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Gaussian orthogonal ensemble for quasiperiodic tilings without unfolding: r-value statistics
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We study the level-spacing statistics for noninteracting Hamiltonians defined on the two-dimensional
quasiperiodic Ammann-Beenker (AB) tiling. When applying the numerical procedure of “unfolding,” these
spectral properties in each irreducible sector are known to be well described by the universal Gaussian or-
thogonal random matrix ensemble. However, the validity and numerical stability of the unfolding procedure has
occasionally been questioned due to the fractal self-similarity in the density of states for such quasiperiodic
systems. Here, using the so-called r-value statistics for random matrices, P(r), for which no unfolding is needed,
we show that the Gaussian orthogonal ensemble again emerges as the most convincing level statistics for each
irreducible sector. The results are extended to random-AB tilings where random flips of vertex connections lead
to the irreducibility.
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The statistical description of energy levels in complex sys-
tems has a long and distinguished history [1,2]. For interacting
systems such as, e.g., highly excited heavy nuclei, already
Bethe recognized the intrinsic difficulty in obtaining such
statistics [1] where the spacing of levels is often complicated
and the Hilbert space exponentially large. Much progress has
been made, nevertheless, when ignoring details of the un-
derlying Hamiltonian and instead assuming a random matrix
structure [3–7]. In such a situation, it is the invariance of the
matrix under specific symmetry operations that determines
the functional form of the level spacing distribution P(s),
with Gaussian orthogonal, unitary, and symplectic ensembles
(GOE, GUE, GSE, respectively) being the most famous ex-
amples [7].

Difficulties in using level statistics also arise for quasiperi-
odic (QP) systems when electronic degrees of freedom are
described by noninteracting tight-binding Hamiltonians de-
fined on QP tilings. It is well known that for such systems,
the density of states (DOS) typically has self-similar (fractal)
characteristics while a straightforward comparison with the
Gaussian ensembles requires a flat DOS. A procedure known
as “unfolding” is often used to convert the fractal DOS into the
required flat behavior but this of course represents a severe
change in the energy spectrum. Indeed, it has been shown
that P(s) can change when only partial unfolding is being
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done [8]. Using the integrated DOS instead as the basis for an
unfolding procedure yields more stable results which demon-
strate that P(s) for a time-invariant and spin-independent QP
Hamiltonian is very well described by PGOE(s) [9]. In fact, the
P(s) was shown to follow PGOE(s) better than the celebrated
Wigner expression PWigner(s) = π/2 exp (−πs2/4) of GOE
which is based on a (2×2)-matrix surmise [2].

Removing the dependence on the unfolding procedure,
Oganesyan and Huse [10] introduced the so-called r-value
distribution in the context of disordered many-body systems.
With sn = En − En−1 denoting the spacing of two consecutive
energy levels En, En−1, they define rn as

0 � rn = min{sn, sn−1}/max{sn, sn−1} � 1. (1)

For an uncorrelated Poisson spectrum, one has PPoisson =
2/(1 + r)2 with mean 〈r〉Poisson = 0.386 while for the GOE,

PGOE(r) ∼ 27(r + r2)

4(1 + r + r2)5/2
(2)

with 〈r〉GOE ∼ 0.5307(1) [11]. Expression (2) has the same
status as the Wigner surmise quoted above, i.e., has been
derived for the smallest possible (3×3) matrix in the GOE
while 〈r〉GOE is based on high-precision numerics. Here,
we shall also use a surmise based on a (5×5) matrix (see
Appendix) which improves upon (2) such that the deviation
to 〈r〉GOE is reduced from 1% to <0.4%. In the context of
many-body localization (MBL), r-value statistics has proven
its worth by allowing the numerical determination of the
transition from MBL to the so-called ergodic phase at weak
disorders without the need to unfold spectra [10,12,13].

In this Letter, we employ the r-value statistics to QP
Hamiltonians defined on the Ammann-Beenker (AB) octag-
onal tiling [14] and also to randomized versions of the tiling
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FIG. 1. Plot of P(r) for (a) the combined P(r) (red dots) for all seven sectors of the AB tiling with inflation step I = 5 corresponding to
N = 157 369 vertices and (b) the combined P(r) (red dots) for the 300 (combined) realizations of the largest random-AB tiling at I = 4 as
detailed in Table I. In both panels, the dashed (green) lines gives PPoisson(r) while the solid (blue) lines represent the improved PGOE(r) and the
dotted (black) line is (2).

when certain connections have been allowed to flip. As we
show in Fig. 1, in both cases, we find that the computed
P(r) agrees very well with the predictions of the GOE when
compared to PGOE(r). Hence, within the numerical accuracy
available to us, we can conclude that the GOE ensemble is
indeed the correct descriptor of level statistics for noninteract-
ing tight-binding hopping Hamiltonians in QP tilings, whether
that result has been computed (i) by unfolding DOS [8] or
integrated density of state (IDOS) [9], (ii) by restricting the
analysis to regions in the spectrum that have a flat DOS and
hence do not need unfolding [15], or (iii) by circumventing
unfolding with the r-value statistics.

As in Ref. [9], we shall consider the octagonal (or
Ammann–Beenker) [14,16] tiling consisting of squares and
rhombi with equal edge lengths as in Fig. 2(a) (see [17] for
more on this tiling and its properties). Besides this perfect

quasicrystal, we shall also study a randomized version in
which triangular connections in the rhombi are allowed to flip
randomly. Such structures are often used to model imperfect
quasicrystals (see, e.g., [18]). Both the AB tilings and the
random-AB tilings increase in size exponentially via infla-
tion as N ∼ (3 + 2

√
2)I = (1 + √

2)2I for I → ∞, where
I ∈ N denotes the generation of the inflation with I = 0
corresponding to the initial patch (the seed). We include data
for patches of the AB tiling corresponding to I = 2, 3, 4, and
5 inflation steps with 833, 4713, 27 137, and 157 369 vertices,
respectively. For the random-AB tiling, we use I = 1, 2, 3,
and 4 inflation steps with 82, 478, 2786, and 16 238 vertices,
respectively. On these tilings, we define H = ∑

〈i, j〉 |i〉〈 j| as a
Hamiltonian with free boundary conditions for the AB tilings
and periodic boundary conditions for the random-AB tilings.
Here, |i〉 is indicating the Wannier state at vertex i while pairs

(a) (b) (c)

FIG. 2. Schematics of (a) the octagonal AB tiling with N = 833 vertices (red dots) and exact D8 symmetry around the central vertex.
Background shades (colors) indicate successive inflation steps (I = 0, 1, 2) of the central [orange (dark)] octagon. Details of the inflation
procedure are given by the two small figures which show how to inflate each rhombus and square. Arrows along the diagonals of the squares
provide directions that are required to define the inflation rule, since the dissection of the square breaks its symmetry. The results tiling, when
starting from a symmetric seed like in part (a), keeps the D8 symmetry for each I. (b) A perfect periodic approximant of the AB tiling with
N = 478 and (c) a random-AB tiling, also of size N = 478. The small figure on the right shows an individual “singelton flip” which induces
the randomness. All tilings (a)–(c) correspond to I = 2. The fundamental regions for (b) and (c) are enclosed within the blue lines, forming
a square. The green dots on the blue line denote the periodically replicated vertices for periodic boundary conditions. The thin solid lines
connecting vertices i, j indicate the neighbor connection 〈i, j〉 as used in the Hamiltonian.
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TABLE I. Table of r-value estimates and RMSD for (top) AB and (bottom) random-AB tilings for different inflation levels I. The column
“sector/flips” gives the phase (and parity) of the subspectrum for a particular AB tiling, while for the random-AB tilings, it indicates the chosen
average value of flips per vertex. Labels indicate whether the statistics of different sectors were “combined” for r values from different sectors
or whether “mult”(iple) energy spectra were analyzed together. N (E 	= 0) indicates the number of nonzero energy levels, while N (r) counts
the number of r values used to construct P(r). The column “parts/samples” labels the number of subspectra for each AB tiling and the total
number of spectra for the random-AB tilings. The average is given by 〈r〉 = ∫ 1

0 r p(r)dr and RMSDGOE/Poisson show the RMSD with respect to
either GOE or Poisson ensemble. The error estimates for AB tilings are computed as error of mean; for the random-AB tilings, these are less
than 10−6 and not indicated here. The columns headed by % show how the computed RMSDGOE/Poisson deviate from RMSDmax. The averages
for AB tilings with combined statistics for I = 5 and for the random-AB tiling with I = 4 are highlighted in bold.

I Sector/flips N (E 	= 0) Parts/samples N (r) 〈r〉 RMSDGOE % RMSDPoisson %

AB tilings
5 0 (−1) 9681 4425 0.52657(6) 0.180536 29 0.597355 94
5 0 (1) 9991 4582 0.53139(6) 0.0858138 14 0.608586 97
5 1 19671 9019 0.52327(3) 0.151593 24 0.611349 97
5 2 19671 9019 0.52587(3) 0.144386 23 0.603325 96
5 3 19671 9019 0.53116(3) 0.134957 21 0.616345 98
5 4 (−1) 9850 4511 0.52103(6) 0.120176 19 0.580059 92
5 4 (1) 9821 4494 0.52684(6) 0.137588 22 0.607249 96
5 combined 98356 7 45069 0.526654(1) 0.0751708 12 0.603823 96
4 combined 16961 7 7780 0.52105(3) 0.092353 15 0.590098 94
3 combined 2946 7 1345 0.5323(2) 0.104493 17 0.608367 96
2 combined 521 7 225 0.532(1) 0.159398 25 0.663913 105
5 mult.: 4 (±1) 19671 2 9007 0.41971(4)
5 mult.: all 98356 7 45081 0.391728(7)

Random-AB tilings
4 1 1623800 100 811269 0.529697 0.0193322 3 0.615156 99
4 10 1623800 100 804434 0.530519 0.0173488 3 0.61614 99
4 100 1623800 100 804393 0.530211 0.0178077 3 0.614561 99
4 1000 1623800 100 812542 0.530312 0.0180712 3 0.615265 99
4 combined 4887638 300 2421369 0.530347 0.0126909 2 0.615197 99
3 1 2786000 1000 1375849 0.521659 0.0458914 7 0.58396 93
3 10 2786000 1000 1377081 0.523429 0.0388161 7 0.590847 95
3 100 2786000 1000 1377642 0.523263 0.0388161 6 0.591098 95
3 1000 2786000 1000 1377579 0.523954 0.0388161 6 0.593182 96
3 combined 8358000 3000 4132302 0.523548 0.0368666 6 0.591631 93
2 combined 1434000 3000 699579 0.502911 0.131713 22 0.502227 81

of neighboring vertices connected by an edge of unit length
are denoted as 〈i, j〉.

The AB tiling in Fig. 2(a) has the symmetry of the regular
octagon, corresponding to the dihedral group D8. Hence the
Hamiltonian matrix splits into ten blocks according to the
irreducible representations of D8: Using the rotational sym-
metry, one obtains eight blocks, two of which split further
under reflection, while the remaining six form three pairs with
identical spectra. This gives a total of seven independent sub-
spectra. The starting point in the generation of the random-AB
tilings is the perfect periodic approximant shown in Fig. 2(b).
Note that this is the periodic approximant of highest exact
symmetry for this tiling, since eightfold symmetry is forbid-
den in a periodic structure. As such, it has D4 symmetry and
five independent spectra. We can introduce randomness by
flipping the arrangement of hexagonal patches consisting of
a square on two rhombi that meet in a three-valent vertex.
These “simpleton flips” are ergodic in the sense that repeated
applications of this flip explore the entire ensemble of ran-
dom tilings of square and rhombi with the given ratio of the
two tiles. We shall study cases with an increasing number
of flips per vertex. Note that the flips generally will remove

any exact symmetries, such that the whole matrix becomes
an irreducible block, while the statistical eightfold symmetry
(in the sense that local configurations are equally likely to
appear in any of the eight directions) is maintained (see [17]
for details). An example is given in Fig. 2(c). For both AB
tilings and random-AB tilings, the Hamiltonian is diagonal-
ized independently for each of the irreducible spectra; each
spectrum is symmetric about E = 0, because of the bipartite-
ness of the AB and random-AB tilings. Furthermore, a finite
fraction of the states is degenerate at E = 0, corresponding to
compactly localized states [19–21]; they do not contribute to
the universal statistics, and we neglect them.

As is well known, the DOS for each irreducible spec-
trum is rather spiky [8], while the IDOS is already rather
smooth [9] (results not shown here). We proceed without
any unfolding. Only eigenvalues |En| > 10−10 are included
in the further analysis, and in Table I we give the num-
ber of these as N (E 	= 0). A further restriction to positive
En’s also removes the double degeneracy, for the sn, result-
ing from the bipartiteness of the tilings. This leads to the
available number of rn values given in Table I as N (r). For
each spectrum, we independently compute P(r) and 〈r〉. For
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the AB tilings, we find that the P(r) distributions for all
I show level repulsion such that P(r) ∝ r for r → 0 [11].
With increasing I, the slope of the level repulsion decreases
slightly, level repulsion increases and rapidly approaches the
small-r behavior of PGOE(r). Similarly, the bulk behavior of
P(r) follows PGOE(r) ever more closely for increasing I.
In order to ascertain quantitatively how well the estimated
P(r) follows either PPoisson(r) or PGOE(r), we establish the
root-mean-squared deviation (RMSD) defined as {∫ ∞

0 [P(r) −
Q(r)]2dr}1/2 with Q(r) either PPoisson(r) or PGOE(r). In
Table I we also express the RMSD values in percent-
age by comparing with the RMSDmax = {∫ ∞

0 [PPoisson(r) −
PGOE(r)]2dr}1/2 = 0.630508 between PPoisson(r) and PGOE(r).
We find for P(r) that while the RMSD to GOE val-
ues, RMSDGOE, are roughly in the ∼10%–20% range, the
RMSDPoisson values are at ∼90%–100% of RMSDmax. Hence
for each subspectrum, we see that P(r) already very nicely
follows PGOE(r) while PPoisson(r) is certainly ruled out. This
conclusion is also corroborated when studying 〈r〉 for the AB
tilings with all estimates within 2% of 〈r〉GOE ∼ 0.5307(1).
The best agreement is found when we combine all r values
for the largest system I = 5. The resulting P(r) is the one
shown in Fig. 1 with 〈r〉 = 0.526 654(1).

Due to the exponential growth of the size of the
Hamiltonian matrix with I, a further increase of
I is computationally very challenging (for I = 6,
we have N = 1, 657, 756, 990). We therefore now turn to the
random-AB tilings introduced above where we can increase
N (r) simply by computing many random realizations. In
these systems, the DOS is also somewhat less spiky, but still
retains considerable variation across the energy spectrum
that would still require significant unfolding when studying
P(s). We summarize the results in Table I and show the
behavior of P(r) in Fig. 1. For I = 3, we give results for
all 1000 samples when flipping each triangular connection
[cf. Fig. 2(c)] on average 1, 10, 100, or 1000 times for a
thoroughly randomized tiling. We find that the differences
in P(r) between these cases, even with just a single flip per
vertex (on average), are very small, and no major influence of
the underlying exact D4 symmetry of the approximant can be
seen anymore. We therefore also present “combined” statistics
where r values for 10, 100, and 1000 flips have been analyzed
together. For I = 2 we only show these combined results
while full details are given also for I = 4. In this case, the
computational effort is already considerable for each sample
so that only 100 samples have been calculated for all flips. The
overall combined N (r) = 699 579, 4 132 302, and 2 421 369
for I = 2, 3, and 4, respectively, are already considerably
larger than the N (r) = 45 049 available for I = 5 in the case
of the AB tilings. With this increased statistical sample, we
find that the agreement with PGOE(r) is now even better,
particularly for I = 4. The final 〈r〉 = 0.530 347 value is
indeed within ∼0.07% of 〈r〉GOE.

In presenting the results shown in this work, we have been
careful to only show level statistics computed for spectra
consisting of irreducible blocks of the Hamiltonians. If we
were to not separate these irreducible sectors (according to
phase and parity) we would of course get a P(r) that becomes
progressively closer to PPoisson(r) just as is the case for P(s)

statistics [9]. Surmises for such spectra are only known for
P(s) [22] and not yet for P(r) [11], but reliable estimates for
〈r〉 exist [23]. In good agreement with these latter results, we
find 〈r〉 = 0.419 71(4) for I = 5, when combining parities
±1 for sector 0 (two irreducible blocks) as well as 〈r〉 =
0.391 728(7) when using all seven sectors of the AA tiling (cf.
Table I). The results from Ref. [23] give 〈r〉 = 0.423 415 and
0.391 048, respectively, for these two cases when weighting
according to N (E � 0).

Quasicrystals represent a material class between periodic
crystals and aperiodic solids. As such, it has earlier been
speculated that they might possess nonstandard level statistics
[24,25]. However, our results allow us to conclude that both
P(s) [9] and P(r) statistics for two-dimensional, QP tight-
binding models are, within the numerical accuracy currently
achievable, very well described by the GOE ensemble. For
P(s), this holds after unfolding [8] such that even the small
difference between PGOE(s) and PWigner(s) is resolved. For
P(r), as we show here, also the unfolding procedure becomes
superfluous to reach the same conclusion.

The data accompanying this publication are available
in [26].
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APPENDIX

To compute an improved approximation to PGOE(r), we
follow Ref. [11] and perform the analogous calculation for
the (5×5)-matrix case. The joint probability distribution for
the GOE ensemble for the (5×5)-matrix case is [7]

�(e1, . . . , e5) = C5

∏
1�i< j�5

|ei − e j |
5∏

i=1

exp
( − e2

i /2
)
,

where C5 is the normalization constant. The distribution
P(5)

GOE(r) for the (5×5)-matrix case can then be computed as
∫ ∞

−∞
de3

∫ e2

−∞
de1

∫ e3

−∞
de2

∫ ∞

e3

de4

∫ ∞

e4

de5 �(e1, . . . , e5) δ
(
r− e4−e3

e3−e2

)
,

where we considered the eigenvalues to be ordered, with
e1 � e2 � e3 � e4 � e5, and concentrated on the spacing
around the central eigenvalue e3, which we believe to pro-
vide a better approximation than taking the average over the
three terms arising from the spacings around e2, e3, and e4.
When computing 〈r〉 = ∫ 1

0 rP(5)
GOE(r)dr = 0.532 592, we see

that the result is even closer to the high-precision numerical
estimate 〈r〉GOE ∼ 0.5307(1) than the numerical corrections
using δP(r) (0.524 912) as proposed in Ref. [11]. However,
evaluating the five integrals results in a lengthy expression
for P(5)

GOE(r); for details of the computation and the result,
we refer to a Mathematica notebook [26]. We note that a
systematic study for increasing (N×N ) matrices has been
done previously in Ref. [27].
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