (ω) is the LDOS of the
FM sector at the left interface. Therefore Is ∼ V 5

s (Vs) for
the gapless phase with ACs (ZCs), and Is ∼ V 3

s for the chiral
gapped phase are obtained. The expressions correctly capture
the power law Is-Vs relations for the gapless phase with ACs,
and as discussed below, may also qualitatively explain the
power law for the gapless phase with ZCs if certain subtleties
are taken into consideration. Nevertheless, the above formula
cannot be applied to the chiral gapped phase when the contact
is sufficiently wide, as the FMs at the contact are highly out
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of equilibrium. We expect, and have numerically verified, that
the scaling relation Is ∼ V 3

s can be restored when the contact
is narrow enough.

For the gapless phase with ZCs, the predicted linear Is-Vs

relation originates from the dominant zero-frequency peak of
LDOS at the zigzag edge [61,62]. However, in a sufficiently
clean and long system, these FM zero modes do not play a role
in transport as hopping between modes on opposing edges is
exponentially suppressed with increasing separation. In other
words, for positive Vα , the FM zero modes at the left edge
would be fully occupied, and FMs cannot tunnel from the left
FM bath to these modes. A qualitatively correct power law
may still be obtained using the above formula, if one neglects
the contribution from these FM zero modes and uses N (ω) ∼
|ω| instead. Our results indicate that attention needs to be paid
to nonequilibrium physics to fully understand spin transport.

Conclusion. In this Letter we use NEGFs to describe the
nonequilibrium spin transport in the Yao-Lee QSOL model.
Our results regarding the gapless phase with ZCs (Is ∼ V 3

s )

and a chiral gapped phase (Is = Vs/2π ) are different from
those obtained in earlier work, showing the importance of the
nonequilibrium physics. The quantized spin current conduc-
tance can test for the existence of chiral FMs on the boundary
of a topological QSOL. It is an open and interesting question
as to how our results would be modified by the inclusion
of neglected diagrams as well as interactions that move the
QSOL away from the exactly solvable limit. Our work paves
the way to understand spin transport in QSOLs over a broader
parameter range and in the presence of disorder and thermally
excited fluxes.

We thank C.-Z. Chen and S. Chatterjee for useful email
discussions. We are grateful to K. Plumb for enlightening
discussions and references. We also thank D. E. Feldman, J.
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[10] A. M. Oleś, L. F. Feiner, and J. Zaanen, Quantum melting of
magnetic long-range order near orbital degeneracy: Classical
phases and Gaussian fluctuations, Phys. Rev. B 61, 6257 (2000).

[11] H. Yao, S.-C. Zhang, and S. A. Kivelson, Algebraic Spin Liq-
uid in an Exactly Solvable Spin Model, Phys. Rev. Lett. 102,
217202 (2009).

[12] P. Corboz, M. Lajkó, A. M. Läuchli, K. Penc, and F. Mila, Spin-
Orbital Quantum Liquid on the Honeycomb Lattice, Phys. Rev.
X 2, 041013 (2012).

[13] R. Nakai, S. Ryu, and A. Furusaki, Time-reversal symmetric Ki-
taev model and topological superconductor in two dimensions,
Phys. Rev. B 85, 155119 (2012).

[14] Z. Nussinov and J. van den Brink, Compass models: Theory and
physical motivations, Rev. Mod. Phys. 87, 1 (2015).

[15] W. M. H. Natori, E. C. Andrade, E. Miranda, and R. G. Pereira,
Chiral Spin-Orbital Liquids with Nodal Lines, Phys. Rev. Lett.
117, 017204 (2016).

[16] W. M. H. Natori, E. C. Andrade, and R. G. Pereira, SU(4)-
symmetric spin-orbital liquids on the hyperhoneycomb lattice,
Phys. Rev. B 98, 195113 (2018).

[17] W. M. H. Natori, R. Nutakki, R. G. Pereira, and E. C.
Andrade, SU(4) Heisenberg model on the honeycomb lat-
tice with exchange-frustrated perturbations: Implications for
twistronics and Mott insulators, Phys. Rev. B 100, 205131
(2019).

[18] W. M. H. Natori and J. Knolle, Dynamics of a Two-Dimensional
Quantum Spin-Orbital Liquid: Spectroscopic Signatures of
Fermionic Magnons, Phys. Rev. Lett. 125, 067201 (2020).

[19] H. D. Zhou, E. S. Choi, G. Li, L. Balicas, C. R. Wiebe, Y. Qiu,
J. R. D. Copley, and J. S. Gardner, Spin Liquid State in the
S = 1/2 Triangular Lattice Ba3CuSb2O9, Phys. Rev. Lett. 106,
147204 (2011).

[20] S. Nakatsuji, K. Kuga, K. Kimura, R. Satake, N. Katayama, E.
Nishibori, H. Sawa, R. Ishii, M. Hagiwara, F. Bridges et al.,
Spin-orbital short-range order on a honeycomb-based lattice,
Science 336, 559 (2012).

[21] J. A. Quilliam, F. Bert, E. Kermarrec, C. Payen, C.
Guillot-Deudon, P. Bonville, C. Baines, H. Luetkens, and P.
Mendels, Singlet Ground State of the Quantum Antiferromag-
net Ba3CuSb2O9, Phys. Rev. Lett. 109, 117203 (2012).

[22] Y. Ishiguro, K. Kimura, S. Nakatsuji, S. Tsutsui, A. Q. R. Baron,
T. Kimura, and Y. Wakabayashi, Dynamical spin–orbital corre-
lation in the frustrated magnet Ba3CuSb2O9, Nat. Commun. 4,
2022 (2013).

[23] A. Smerald and F. Mila, Exploring the spin-orbital ground state
of Ba3CuSb2O9, Phys. Rev. B 90, 094422 (2014).

[24] N. Katayama, K. Kimura, Y. Han, J. Nasu, N. Drichko, Y.
Nakanishi, M. Halim, Y. Ishiguro, R. Satake, E. Nishibori, M.
Yoshizawa, T. Nakano, Y. Nozue, Y. Wakabayashi, S. Ishihara,

L060403-5

https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevLett.102.017205
https://doi.org/10.1070/PU1982v025n04ABEH004537
https://doi.org/10.1103/PhysRevLett.107.087205
https://doi.org/10.1103/PhysRevLett.78.2799
https://doi.org/10.1103/PhysRevB.61.6257
https://doi.org/10.1103/PhysRevLett.102.217202
https://doi.org/10.1103/PhysRevX.2.041013
https://doi.org/10.1103/PhysRevB.85.155119
https://doi.org/10.1103/RevModPhys.87.1
https://doi.org/10.1103/PhysRevLett.117.017204
https://doi.org/10.1103/PhysRevB.98.195113
https://doi.org/10.1103/PhysRevB.100.205131
https://doi.org/10.1103/PhysRevLett.125.067201
https://doi.org/10.1103/PhysRevLett.106.147204
https://doi.org/10.1126/science.1212154
https://doi.org/10.1103/PhysRevLett.109.117203
https://doi.org/10.1038/ncomms3022
https://doi.org/10.1103/PhysRevB.90.094422


ZEKUN ZHUANG AND J. B. MARSTON PHYSICAL REVIEW B 104, L060403 (2021)

M. Hagiwara, H. Sawa, and S. Nakatsuji, Absence of Jahn-
Teller transition in the hexagonal Ba3CuSb2O9 single crystal,
Proc. Natl. Acad. Sci. USA 112, 9305 (2015).

[25] A. Smerald and F. Mila, Disorder-Driven Spin-Orbital Liquid
Behavior in the Ba3XSb2O9 Materials, Phys. Rev. Lett. 115,
147202 (2015).

[26] G. Chen, R. Pereira, and L. Balents, Exotic phases induced by
strong spin-orbit coupling in ordered double perovskites, Phys.
Rev. B 82, 174440 (2010).

[27] M. G. Yamada, M. Oshikawa, and G. Jackeli, Emergent SU(4)
Symmetry in α-ZrCl3 and Crystalline Spin-Orbital Liquids,
Phys. Rev. Lett. 121, 097201 (2018).

[28] A. V. Ushakov, I. V. Solovyev, and S. V. Streltsov, Can the
highly symmetric SU (4) spin-orbital model be realized in
α-ZrCl3? JETP Lett. 112, 642 (2020).

[29] J. W. F. Venderbos and R. M. Fernandes, Correlations and
electronic order in a two-orbital honeycomb lattice model for
twisted bilayer graphene, Phys. Rev. B 98, 245103 (2018).

[30] D. Aasen, R. S. K. Mong, B. M. Hunt, D. Mandrus, and J.
Alicea, Electrical Probes of the Non-Abelian Spin Liquid in
Kitaev Materials, Phys. Rev. X 10, 031014 (2020).

[31] E. J. König, M. T. Randeria, and B. Jäck, Tunneling Spec-
troscopy of Quantum Spin Liquids, Phys. Rev. Lett. 125,
267206 (2020).

[32] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma, K.
Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome et al., Majorana
quantization and half-integer thermal quantum Hall effect in a
Kitaev spin liquid, Nature (London) 559, 227 (2018).

[33] D. Hirobe, M. Sato, T. Kawamata, Y. Shiomi, K.-i. Uchida, R.
Iguchi, Y. Koike, S. Maekawa, and E. Saitoh, One-dimensional
spinon spin currents, Nat. Phys. 13, 30 (2017).

[34] D. Hirobe, T. Kawamata, K. Oyanagi, Y. Koike, and E. Saitoh,
Generation of spin currents from one-dimensional quantum spin
liquid, J. Appl. Phys. 123, 123903 (2018).

[35] A. Koga, T. Minakawa, Y. Murakami, and J. Nasu, Spin trans-
port in the quantum spin liquid state in the s = 1 Kitaev model:
Role of the fractionalized quasiparticles, J. Phys. Soc. Jpn. 89,
033701 (2020).

[36] T. Minakawa, Y. Murakami, A. Koga, and J. Nasu, Majorana-
Mediated Spin Transport in Kitaev Quantum Spin Liquids,
Phys. Rev. Lett. 125, 047204 (2020).

[37] T. Mizoguchi, T. Koma, and Y. Yoshida, Oriented propagation
of magnetization due to chiral edge modes in Kitaev-type mod-
els, Phys. Rev. B 101, 014442 (2020).

[38] W. Han, S. Maekawa, and X.-C. Xie, Spin current as a probe of
quantum materials, Nat. Mater. 19, 139 (2020).

[39] C.-Z. Chen, Q.-f. Sun, F. Wang, and X. C. Xie, Detection of
spinons via spin transport, Phys. Rev. B 88, 041405(R) (2013).

[40] S. Chatterjee and S. Sachdev, Probing excitations in insulators
via injection of spin currents, Phys. Rev. B 92, 165113 (2015).

[41] V. S. de Carvalho, H. Freire, E. Miranda, and R. G. Pereira,
Edge magnetization and spin transport in an SU(2)-symmetric
Kitaev spin liquid, Phys. Rev. B 98, 155105 (2018).

[42] H. J. Spencer and S. Doniach, Low-Temperature Anomaly of
Electron-Spin Resonance in Dilute Alloys, Phys. Rev. Lett. 18,
994 (1967).

[43] P. Coleman, E. Miranda, and A. Tsvelik, Possible Realization of
Odd-Frequency Pairing in Heavy Fermion Compounds, Phys.
Rev. Lett. 70, 2960 (1993).

[44] A. Shnirman and Y. Makhlin, Spin-Spin Correlators in the Ma-
jorana Representation, Phys. Rev. Lett. 91, 207204 (2003).

[45] W. Mao, P. Coleman, C. Hooley, and D. Langreth, Spin Dy-
namics from Majorana Fermions, Phys. Rev. Lett. 91, 207203
(2003).

[46] F. D. M. Haldane, Model for a Quantum Hall Effect without
Landau Levels: Condensed-Matter Realization of the “Parity
Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).

[47] L. Cornelissen, J. Liu, R. Duine, J. B. Youssef, and B. Van
Wees, Long-distance transport of magnon spin information in
a magnetic insulator at room temperature, Nat. Phys. 11, 1022
(2015).

[48] D. Wesenberg, T. Liu, D. Balzar, M. Wu, and B. L. Zink, Long-
distance spin transport in a disordered magnetic insulator, Nat.
Phys. 13, 987 (2017).

[49] R. Lebrun, A. Ross, S. Bender, A. Qaiumzadeh, L. Baldrati,
J. Cramer, A. Brataas, R. Duine, and M. Kläui, Tunable long-
distance spin transport in a crystalline antiferromagnetic iron
oxide, Nature (London) 561, 222 (2018).

[50] J. Rammer, Quantum Field Theory of Non-Equilibrium States
(Cambridge University Press, Cambridge, UK, 2007), Vol. 22.

[51] G. D. Mahan, Many-Particle Physics (Springer, Berlin, 2013).
[52] C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James,

Direct calculation of the tunneling current, J. Phys. C 4, 916
(1971).

[53] Y. Meir and N. S. Wingreen, Landauer Formula for the Current
through an Interacting Electron Region, Phys. Rev. Lett. 68,
2512 (1992).

[54] S. Datta, Electronic Transport in Mesoscopic Systems (Cam-
bridge University Press, Cambridge, UK, 1997).

[55] Z. Zhuang, J. Merino, and J. B. Marston, Transport in
conductors and rectifiers: Mean-field Redfield equations and
nonequilibrium Green’s functions, Phys. Rev. B 102, 125147
(2020).

[56] E. H. Lieb, Flux Phase of the Half-Filled Band, Phys. Rev. Lett.
73, 2158 (1994).

[57] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.L060403 for details of the calculations
with non-equilibrium Green’s functions, for comparison to pre-
viously published results, and for numerical calculations of
spectral functions and power laws.

[58] M. Kohmoto and Y. Hasegawa, Zero modes and edge states of
the honeycomb lattice, Phys. Rev. B 76, 205402 (2007).

[59] M. Thakurathi, K. Sengupta, and D. Sen, Majorana edge modes
in the Kitaev model, Phys. Rev. B 89, 235434 (2014).

[60] T. Mizoguchi and T. Koma, Majorana edge magnetization in the
Kitaev honeycomb model, Phys. Rev. B 99, 184418 (2019).

[61] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, The electronic properties of graphene, Rev.
Mod. Phys. 81, 109 (2009).

[62] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic
transport in two-dimensional graphene, Rev. Mod. Phys. 83,
407 (2011).

L060403-6

https://doi.org/10.1073/pnas.1508941112
https://doi.org/10.1103/PhysRevLett.115.147202
https://doi.org/10.1103/PhysRevB.82.174440
https://doi.org/10.1103/PhysRevLett.121.097201
https://doi.org/10.1134/S002136402022004X
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1103/PhysRevX.10.031014
https://doi.org/10.1103/PhysRevLett.125.267206
https://doi.org/10.1038/s41586-018-0274-0
https://doi.org/10.1038/nphys3895
https://doi.org/10.1063/1.5021022
https://doi.org/10.7566/JPSJ.89.033701
https://doi.org/10.1103/PhysRevLett.125.047204
https://doi.org/10.1103/PhysRevB.101.014442
https://doi.org/10.1038/s41563-019-0456-7
https://doi.org/10.1103/PhysRevB.88.041405
https://doi.org/10.1103/PhysRevB.92.165113
https://doi.org/10.1103/PhysRevB.98.155105
https://doi.org/10.1103/PhysRevLett.18.994
https://doi.org/10.1103/PhysRevLett.70.2960
https://doi.org/10.1103/PhysRevLett.91.207204
https://doi.org/10.1103/PhysRevLett.91.207203
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/nphys4175
https://doi.org/10.1038/s41586-018-0490-7
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevB.102.125147
https://doi.org/10.1103/PhysRevLett.73.2158
http://link.aps.org/supplemental/10.1103/PhysRevB.104.L060403
https://doi.org/10.1103/PhysRevB.76.205402
https://doi.org/10.1103/PhysRevB.89.235434
https://doi.org/10.1103/PhysRevB.99.184418
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.83.407

