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Hinge magnons from noncollinear magnetic order in a honeycomb antiferromagnet
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We propose that noncollinear magnetic order in magnetic systems can harbor a higher-order topological
magnon phase with non-Hermitian topology and hinge magnon modes. We consider a three-dimensional system
of interacting local moments on stacked layers of honeycomb lattice. It initially favors a collinear magnetic
order along an in-plane direction, which turns into a noncollinear order upon applying an external magnetic field
perpendicular to the easy axis. We exploit the non-Hermitian nature of the magnon Hamiltonian to show that this
field-induced transition corresponds to the transformation from a topological magnon insulator to a higher-order
topological magnon state with a one-dimensional hinge mode. As a concrete example, we discuss the recently
discovered monoclinic phase of thin chromium trihalides, which we propose as a promising material candidate
of the higher-order topological magnon phase.
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Introduction. Topological excitations in magnetic systems
have emerged as novel platforms for potential applications
in spintronics and quantum information technology [1]. A
prominent recent path in pursuit of this direction is the re-
search on topological phases of magnon excitations [2–8].
There has been an intense research effort to discover topo-
logical magnons in both gapless and gapped phases. Some
examples of topological gapless excitations include the topo-
logical point and line-nodal magnons [3,9–14]. The candidate
materials are CrBr3 [9], Cr2Si2Te6 [10], the three-dimensional
Kitaev material β-Li2IrO3 [11], α-RuCl3 [12], and the three-
dimensional antiferromagnet Cu3TeO6 [13]. The gapped
magnon spectrum may also carry nontrivial bulk topology,
which physically manifests as the boundary magnon modes.
The promising candidate materials are the layered transition
metal trihalide CrI3 [3] and the kagome magnet YMn6Sn6

[14].
The magnonic topological phases have often been un-

derstood in analogy with the counterparts of electronic
topological systems. However, the topological magnons, in
principle, may involve more complex physical phenomena,
meaning that the electronic analogy may not be applicable.
For example, topological magnons in noncollinear order are
described by the intrinsically non-Hermitian Hamiltonian,
which may lead to a variety of different topological phases
[15–20]. In particular, such phases may support higher-order
topological magnon phases, characterized by gapless (d −
2)-dimensional boundary excitations in d-dimensional bulk
[21–23].
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In this work, we present a theoretical study of the magnonic
higher-order topological excitations in noncollinear antifer-
romagnetic order. As a concrete example, we focus on a
theoretical model relevant for the recently discovered mon-
oclinic antiferromagnetic phase of thin chromium trihalides,
CrI3 [24–31] and CrCl3 [31], where Cr local moments interact
with each other in a three-dimensional system of stacked hon-
eycomb lattices. It is shown that the external magnetic field
perpendicular to the easy axis drives a phase transition from
a collinear order to a noncollinear antiferromagnetic state
[Fig. 1(b)], where the paraunitarity of the magnon wave func-
tion introduces the intrinsic non-Hermiticity in the magnon
Hamiltonian [32,33]. In the noncollinear phase, it is shown
that the simple analogy with electronic states does not apply.
We find that the anomalous non-Hermitian terms in the model
gap out the two-dimensional surface mode and generate a
one-dimensional hinge magnon mode. Finally, we propose the
symplectic Wilson loop as a bulk topological invariant that
correctly captures the hinge magnon modes in higher-order
topological magnon phases.

Spin model. A single layer of a chromium trihalide forms
a simple honeycomb lattice of Cr atoms, which are sur-
rounded by six adjacent nonmagnetic halide atoms. The
multilayer monoclinic stacking (space group C2/m) is ob-
tained by y-directional lateral shift to the neighboring layers
[see Fig. 1(a)], which preserves the inversion, C2x rotation,
and their product, Mx, mirror symmetry. Motivated by recent
experiments [24,31], we consider a minimal model for the
interlayer antiferromagnetic order. The spin model consists of
general intralayer and interlayer nearest-neighbor couplings
that preserve the underlying symmetries of the C2/m group:

H =
∑
〈i, j〉

JSi · S j +
∑

zi=z j+1

J⊥Si · S j + D⊥,i j · Si × S j, (1)
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FIG. 1. (a) Top view of the atomic configurations in the mono-
clinic stacked honeycomb lattices. (b) Noncollinear magnetic order
driven by an external magnetic field. Red spins represent the mag-
netic unit cell. (c) Locations of magnon zero modes in the Brillouin
zone for the monoclinic structure, allowed by the spin-space group.
Green points represent the nodal points protected by Z2-quantized
Berry phase with the effective PT symmetry. The projection to the
surface perpendicular to the x axis realizes the zigzag edge modes
(red lines), which form an effective spin chain along the z direction
(red dots). (d) In the noncollinear phase, the DMI dimerizes the edge
modes in the effective Kitaev chain along the z direction, leaving
only the hinge magnon states (blue lines).

where J < 0 and J⊥ > 0 represent the intralayer ferromag-
netic and interlayer antiferromagnetic Heisenberg interac-
tions, respectively. As long as the nearest-neighbor couplings
are concerned, the inversion and C2x symmetries allow only
the interlayer Dzyaloshinskii-Moriya interaction (DMI), the
direction of which lies on the y-z plane (D⊥ ⊥ x̂), with the
opposite signs for the two honeycomb sublattices (A and B).
In addition, we assume the presence of single-ion anisotropy
that stabilizes the antiferromagnetic order along an easy axis
[34]. We note that our discussions of the hinge magnon exci-
tation are not dependent on the anisotropy strength.

In the AA or rhombohedral (space group R3̄) stacking, the
additional C2y and C3z symmetries prohibit the interlayer DMI.
The next-nearest-neighbor DMI appears as the next-leading-
order coupling [3]. In such a case, each layer realizes the
magnonic analog of the Haldane model, characterized by the
nontrivial Chern number [4,5,35]. In this work, we focus on
the symmetry-allowed nearest-neighbor interlayer couplings
of the monoclinic stacking under the C2/m group.

With a given magnetic ground state, the bosonic
Bogoliubov–de Gennes (BdG) Hamiltonian can be derived
by using the Holstein-Primakoff (HP) transformation [36]:
S+(−) ≈ √

2Sa(†), Sz ≈ S − a†a, where the spin operators are
expressed in the coordinates of the local ordered directions.
The BdG Hamiltonian can be diagonalized via HBdG(k) =
UkDkU †

k , where Dk is the diagonal matrix containing the
magnon band energy. In the presence of the U (1) spin rotation
symmetry along the easy axis, the BdG Hamiltonian can be

decoupled into two sectors as

HBdG(k) = Hs=+1 ⊕ Hs=−1, (2)

where each sector consists of the Hamiltonian of the magnons
carrying spin ±1 along the collinear axis. In this case, the
wave functions satisfy the unitary condition, U †

k Uk = I , like
the electron wave function does. However, in general non-
collinear orders, the unitary condition is not satisfied. Instead,
the bosonic commutation relation demands the paraunitary
condition of the wave functions such that U †

k �zUk = �z,
where �z is the Pauli matrix acting on the particle-hole space.
Obtaining the paraunitary wave function requires the diago-
nalization of the non-Hermitian Hamiltonian �zHBdG(k) [37].

First-order topology in collinear order. When the spin-orbit
coupling is negligibly small, the dominant interactions may
approximately preserve symmetry operations higher than is
strictly required by the magnetic space group. The set of these
operations is formally referred to as the spin-space group
[38,39]. The spin-space group consists of larger rotational
symmetries than that of the magnetic space group [40], which
independently act on the coordinate rotations and the spin
rotations. Therefore, under the spin-space group, we can de-
fine the effective space-time inversion symmetry PT , which
provides the topological protection of the Z2-quantized Berry
phase along a closed loop in the Brillouin zone (BZ) [41,42].

Without the interlayer interactions, each layer possesses
the Dirac nodal points at the K and K ′ points [see Fig. 1(c)].
The topological protection of the nodal point can be formally
cast by the Z2-quantized Berry phase π along a loop encir-
cling the nodal points [black circles in Fig. 1(c)]. The physical
manifestation of the π Berry phase is the zigzag edge modes,
like in monolayer graphene [43]. The π Berry phase is still
well defined in the presence of the interlayer coupling along a
loop encircling the nodal line in the three-dimensional BZ. It
manifests as the two-dimensional flat band on the surface of
the three-dimensional bulk [44,45]. This first-order topologi-
cal surface state has been similarly considered in the context
of bulk graphite [46,47]. In the presence of non-negligible
spin-orbit coupling, DMI may open a band gap, leading to
the magnonic topological insulator with a nontrivial Chern
number [3].

Second-order topology in noncollinear order. We now
consider the external magnetic field along the direction per-
pendicular to the collinear antiferromagnetic order. That is,
we add the term Hext = −hext · ∑

i Si, where hext represents
the external magnetic field. The magnetic field generates the
noncollinear order with the spin canting [see Fig. 1(b)]. In
this case, the conventional Wilson line and the Berry phase
are not well defined anymore since the wave function does
not satisfy the unitary condition [37]. Instead, we show that
the noncollinearity induced by the spin canting generates the
higher-order topological hinge magnon states [see Fig. 1(d)].

As an example, we first consider the specific case where
the x-directional magnetic field is applied to the y-directional
antiferromagnetic order. Figure 2(a) shows the noncollinear
magnon bands. We find that the zigzag edge modes at the
surface are immediately gapped out as the magnetic field
is applied [inset in Fig. 2(a)]. In contrast, a pair of in-gap
states emerges within the momentum window K < ky < K ′
[red dashed line in Fig. 2(a)], as we take the additional open
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FIG. 2. (a) The magnon band structure as a function of ky with
the open boundary condition along the x-z direction. In the middle
of the bands, the hinge magnon states emerge (red line). Inset: the
same band structure with the periodic boundary condition along the
z direction. Here, the DM vector is pointing in the z direction. (b) The
non-Abelian Berry phase as a function of ky. We find the π -quantized
Berry phase at ky, where the hinge modes reside.

boundary condition along the z direction. Unlike the surface
states, these in-gap states are localized at the corner of the
x-z plane, evidently showing the nature of the hinge modes
(Fig. 3). In addition, unlike the conventional electronic higher-
order topological insulators, the localization of the hinge
modes occurs only at the two corners of one side surface. The
surface possessing the hinge mode switches as the direction
of the magnetic field is inverted.

Effective surface model. A heuristic way of understanding
the emergence of the hinge state is to consider the effec-
tive model describing the zigzag edge modes at the surface
[Fig. 4(a)]. At a fixed ky, we can consider the zigzag edges
as the effective one-dimensional antiferromagnetic chain

FIG. 3. The wave function of the hinge modes. We find that the
wave functions are localized at one of the corners of the x-z plane,
depending on the direction of the field. The magnetic field is applied
along the (a) +x̂ and (b) −x̂ directions. The periodic boundary
condition is imposed along the ŷ direction. The size of the blue dot
indicates the amplitude of the wave functions.

FIG. 4. (a) Schematic picture of the one-dimensional spin chain
along the ẑ direction. The external magnetic field is applied along
the x̂ direction, while the DM vector is pointing in the ẑ direction.
(b) The band gap and topological phase diagram as a function of
the external magnetic field and the DMI. The topological phase (red
strip) is characterized by the topological number ν = −1 (π Berry
phase). The physical manifestation is the zero-dimensional bound
mode at the end of the chain. (c) The same phase diagram as in (b),
but the direction of the DMI is reversed.

(Jeff > 0) along the ẑ direction,

Heff =
∑
〈i, j〉

JeffSi · S j + (Deffẑ) · Si × S j − (heffx̂) ·
∑

i

Si,

(3)

where the subscript index i indicates the ith layer. The non-
collinear order in the presence of the spin canting can be repre-
sented with the cant angle θ as 	Si = |S|( sin θ, (−1)i cos θ, 0).
Due to the noncollinearity, the HP transformations of the
Heisenberg exchange interaction and the DMI now contain
both particle-particle and particle-hole channels as

Jeff : Si+1 · Si

= |S|
2

[sin2 θa†
i+1ai − cos2 θa†

i+1a†
i − ni+1 − ni] + H.c.,

Deff : ẑ · Si+1 × Si

= |S|
2

[
(−1)i

2
sin 2θ (a†

i+1ai+ a†
i+1a†

i − ni+1 − ni )

]
+H.c.,

(4)

where ni is the HP boson number operator. Here, we have
collected only the quadratic terms of the HP bosons within the
linear spin-wave theory. The resulting HP Hamiltonian con-
sists of the normal hopping and p-wave pairing terms as well
as a chemical potential and resembles the Kitaev chain model
[48] that possesses the Majorana fermions at the boundary.

We now formally show that the above one-dimensional
spin chain is characterized by the nontrivial topology. By
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collecting the interactions in Eq. (4), we derive the full tight-
binding model of the HP bosons as

HHP = |S|
2

∑
i

teff,i[a
†
i+1ai + ai+1a†

i ]

+�eff,i[a
†
i+1a†

i + ai+1ai] − μeff[a
†
i ai + aia

†
i ] + H.c.,

(5)

where the explicit forms of the coupling parameters are given
by

teff,i = Jeff

2
(1 − cos 2θ ) + (−1)i Deff

2
sin 2θ,

�eff,i = −Jeff

2
(1 + cos 2θ ) + (−1)i Deff

2
sin 2θ,

μeff = −2Jeff cos 2θ − heff

|S| sin θ. (6)

The above Hamiltonian can be analytically diagonalized (see
the Supplemental Material [49]). Indeed, we find that it sup-
ports two topologically distinct gapped phases: the nontrivial
phase with the zero-dimensional boundary mode and the triv-
ial gapped phase. The topological phase transition between
the two gapped phases occurs when θ = 0, regardless of the
specific parameters in the HP Hamiltonian [Fig. 4(b)]. This
behavior explains the emergence of the hinge mode even with
an arbitrarily small strength of the magnetic field. By further
increasing the strength of the magnetic field, we find that the
magnon band gap closes at the cant angle θ = ±90◦, where
the system regains the collinearity along the direction of the
magnetic field.

Furthermore, the nontrivial phase is determined by the
relative orientation between the Dzyaloshinskii-Moriya (DM)
vector and the direction of the magnetic field [Fig. 4(c)]. In
the full three-dimensional model, the zigzag edges of the two
side surfaces consist of different sublattices, in which the di-
rections of the DMIs are reversed from each other. Therefore,
at a given direction of the magnetic field, one of the two
side surfaces becomes topologically nontrivial, while the other
surface is topologically trivial. As a result, only two hinge
modes occur at one of the side surfaces, which explains the lo-
calization pattern of the hinge mode in the three-dimensional
model (Fig. 3). Finally, we note that our results hold regardless
of the specific direction of the collinear magnetic order as long
as the external magnetic field is applied in the perpendicular
direction. As we show next, the hinge modes are robust as long
as the magnetic order preserves C2x symmetry. In general,
C2x symmetry can be broken by the addition of the random
disorder. The effect of the disorder is examined by adding
the Anderson-type disorder to the HP Hamiltonian. We find
that the localization of the hinge modes at the corner survives
well even when the disorder strength well exceeds the size of
the band gap. (See the Supplemental Material for the detailed
implementation.)

Symplectic Wilson loop. To rigorously describe the topol-
ogy of the paraunitary wave functions, we introduce the
topological invariant. The particle-hole symmetry of the BdG
Hamiltonian allows the decomposition of the wave func-
tions into the positive- and negative-energy sectors as Uk =
(Vk, �xV−k ), where Vk is an (N × N

2 )-dimensional matrix,

containing the eigenvectors of the positive-energy sector
[12,50,51]. The wave functions of the positive-energy sectors
satisfy the following normalization condition: V †

k �zVk = I.
Using this property, we can define the symplectic Wilson line
as

Us(k1 → k2) ≡ �zP̂(k1)

[∏
k

�zP̂(k)

]
�zP̂(k2), (7)

where the momentum vectors k form a path from k1 to k2.
[P̂(k)]i j = ∑

n∈occupied[Vk]i,n[V †
k ]n, j is the projection operator

to the occupied positive-energy subspace at the momentum k.
The Wilson line measures the non-Abelian Berry phase as the
eigenstates adiabatically shift momentum from k1 to k2, and it
becomes a gauge-invariant quantity as the line forms a loop in
the Brillouin zone. In contrast to the conventional Wilson line,
the additional operator �z is inserted between the projection
operators. It is important to note that Eq. (7) along a closed
loop recovers the unitarity due to the normalization condition.
Utilizing the unitarity condition, we can formally define the
non-Abelian Berry phase of the paraunitary wave functions as

ei	B(k1→k2 ) = det[Us(k1 → k2)�z]. (8)

In general, the Berry phase can be any arbitrary value be-
tween zero and 2π (	B ∈ [0, 2π )). However, in the presence
of C2x rotation symmetry, the Berry phase becomes quantized.
To show this, we consider the one-dimensional Hamiltonian
shown above. We now introduce the topological invariant ν.
Using C2x symmetry, we can decompose the Wilson loop into
the two Wilson lines related by C2x symmetry as

ν ≡ ei	B = det[Us,(0→π )Us,(π→2π )�z]

= det
[
Us,(0→π )Ĉ

−1
2x

(
Ĉ2xUs,(π→2π )Ĉ

−1
2x

)
Ĉ2x�z

]
= det

[
Us,(0→π )Ĉ

−1
2x Us,(π→0)Ĉ2x�z

]
=

∏
n∈occupied

ζn(0)ζn(π ), (9)

where ζn(k) is the eigenvalue of C2x on the nth band at mo-
mentum k. Since ζn = ±1 (C2

2x = 1), the Berry phase can only
be zero or π , which gives rise to Z2-topological protection
of the hinge mode. (See the Supplemental Material for the
detailed mathematical proof.)

We now numerically calculate the Wilson loop via integra-
tion along the kz direction in the three-dimensional model with
the open boundary condition in the x direction. Figure 2(b)
shows the computed Berry phase as a function of ky. We
find the quantized π Berry phase at C2x-invariant momentum,
ky = π , where the hinge modes appear (K < ky < K ′). The
π -quantized Berry phase signals the boundary modes in the
x-z plane [52,53], which physically manifest as the hinge
mode. We also note that the higher-order topological invariant
is characterized by the two-dimensional bulk at fixed mo-
menta ky. As a result, the hinge mode is realized as the corner
modes at fixed transverse momentum ky, which is similar
to the hinge-arc states observed in higher-order topological
semimetals [54]

Discussion. In conclusion, we have proposed a theoretical
model for the higher-order topological hinge magnon excita-
tions in the three-dimensional system of layered honeycomb
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antiferromagnets. It was shown that the magnetic-field-
driven phase transition from a collinear magnetic order to a
noncollinear magnetic order corresponds to the topologi-
cal phase transition from a magnon topological insulator to
a high-order topological magnon state with hinge magnon
modes. We showed that the non-Hermitian nature of the
magnon Hamiltonian and the paraunitarity of the magnon
wave function play crucial roles here. While the conventional
Wilson loop approach fails to capture the topology of the sys-
tem, we demonstrated that the symplectic Wilson loop method
offers an alternative topological invariant. Our results suggest
that the external magnetic field can be used as a control knob
for the topological phase transition.

We proposed the multilayer chromium trihalides as a
promising material candidate of the higher-order topological
magnon phase. A recent Raman spectroscopy measurement
identified the presence of the monoclinic phase (C2/m) in
thin multilayers of CrI3 [24] and CrCl3 [31]. The interlayer
antiferromagnetism was further confirmed through magneto-
optical Kerr effect measurement [26,27] and tunneling
magnetoresistance [28–30], which is consistent with the mag-
netic ordering pattern in our theoretical model. We may also
expect a sizable strength of DMI as in the bulk sample. We
have shown that the interlayer stacking order plays a crucial
role in the form of the DMI and the higher-order topology.
Experimentally, the monoclinic phases are stable in the thin

film, while the bulk sample undergoes the structural phase
transition to the rhombohedral structure (R3̄) [25]. Therefore,
investigations of magnetic properties by varying the layer
thickness would reveal an interesting interplay between the
stacking order and topology. In addition, we also suggest
that an external electric field could be used to control the
interlayer DMI [55–57]. In particular, an electric field along
the x direction would generate the interlayer DMI by breaking
C2y symmetry even in the rhombohedral structure (R3̄).

Finally, it is worthwhile to mention that the family of
A2MO3 compounds (A = Na, Li; M = transition metal)
also contains many monoclinic honeycomb antiferromagnets
[58–62]. A zigzag in-plane order in addition to the interlayer
antiferromagnetism has been observed in these materials. In
such a case, the additional zone folding occurs along the in-
plane directions. The effect of the additional in-plane order on
the topology would be an interesting subject of future study.
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